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Abstract

Demand-side management approaches that exploit the temporal flexibility of electric
vehicles have attracted much attention in recent years due to the increasing market
penetration. These demand-side management measures contribute to alleviating the
burden on the power system, especially in distribution grids where bottlenecks are
more prevalent. Electric vehicles can be defined as an attractive asset for distribution
system operators, which have the potential to provide grid services if properly man-
aged. In this thesis, first, a systematic investigation is conducted for two typically
employed demand-side management methods reported in the literature: A voltage
droop control-based approach and a market-driven approach. Then a control scheme
of decentralized autonomous demand side management for electric vehicle charging
scheduling which relies on a unidirectionally communicated grid-induced signal is
proposed.

In all the topics considered, the implications on the distribution grid operation
are evaluated using a set of time series load flow simulations performed for repre-
sentative Austrian distribution grids.

Droop control mechanisms are discussed for electric vehicle charging control which
requires no communication. The method provides an economically viable solution
at all penetrations if electric vehicles charge at low nominal power rates. However,
with the current market trends in residential charging equipment especially in the
European context where most of the charging equipment is designed for 11 kW
charging, the technical feasibility of the method, in the long run, is debatable.

As electricity demand strongly correlates with energy prices, a linear optimization
algorithm is proposed to minimize charging costs, which uses next-day market prices
as the grid-induced incentive function under the assumption of perfect user predic-
tions. The constraints on the state of charge guarantee the energy required for
driving is delivered without failure. An average energy cost saving of 30% is re-
alized at all penetrations. Nevertheless, the avalanche effect due to simultaneous
charging during low price periods introduces new power peaks exceeding those of
uncontrolled charging. This obstructs the grid-friendly integration of electric vehi-
cles.

The decentralized control framework proposed in the thesis to overcome the prob-
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lems of a price-driven approach employs a power signal as the grid-induced incentive
function. It demonstrates compelling results in achieving valley filling in the demand
curve compared to its centralized counterpart at all penetrations. The linear ap-
proximation to the non-linear optimization problem definition reduced the runtime
by a factor of 32 at a penetration of 40% as a result of the computational load being
distributed across all the electric vehicle controllers. Contrary to the centralized
implementation, the approach proposed even at full penetration (i.e. 100%) does
not exhibit scalability issues. For the conceptual validation, in addition to the per-
fect predictions of users’ mobility behavior, a charging characteristic with a variable
charge rate is assumed. Furthermore, a perfectly-forecasted aggregate demand pro-
file and aggregate electric vehicle demand are also assumed.

The linear formulation is extended to a mixed integer linear formulation that in-
corporates a semi-continuous charging characteristic to comply with the charging
standards defined by IEC 61851. This formulation demonstrates a risk of form-
ing inferior peaks in the demand curve, caused by the more restricted flexibility
imposed by the limitation of the minimum charging currents. A grouping and a
randomization mechanism are proposed to overcome this drawback. The method
yields comparable results to the linear formulation.

To facilitate the feasibility of the proposed method in practical environments, a
framework driven by model predictive control is proposed in order to minimize the
impact of the estimation errors associated with the different uncertainties (electric
vehicle usage, and non-electric vehicle demand). The predictions are made using
state-of-the-art methods. A long short-term memory recurrent neural network is
used for day-ahead demand profile predictions. A k-nearest neighbors algorithm
is used to estimate the mobility profiles of electric vehicle users based on historical
data. The MPC-based method shows comparatively robust performance against the
uncertainty in demand. The uncertainty in the mobility profile estimations exerts
a greater impact on the performance. Although the proposed MPC-driven method
under these uncertainties does not reach the ideal solution, it demonstrates sig-
nificant potential in achieving the valley filling objective reducing the variance of
demand by a factor of 4.8 in comparison to the uncontrolled scenario when both
considered uncertainties are present. Hence, the method serves as a practically fea-
sible, economical method for distribution system operators to ensure a grid-friendly
integration of electric vehicle loads.



Sammendrag

Tilnærminger til styring på etterspørselssiden som utnytter den tidsmessige fleksi-
biliteten til elektriske kjøretøy har fått mye oppmerksomhet de siste årene på grunn
av den økende markedspenetrasjonen. Disse tiltakene for etterspørselsstyring bidrar
til å redusere belastningen på kraftsystemet, særlig i distribusjonsnett der flaske-
halser er mer utbredt. Derfor kan elbiler defineres som en attraktiv ressurs for
nettselskapene, som har potensial til å levere nettjenester hvis de forvaltes på riktig
måte. I denne avhandlingen gjennomføres først en systematisk undersøkelse av to
typiske metoder for styring av etterspørselssiden som er rapportert i litteraturen:
en tilnærming basert på kontroll av spenningsfall, og en markedsdrevet tilnærming.
Deretter er et kontrollskjema foreslått for desentralisert, autonom styring av etter-
spørselssiden for planlegging av lading av elektriske kjøretøy som er avhengige av et
ensrettet kommunisert nettindusert signal.

For å evaluere implikasjonene for driften av distribusjonsnett, som følge av algo-
ritmene på etterspørselssiden, ble et sett med tidsserier av lastflytsimuleringer ut-
førte innenfor rammen av representative østerrikske distribusjonsnett.

Droop-kontrollmekanismer blir diskuterte for ladestyring av elektriske kjøretøy som
ikke krever kommunikasjon. Metoden gir en økonomisk levedyktig løsning ved alle
penetrasjoner hvis elektriske kjøretøy lades ved lave nominelle effekthastigheter.
Men, med dagens markedstrender for ladeutstyr for boliger, særlig i europeisk sam-
menheng, der det meste av ladeutstyret er konstruert for 11 kW lading, er metodens
tekniske gjennomførbarhet åpen for debatt.

Ettersom elektrisitetsetterspørselen er i sterk korrelasjon med energiprisene, en lineær
optimaliseringsalgoritme for å minimere ladekostnadene er foreslått, som bruker
morgendagens markedspris som den nettinduserte insentivfunksjonen under forut-
setning av perfekte prognoser fra forbrukerne. Begrensningene på ladetilstanden
garanterer at energien som kreves for kjøring, leveres uten svikt. En gjennomsnit-
tlig energikostnadsbesparelse på 30% ble realiserte ved alle gjennomføringer. Likevel,
lavineffekten introduseres på grunn av lading samtidig i lavprisperioder fører til nye
og flere effekttopper enn ved ukontrollerte lading. Dette hindrer en nettvennlig in-
tegrering av elektriske kjøretøy.

Det desentraliserte kontrollrammeverket som foreslås i avhandlingen for å overvinne
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problemene med en prisdrevet tilnærming, benytter et effektsignal som nettindusert
insentivfunksjon. Det viser overbevisende resultater når det gjelder å oppnå dal-
fylling i etterspørselskurven sammenlignet med det sentraliserte ved alle penetrasjoner.
Den lineære tilnærmingen til den ikke-lineære optimaliseringsproblem reduserte kjøre-
tiden med en faktor på 32 ved en penetrasjon på 40% som resultat av at beregnings-
belastningen ble fordelt på alle elbilkontrollerne. I motsetning til den sentraliserte
implementeringen viser ikke den foreslåtte tilnærmingen skalerbarhetsproblemer selv
ved full penetrasjon (dvs. 100%). For den konseptuelle valideringen antas det, i til-
legg til perfekte prediksjoner av brukernes mobilitetsatferd, en ladekarakteristikk
med variabel ladehastighet. Videre ble det også forutsatt en perfekt prognostisert
og aggregert etterspørselsprofil og aggregert etterspørsel etter elbiler.

Den lineære formuleringen er utvidet til et blandet heltall lineær formulering som
inneholder en semi-kontinuerlig ladekarakteristikk for å overholde ladestandardene
definert av IEC 61851. Denne formuleringen viser en risiko for å danne dårligere
topper i etterspørselskurven, forårsaket av den mer begrensede fleksibiliteten som
pålegges av begrensningen av minimum ladestrømmer. En gruppering og en ran-
domiseringsmekanisme er foreslått for å overvinne denne ulempen. Metoden gir
sammenlignbare resultater med den lineære formuleringen.

For å lette gjennomførbarheten av den foreslåtte metoden i praktiske miljøer, fores-
lås et rammeverk drevet av modellprediktiv kontroll for å minimere virkningen av
estimeringsfeil knyttet til de ulike usikkerhetene (bruk av elektriske kjøretøy og et-
terspørsel etter ikke-elektriske kjøretøy). Prognoser ble gjort ved hjelp av toppmod-
erne metoder. Et tilbakevendende nevralt nettverk med lang korttidshukommelse
ble brukt til å forutsi etterspørselsprofilen dagen i forveien. En k-nærmeste naboer-
algoritme ble brukt til å estimere mobilitetsprofilene til elbilbrukere basert på his-
toriske data. Den MPC-baserte metoden viser forholdsvis robust ytelse i forhold
til usikkerheten i etterspørselen. Usikkerheten i estimatene av mobilitetsprofilene
har større innvirkning på resultatene. Selv om den foreslåtte MPC-drevne meto-
den under disse usikkerhetene ikke når den ideelle løsningen, viser den et betydelig
potensial for å nå målet om å fylle dalen ved å redusere variansen i etterspørselen
med fem ganger sammenlignet med det ukontrollerte scenariet når begge de vurderte
usikkerhetene er til stede. Metoden fungerer derfor som en praktisk gjennomførbar,
økonomisk metode for distribusjonssystemoperatører for å sikre en nettvennlig inte-
grering av elbilbelastninger.
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Chapter 1

Introduction

The global electric vehicle (EV) fleet expanded significantly over the last few years.
According to IEA reports, electric car registrations increased by 41% in 2020, de-
spite the pandemic-related worldwide downturn in car sales in which global car sales
dropped by 16% [1, 2]. Nearly 10% of global car sales were electric in 2021. The
International Energy Agency (IEA’s) latest statistics for EV uptake from 2010 to
2021 are presented in Figure 1.1. According to these records, electric car sales have
kept rising with 2 million cars sold in the first quarter even in the year 2022. The
strong momentum in the electric car market is predominantly attributed to sup-
portive regulatory frameworks to strengthen key policies like zero-emission vehicle
mandates, fiscal subsidies for EVs, expansion in the economic battery technology,
and interest toward fossil fuel autonomy.

Figure 1.1: Global electric car stock, 2010-2021 [2]

Electrification of the transport sector offers opportunities to reduce direct de-
pendency on fossil fuels, reduce carbon emissions, and improve local air quality.
Although the EV adaptation builds new connections between the transportation
and electric sectors, it poses numerous operational challenges to the electricity net-
work both at bulk and distribution levels. A vast body of research has investigated
the impacts of uncontrolled EV charging on the existing power system. The bulk
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power system is designed with greater resilience to demand growth thus expected
to be able to withstand the widespread EV adaptation. However, the distribution
systems where the EVs customarily interact, encounter far greater challenges with
this transition. Clustering effects in EV charging loads at the local level might lead
to high EV concentrations even if overall adoption remains low, triggering extreme
surges in demand at peak hours [3]. Furthermore, it can lead to undesirable voltage
deviations, high power losses, and asset overloading (cables and transformer) risk-
ing the stability and security of the power grid [4, 5, 6, 7, 8]. Such effects can be
exacerbated when higher in-home power charging is employed [3].

The aforementioned challenges could be overcome by reinforcing the grid as-
sets. The high investment costs and the installation duration of the associated rein-
forcements, however, represent a trade-off. Although increasing network flexibility
through supply-side options was the main focus in the past, recent transformations
in the network architecture have opened up alternative possibilities. As opposed to
the traditional approach of matching supply to demand, in certain cases, it is more
efficient to have demand match supply which is termed demand side management
(DSM) [9].

DSM is a field that emerged in the late 1970s and exploits demand flexibility
through the engagement of active consumers. It is defined as the planning and
implementation of those electric utility activities designed to influence customer
uses of electricity in ways that will produce desired changes in the utility’s load
shape [10]. Three concepts are distinctly identified in DSM: energy efficiency (EE),
energy conservation (EC), and demand response (DR). The definition of the DR
includes all intentional modifications to consumption patterns of electricity of end-
use customers that are intended to alter the timing, level of instantaneous demand,
or total electricity consumption. These DSM measures are gaining increasing at-
tention in light of the increased complexity added to the electric power systems,
due to a growing number of distributed generators and variable renewable sources
being integrated into the system. Furthermore, the integration of information and
communication technologies, automation, and control in the smart grids through
advanced metering infrastructure, sensors, and digital network management devices
enable the exploitation of efficient DSM strategies.

EV loads are regarded as flexible loads exhibiting a high potential for temporal
flexibility. Analysis of the 2017 National Household Travel survey data shows that
personal light-duty vehicles in the US are parked on average 95.8% of the time which
indicates the suitability of EV loads for DSM [11]. This temporal flexibility, in com-
bination with the large storage capacity of the EV batteries, renders them an ideal
candidate for DSM services. With properly designed DSM schemes, EV loads can be
utilized to provide different grid services either through managed charging or power
transfer to the grid. Although grid integration of EVs is challenging, the high flexi-
bility of EVs offers unique opportunities to complement electricity grid operations.
Furthermore, the demand-side flexibility resulting from the controlled EV charging
offers a potentially cost-effective alternative to conventional grid reinforcements.

Numerous DSM strategies are discussed in the literature to exploit the flexibility
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of EVs. In recent years, managed charging programs have grown in number, pro-
gram size, sophistication, and diversity in approach, and gained a high momentum.
The manifested diversities are reflected in the respective objectives, associated al-
gorithms, and approaches, required resources, associated costs, etc. However, the
primary goal of all these strategies is to regulate charging power and/or shift the
EV charging in time without disrupting the mobility requirements.

Managed charging of EVs can be achieved with either passive or active control
mechanisms. Moreover, it can be designed with unidirectional (V1G) or bidirectional
(V2B, V2G, or V2X) power flow as required. The order of complexity, communica-
tion requirements and resource requirements differs among these different methods.
The following section summarizes the state of the art pertaining to EV-controlled
charging featuring diverse approaches and resource requirements.

Passive managed charging: Also known as behavioral load control, passive man-
aged charging is driven by customer behavior. EV customers respond to a signal
with the intention to change their charging behavior, which can be done either man-
ually or automatically (with automatic timers)[12, 9]. Passive load control can be
realized with Time-of-use (TOU) or real-time pricing (RTP) which are relatively
easy to deploy on account of their lower complexity and reduced communication re-
quirements. However, charging management achieved through passive load control
is uncoordinated, thus the anticipated favorable impacts on grid operations may not
be realized. This type of uncoordinated charging when adopted largely can eliminate
the smoothing effect due to the natural stochastic features of EV charging demand,
forcing demand synchronization among all the consumers. If not properly designed,
it could lead to an unfavorable new rebounding peak during the low-price periods,
especially at high EV integration [13, 14].

Actively managed charging: Given the limitations associated with passive load
control, active management strategies for EV charging are being developed to pro-
vide more efficient solutions to meet the challenges of the grid. Emerging tech-
nologies in electricity grids equipped with smart features permit the deployment of
active managed charging. In this approach, EVs respond directly to a control signal
originating from the utility or an aggregator [12, 9]. The degree of complexity of
the control method varies depending on the implementation. Two strategies for ac-
tive charging management are available: 1) centralized and 2) decentralized controls.

Centralized charging: The main concept underlying the centralized charging ap-
proach is to utilize its centralized framework to acquire the information from the EVs
and provide a globally optimal solution considering all the grid and user constraints.
In this approach, a master control engine performs the decision-making concerning
the charging rate and schedule of the grid-connected EVs. A diverse range of algo-
rithms has been investigated in the literature to achieve centralized charge control,
covering a diverse portfolio of objectives as summarized in Table 1.1. The table also
provides more details on the power flow mode, consideration of user preferences, and
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provisions to facilitate ancillary services such as frequency regulation and voltage
regulation.

Table 1.1: An overview of the literature on centralized charging control.

Ref. V2G Objective Method
EV
owner
preference

Ancillary
services

Deilami, Sara, et al.[15] ✗

minimization of active
power losses and
improve voltage profile

maximum
sensitivity
selection
optimization

✓

Khatiri-Doost, S., et al.[16] ✓

minimization of distribution
system demand and
minimization of active
power losses

priority
based
optimization

✓

Masoum, Amir S., et al.[17] ✗

minimization of distribution
system demand and
minimization of active
power losses

maximum
sensitivity
selection
optimization

✓

Han, S., et al.[18] ✓
frequency
regulation

dynamic
programming ✓

Lopes, J. A. P., et al.[19] ✗
improving voltage profile
and line congestion heuristics ✗ ✗

Singh, M., et al.[20] ✓
peak power management
and voltage stability fuzzy logic ✗ ✓

Galus, M. D., et al.[21] ✓ minimizing the charging cost
agent
based
optimization

✗ ✓

Singh, M., et al.[22] ✓

minimization of distribution
system demand and
minimization of active
power losses

heuristics ✗ ✓

Xu, Zhiwei, et al.[23] ✗

minimization of distribution
system demand and
minimization of active
power losses

quadratic,
convex,
heuristics

✗ ✗

The centralized approach demands a sophisticated communication infrastructure
for network management and back-end services, which adds complexity and costs to
the system. In addition, it suffers from heavy computational costs and experiences
challenges in scalability due to the increased dimensionality specifically at high EV
market penetrations. For this reason, research studies employing centralized ap-
proaches are usually limited to studies with small sizes of EV fleets. Furthermore,
the centralized method faces challenges related to data security and privacy.

Decentralized charging: The decentralized approach makes the charging deci-
sions locally at each EV in response to a signal received from the grid side, whereby
the computational burden is distributed among the participating EVs. Hence, it
demands a certain degree of computational intelligence on the side of the EV cus-
tomer. The reduced computational complexity resulting from the distributed nature
underpins the scalability at high penetrations. However, the method does not pro-
vide a guarantee of a globally optimal solution with EVs establishing their charging
schedule without coordination with other EVs. An overview of the literature on
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Table 1.2: An overview of the literature on decentralized charging control.

Ref. V2G Objective Method Communication

Ma, Z., et al.[24] ✗
Minimize individual charging cost and
distribution system peak demand game theory bidirectional

Chen, N., et al.[25] ✗
Minimize individual charging cost and
distribution system peak demand

nested
optimization bidirectional

Gan, L., et al.[26] ✗
Minimize individual charging cost and
distribution system peak demand

iterative
negotiation
algorithm

bidirectional

Li, Q., Cui, T., et al.[27] ✗
Minimize the distribution system
load variance myopic algorithm bidirectional

Rotering, N., et al.[28] ✓ Maximize the profits of EV consumers dynamic
programming unidirectional

Cao, Yijia, et al.[29] ✗ Minimize the charging cost heuristics unidirectional

Vaya, M. G., et al.[30] ✗
Minimizes charging costs and
distribution system peak demand

genetic
algorithm unidirectional

EV management using the decentralized approach is presented in Table 1.2, also
indicating the power flow mode, the communication requirement, and the objective
of the optimization. The decentralized method has gained much attention in the
field of research related to DSM due to the reduced computational cost, reduced
communication resource requirements, enhanced data privacy, and security, etc. As
discussed in the previous sections, a multitude of approaches to charging manage-
ment has been proposed in the literature, demonstrating a substantial potential to
reach the goals of DSM. These approaches require different scales of resources and
enablement costs. The majority of the works being suggested in the literature re-
quire bi-directional communication, thus the economic feasibility is open to question
due to the associated costs for the communication infrastructure. Only a few in-
stances of DSM strategies with unidirectional communication are proposed in the
literature. However, these studies neglect some important design aspects that are
crucial for practical deployments, such as the incorporation of associated uncertain-
ties (EV-related uncertainty, non-elastic demand uncertainties, etc) and compliance
with the charging standards.

The aim of the work presented in this thesis is therefore to develop a DSM so-
lution for EV management which is both technically, economically, and practically
feasible. To reach this goal, a method that requires less communication, less com-
putational cost, and is easy to integrate into the existing charging infrastructure is
being sought.

1.1 Contributions

In order to achieve the above objective, the following contributions were made within
the framework of this doctoral thesis.

• A set of systematic studies are performed to assess the impact of EV charging
impacts on the operation of the distribution grids under different EV market
penetrations using time series load flow simulations in contrast to classical
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snapshot load flow simulation. Several DSM strategies with different levels of
resources are tested and the resulting impact on grid operation is evaluated.

• The feasibility of a communication-free DSM strategy for residential EV charg-
ing which has been proposed in the literature is investigated. A systematic
analysis of the proposed methodology is performed focusing on all existing
residential charging power rates and a full range of EV penetrations to gain a
broader outlook.

• A conceptual framework of a decentral ADSM strategy for EV scheduling is
designed where the communication requirement is strictly unidirectional.

• A novel two-layered decentralized ADSM strategy based on the developed con-
ceptual framework is implemented. The fundamental principle of the method
is to track a reference power signal and is therefore referred to as Optimal
Power Tracking (OPT). The performance of the proposed method is evaluated
and compared with its centralized counterpart.

• The proposed OPT architecture is extended to meet the charging standards
defined in IEC 61851 [31] to incorporate the design aspects with respect to
real-world deployment.

• To accommodate the uncertainties present within the OPT-ADSM approach,
a model predictive control scheme is investigated.

The structure of the published papers highlighting the different research topics con-
sidered is illustrated in Figure 1.2.

free unidrectional
voltage 

stability
charging cost 

minimization

valley 

filling

Publication A

Publication B

Publication C

Publication D

Publication E

Communication Objective

IEC charging

compliance
Uncertainty

Figure 1.2: The conceptual framework of the proposed unidirectional ADSM for EV
charging
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1.2 Thesis Outline

The dissertation is organized into two parts. Part I contains an overview of the
work carried out throughout this Ph.D. study and Part II includes a collection of
five published or submitted papers, which are listed in the list of publications. In
addition to the introduction chapter presented above, the following chapters are
included.

• Chapter 2 presents an overview of the methods and models used in the sim-
ulation studies followed by a detailed description of the developed ADSM
approach for EV charging scheduling.

• Chapter 3 presents an overview of a decentralized fully autonomous communication-
free ADSM strategy and emphasizes its feasibility for typical charging residen-
tial charging power rates for a range of EV penetrations which are presented
in Paper A.

• Chapter 4 presents the simulation results for the proposed control algorithm
using real-time pricing as the cost function for the optimization summarizing
the work in Paper B.

• Chapter 5 presents a hierarchical decentralized control algorithm developed
to achieve the valley filling objective by tracking a reference power signal as
presented in Publication C.

• Chapter 6 includes a mixed integer linear formulation for the decentralized
algorithm introduced in Chapter 5 to achieve compliance with the charging
standards as discussed in Paper D.

• Chapter 7 includes a model predictive control (MPC) driven framework to
incorporate the associated uncertainties. This chapter outlines Paper E.

• Chapter 8 contains the conclusion, in which the main findings are highlighted.

• Chapter 9 concludes the dissertation by highlighting a few potential future
research directions relevant to the topic addressed in this dissertation.
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Chapter 2

Simulation Models and Methods

In order to perform a systematic analysis of all the DSM strategies proposed in
this study, a set of load flow simulations of a distribution grid model is used. The
outcomes of the model are used to evaluate and build a more comprehensive portrait
of the grid status. Unlike the simplified methods used in most studies, which either
use superposition or focus on single EV use cases, this work uses the analytical results
from the power flow simulation (voltages at each node, currents in each cable, total
load at the transformer, etc.) in the evaluations. This chapter underlines a detailed
description of the in-house grid simulation tool [32] used to perform the load flow
calculations.

2.1 Grid Simulation Tool

The grid simulation tool developed is an integration of different network elements
as presented in Figure 2.1. This tool was developed in Matlab to provide a platform
for evaluating time series power flow studies. Additionally, it features an interface
for testing and evaluating DSM strategies for various flexible devices such as EVs,
stationary battery systems [33], heat pumps, photovoltaics, etc. This also can be
used for short-circuit fault analysis studies. Each of the modules in the presented
tool is described in detail in the following section.

2.1.1 Grid Model

The load-impedance matrix is an elementary component in the power flow calcu-
lations. The grid model element in Figure 2.1 is used to build up this impedance
matrix and to represent the topological characteristics of the grid. The essential
information for the grid modeling includes the network topology, cable and over-
head line parameters (types and lengths), cable and overhead library data (per unit
impedance, ampere ratings, etc), transformer parameters, consumer-related data
(type, number, and locations, annual energy consumption) of the grid. In this study,
the simulations are carried out using the information on selected representative low-
voltage (LV) grids in Austria in which all the necessary model parameters and the
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Power 

Flow 

Calculations

Figure 2.1: Grid simulation model

load information were available. Therefore, more realistic use cases are considered
to provide a representation of the European context.

2.1.2 Non-elastic Load Models

Non-elastic loads are classified into two main categories. The household loads and
non-household loads such as small-scale industrial enterprises, office buildings, and
commercial enterprises. Real measurements from smart meter pilot projects are
used to model household loads. Consumers’ annual energy consumption data from
the grid model are used as mapping criteria to assign the smart meter profiles to the
household load profiles. For the non-household loads, the standard load profiles of
the Austrian clearing and settlement agency [34] are used. These standard profiles
are scaled according to the annual energy consumption of the respective consumer
unit.

2.1.3 EV Model

A simplified linear model is used to characterize the system dynamics of the EV
battery as proposed in the majority of the literature on DSM of EVs. Accordingly,
the energy content of the EV battery at time t, E(t) is mathematically expressed
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by,

E(t) = E(t− 1) + ηc P
(c)(t)∆t − P (d)(t)∆t, (2.1)

where E(t) is the time-dependent energy content of the battery, P (c)(t) is the charg-
ing power and P (d)(t) is the discharging power at time t. ηc is the charging efficiency
of the charging equipment and ∆t is the time step. The model neglects the standby
losses of the battery.

The mobility profile data, which includes the energy consumption data of the
vehicles and the availability times, is derived either from travel survey data or from
pilot projects of electric vehicle charging records.

2.1.4 EV Penetration

The term EV penetration is defined as the percentage of consumer units with an
EV relative to the number of total households in a grid. An EV penetration of
100% implies that all the consumer units are equipped with an EV. A maximum
of one EV is assumed to be allowed at each unit. In the analysis, simulations are
performed for a wide range of EV penetration to investigate the feasibility of the
methods investigated across a broad spectrum of configurations.

2.1.5 Load Flow Calculations

The load flow computations are performed using the load flow technique proposed
by Ghatak and Mukherjee [35]. It is an extension of the conventional backward
forward sweep flow method where the load currents are calculated in the backward
sweep and the bus voltages are calculated in the forward sweep based on the currents
determined. It uses a single load current to bus voltage (LCBV) matrix to perform
both the backward and forward sweeps of load flow calculation in a single step to
determine the bus voltages directly from the load current injections as follows.

[V ] = [VS]− [LCBV ][I] (2.2)

where VS is the slack bus voltage, [V ] is the voltage vector comprising voltages at all
the nodes and I is the current vector representing load current consumptions at the
nodes. LCBV matrix mimics the topological structure of the distribution network.
The LCBV matrix is used to establish a relation between the injected load currents
and the bus voltages of the network which is utilized to compute the bus voltages
directly from the load current injections. This method has been tested for both
radial and weakly meshed grids.

2.1.6 Grid Simulation Outputs

The load flow calculation provides the voltage values at the buses and the current
flows in the cables. With this information, various performance indices are evaluated
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that reflect the quality of the network operation. From the utilities’ point of view,
increasing the efficiency and cost-effectiveness of the system and improving reliability
and power quality are among the most important aspects of cutting-edge electricity
networks [36]. One of the means used to achieve the aforementioned goals is the
flattening of the electricity demand curve. Two indices are used within this study to
measure the flatness of the demand curve: 1) Peak to average power ratio (PAPR),
and 2) variance. PAPR is an indicator of transformer utilization efficiency, which is
defined as the ratio between peak and average power.

Voltage profiles at the load nodes are also investigated and compliance with the
voltage norms defined in the EN 50160 [37] standard is analyzed. The EN 50160
standard is specifically chosen considering the European LV grid configurations in
the simulation studies. This standard specifies that the 10-minute rms value of the
supply voltage in LV distribution networks should not deviate from the nominal value
more than 10 % for 95 % of the time within a week. Additionally, the 10-minute
rms values of the supply voltage have to remain in the range of [−15 %,+10 %] in
any case.

The current carrying capacity defines the safe operating limits of a cable. Ex-
ceeding this limit will cause insulation failures due to overheating. Hence, cable
loading defined as the percentage ratio between the current flowing through the
cable and the maximum allowable current is investigated. These rated values are
taken from the cable library of the grid model.

2.2 DSM Interface

The DSM interface block is a representation of the control algorithms proposed
in this study for EV planning. The main attribute that is focused on designing
the control architecture is the degree of simplicity in embedding it into the existing
charging infrastructure and the required level of communication. Only unidirectional
power flow (V1G) is assumed in the framework of this study.

Two branches of EV scheduling control architectures are considered in the con-
text of this study. Paper A investigates a fully autonomous control algorithm that
demands no communication which is detailed in chapter 3. The remaining publica-
tions employ a control architecture where communication is strictly unidirectional,
which is described in the following section.

The proposed decentralized ADSM approach relies on a unidirectionally commu-
nicated, time-dependent control signal provided by a central entity, for instance, a
distribution system operator (DSO). This signal or a variant of this signal is used as
a cost function for the optimal scheduling problem of EVs. A schematic representa-
tion of the ADSM approach proposed for EV scheduling is presented in Figure 2.2.

An embedded controller integrated into the electric vehicle supply equipment
(EVSE) executes an optimization routine to calculate the optimal charging schedul-
ing for the EVs by minimizing a defined objective function. The control signal
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DSM Interface

Figure 2.2: The conceptual framework of the proposed unidirectional ADSM for EV
charging

defining the charging status of the EV is the decision variable in the optimization.
A cost function is broadcasted by a central entity to the EVs and it serves as the
incentive function in the optimization routine. The method relies on estimates of
EV usage behavior, which include the energy demand for future trips together with
the arrival and departure times defining the availability of the EV for charging. The
historical data acquired from the EVs is fed into an EV usage profile estimator to
predict each of these estimates. On the basis of these estimates and the received
cost function, the optimization routine derives the control signals for EV charging
using a simplified EV model by minimizing a chosen objective function. Optimiza-
tion constraints are defined to guarantee the state of charge permissible limits. The
linear battery model employed in the grid simulation tool is used in the optimization
routine as the EV model to reduce the complexity of the problem. The proposed
control function is performed locally for each grid-connected EV.

Due to the decentralized design of the proposed ADSM, it has significant advan-
tages. The primary benefit of the proposed ADSM is the reduced communication
overhead owing to the unidirectional communication requirement. Since the method
is implemented as a distributed control architecture, no scalability problems arise
owing to the reduced dimension of the associated optimization routines. The linear
formulations adopted in the optimization routine require less computational over-
head and therefore can be deployed in an embedded control system at a lower cost.

The proposed concept in the aforementioned ADSM architecture provides the
basic framework for the simulation studies presented in publications B, C, D, and
E. Papers B, C and D are conducted under the assumption of perfect prediction
for the EV usage behavior. Paper B employs the most widely used cost function
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in the literature, the real-time prices (RTP), to minimize the charging cost, and
discusses the resulting implications on the grid operation for a wide range of EV
penetrations. A hierarchical two-layer ADSM technique using the presented frame-
work is developed in Paper C as a part of this thesis. In the developed optimization
routine, a power signal that reflects the network state is used as the cost function
to achieve the valley filling objective. The method proposed in this contribution
forms the basis for the studies presented in publications D and E. Publication D
focuses on the compliance of the proposed method with the charging standards by
adopting a mixed integer linear optimization formulation. For a more comprehen-
sive assessment, Article E proposes an approach based on model prediction control
and evaluates it, taking into account the uncertainties involved.
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Chapter 3

Communication-free Autonomous
Demand Side Management of EVs

With the proliferation of EV market penetration, addressing the challenges of grid
integration has attracted strong research interest. Deviation from the standard volt-
age limits defined is one of the most common challenges with unregulated charging.
Voltage-dependant charging mechanisms which only require voltage measurements
at the point of connection (PCC) are discussed in the literature for mitigating volt-
age problems stemming from EV charging to meet the supply voltage standards
such as EN 50160 [37]. However, the feasibility of this method for all currently
existing residential charging power rates across all ranges of EV penetrations is an
open question. In this chapter, the background of the literature on the voltage-based
DSM of EV charging is presented followed by the highlights of a systematic analysis
conducted on the aforementioned method which is discussed in detail in Paper A.

3.1 Voltage Droop Control

Analogous to photovoltaic (PV) converters, voltage-based controllers work on a
simple droop control mechanism. The method only demands measured voltage at
the connection point and adjusts the charging current reacting to the measured local
voltage. The overall concept of the voltage droop control mechanism is presented in
Figure 3.1. A semi-continuous characteristic is used for the charging current which
is in compliance with the charging standards defined in IEC-61851 norms. Due to
the simplicity of the droop controller, integration into the existing charging network
is feasible with limited additional investment.

3.2 Motivation

The research studies that have been undertaken applying the voltage drop control
mechanism to electric vehicle charging are summarised in Table 3.1. The existing
literature fails to provide a detailed analysis of the voltage droop control mecha-
nism for all the combinations of EV penetrations and currently available residential
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Figure 3.1: Schematics of the voltage droop control mechanism for EV charging
control

charging power rates. Hence a systematic analysis is carried out and presented in
Paper A, to investigate the potential of droop controlling in complying with the
voltage magnitude standards in all these scenarios.

Table 3.1: An overview of the literature on voltage-based charging control and the
proposed study.

Ref. Penetration Nominal charging power (kW)

[38] 50 %, (60 %, 70 %) 6.6
[39] 10 EVs 4
[40] 39 EVs 3.3
[41] 43 EVs 3.7
[42] 80 % undefined
[Paper A] 5 %, 10 % - 100 % 3.3 , 6.6 , 11

(in steps of 10 %)

3.3 Simulation Setup

The simulation studies are conducted assuming that each EV charging equipment
is equipped with advanced metering infrastructure (AMI). This can be justified by
the fact that most countries with a high penetration of EVs have set targets for the
roll-out of smart meters. Three typical residential nominal charging power rates (i.e.
3.3 kW, 6.6 kW, and 11 kW) are considered in the evaluation and the results are
benchmarked to the respective uncontrolled charging. Thus, in total six scenarios
are investigated. U1, U2, and U3 denote the uncontrolled charging with 3.3 kW,
6.6 kW, and 11 kW nominal power rates respectively. And C1, C2, and C3 denote
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the droop-controlled charging for the aforementioned charging rates as stated in
Paper A.

A load flow simulation of a representative LV grid in Austria is conducted using
the grid simulation tool introduced in Chapter 2 over a week in the winter season
with a time resolution of 15 min. The simulated LV grid comprises two 630 kVA,
10/0.42 kV step-down 3-phase transformers with 221 load nodes. The grid supplies
600 residential consumers, 52 business units, and 99 other consumer units which
include heat pumps, public facilities, etc. The household load profiles are modeled
using real smart meter data recorded in a field test in Austria by the local energy
provider illwerke vkw AG (VKW) [43]. The commercial enterprises and other types
of loads are modeled using standard load profiles of the Austrian clearing and set-
tlement agency [34]. EV mobility profiles are generated from the records of the
Austrian national mobility survey Österreich Unterwegs 2013/2014 [44]. The spec-
ifications for a Nissan Leaf electric vehicle with a battery capacity of Ci = 24 kWh
are used. The voltage variations and compliance with the voltage standards defined
in EN 50160 for LV networks at the individual nodes are analyzed.

3.4 Results

Figure 3.2: A comparison of a voltage profile of a single day at an example node

Consistent with the relevant literature, the results showed that the voltage drop
control mechanism has the potential to improve the voltage profile at the grid nodes,
especially during critical time intervals. Figure 3.2 presents a comparison of the
voltage profile of a single day at an example node with a connected EV for both
controlled and uncontrolled scenarios. The voltage profile at the node with uncon-
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trolled charging experiences under-voltage events below the 0.9 p.u. threshold limit
at some time instances, especially when the grid is operating under peak load at
around 6 p.m., with most residential EVs commencing charging. Droop-controlled
charging mitigates these under-voltage events stemming from uncontrolled charging
and improves the overall voltage profile.

To better understand the potential of the proposed method, an in-depth analysis
is carried out to assess compliance with the voltage standards for the three charging
currents considered over a range of penetrations (cf. Figure 3.3). As visible in the
figure, the control method successfully mitigates the voltage violations stemming
from uncontrolled EV charging and ensures compliance with the voltage standards
defined in ENE50160 when charged at low nominal charging power rates (i.e. 3.3

kW and 6.6 kW) at all penetrations. However, the results indicate that above
80% EV penetration, compliance with the voltage standards is not ensured by the
droop controller when EV charging with a nominal power of 11 kW is employed. In
addition to the grid voltage improvements, the droop controller is also capable of
providing peak power reduction at the transformer by over 10% at 100% penetration.
However, the users experience prolonged charging times due to the intervention of
the controller. In the extreme case, at a high charging power of 11 kW and full EV
penetration, a noticeable impact on the charging rate is observed where the average
normalized charging reduces to 0.57.

This publication extends the findings from the existing literature to cover all
the penetrations and residential charging modes available confirming the suitability
of the method for early EV market penetrations. Owing to the absence of the
communication requirement, the method possibly provides an economically viable
solution. However, with the current market trends in residential charging equipment
especially in the European context where most of the charging equipment is designed
for 11 kW charging, the technical feasibility of the method, in the long run, is
debatable.
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Chapter 4

ADSM with Market Prices

Market-based DSM programs are often discussed in the literature for EV charging
scheduling in the first place where the main objective is to reduce electricity costs. In
these market-based DSM programs, a dynamically changing electricity price serves
as the incentive function. Following the roll-out of smart meters, time-based pric-
ing is becoming common in the residential and commercial sectors. Consequently,
market-based ADSM programs aimed at exploiting demand flexibility in the res-
idential sector have also gained increased interest. Electricity market prices and
demand are deemed to be highly correlated. As such, DSM based on market prices
is considered to offer a substantial potential for exploiting demand flexibility to yield
both systemic and economic benefits. In order to analyze the potential of market-
driven DSM for EV flexibility management and quantify the systemic impact on
distribution networks and economic gains, Publication B uses the ADSM frame-
work proposed in Chapter 2 with real-time prices as the incentive function followed
by a load flow simulation.

4.1 Method and Simulation Framework

The charging cost minimization problem in publication B is formulated as a linear
optimization routine for N time steps in response to the RTP signal ct, i.e.,

min
u

N∑

i=1

ci ui Pc ∆t s.t. (4.1)

SOCmin ≤ SOCi ≤ SOCmax ∀i, (4.2)

0 ≤ ui ≤ 1 for i, where vehicle is at home, (4.3)

0 = ui else. (4.4)

The control signal ui defines the normalized charging power of the EVs. The energy
constraint to maintain the state of the charge at minimum SOCmin and maximum
SOCmax operational bounds is defined in Equation 4.2. The power constraints for
the EVs are defined in Equation 4.3 to meet the charging current limitations either
from the EV charging infrastructure or EV battery. The optimization routine having
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a horizon window of 36 hours is repeated after every 24 hours. An overlapping time
window is chosen to ensure that the user’s energy requirements are always fulfilled.

The load flow simulation is performed for a representative residential LV distri-
bution grid in Austria for a simulation period of a week. The considered distribution
grid is a weakly meshed residential grid with 49 nodes. The household load profiles
and the mobility profiles are considered in the same manner as described in Chap-
ter 3. Eight different scenarios with an EV penetration ranging from 10%-80% are
assessed and compared, alongside a benchmark scenario consisting of no EVs. Day-
ahead stock market prices from the Austrian electricity market (Energy Exchange
Austria EXAA [45]) with a time resolution of 15 minutes are used as the incentive
function in the optimization. The specifications for a Nissan Leaf are used to char-
acterize the EV battery at a nominal charging power of 6.6 kW. The EV prediction
data required for the optimization is assumed to be perfectly known.

4.2 Results and Discussion

The different performance indices reflecting both economic and systemic perfor-
mance considered in the analysis are summarized in Table 4.1. Although the primary
focus of the study is not the impact of uncoordinated charging on grid operations,
the results illustrate the resulting negative implications of uncontrolled charging in
the terms of power losses, PAPR, and voltage deviations. The results show a poten-
tial saving of about 30% per kWh in average energy costs relative to uncontrolled
charging across all scenarios that reflect different penetration rates. This fact makes
the method economically attractive for EV users.

Table 4.1: Results on optimization with RTP: An overview of the simulation re-
sults for the different scenarios, as well as uncontrolled (Unc) and optimized (Opt)
operation of EVs, as published in Paper B

Scenario Penetration Cost Savings PAPR Power Losses Vmin (p.u.)
rate (%) per kWh (%) Unc Opt Unc Opt Unc Opt

No EV - - 2.653 0.785 0.96
1 10.4 30.77 2.545 2.550 0.8632 0.8605 0.95 0.95
2 20.8 30.74 2.477 2.976 0.9330 0.9348 0.93 0.93
3 31.3 31.28 2.457 3.564 1.0083 1.0214 0.93 0.92
4 41.7 30.80 2.703 4.174 1.0564 1.0840 0.93 0.90
5 52.1 30.89 2.732 4.754 1.1106 1.1525 0.93 0.89
6 62.5 31.42 2.875 5.054 1.1691 1.2333 0.93 0.89
7 72.9 31.55 3.082 5.424 1.2351 1.3219 0.93 0.89
8 83.3 31.62 3.592 5.760 1.3021 1.4176 0.92 0.89

A comparison of the total power at the transformer for 10% and 50% penetration
for an example 24 hour time frame is shown in Figure 4.1. A penetration of 10%
results in a reduction of the grid load of about 5%, while at 50% it results in
additional load peaks up to 50%. The distortion to the natural stochastic nature of
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charging behavior in uncontrolled charging induced by these market-based ADSMs
can therefore lead to more critical grid conditions at high EV penetration.

Figure 4.1: Effects of charging electric vehicles on the grid load

This effect of forming new peaks from the ADSM, which is referred to as the
avalanche effect, is neglected in most studies. As EV penetration continues to in-
crease, avalanche effects are likely to accelerate and could have a dramatic impact
on system load and thus on the power system. While the majority of these studies
draw a positive conclusion with regard to the effect of market-based DR for EVs,
a limited number of studies analyze avalanche effects of demand, i.e. negative im-
pacts of DR. Due to the expected high impact of EVs on system load, an avalanche
effect triggered by EVs could have an incomparably stronger impact. Therefore,
especially in the context of EVs, it is necessary to assess the incidence and systemic
and economic impacts of avalanche effects and to develop DR methods to counteract
them.
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Chapter 5

ADSM based on Optimal Power
Tracking

The uncoordinated charging of EVs leads to sudden high peaks in the load curve as
discussed in the previous chapters. A more uniform load curve is favored for efficient
operation and use of grid assets. Market-based DR strategies potentially can form
unexpected new demand peaks and have strong impacts due to their high energy and
power density. Therefore a DR strategy that avoids such negative effects and enables
a grid-friendly integration of EVs is of high importance. DSM approaches with
the objective of valley filling to achieve a smoother load curve are often discussed
in the literature. However, achieving this goal without central coordination in a
cost-effective way is worth further research. This chapter presents a decentralized
ADSM method as proposed in Publication C, to achieve valley filling by exploiting
the flexibility of the EV, which only requires unidirectional communication.

5.1 Optimal Power Tracking for Valley Filling

The fundamental principle of the decentralized method is to track a reference power
signal, hence referred to as optimal power tracking (OPT) hereafter. The reference
power signal is determined by a central entity to achieve valley filling through the
exploitation of EV demand flexibility. The method is formulated in a two-layer ar-
chitecture as presented in Figure 5.1, where the central entity (in the proposed study,
the DSO) determines the tracking signal at the first layer, which is then broadcasted
to all the grid-connected EVs. The controllers integrated into the EVSEs scale the
received signal to their expected energy consumption for the following day and then
track it with minimal deviations at the second layer. The optimal tracking problem
is formulated in a linear form with the aim of achieving a reasonable near-optimal
solution at reduced computational cost and resources.

The following sections present the details of the proposed method and the for-
mulations of the optimization algorithms at each layer.
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Figure 5.1: The two-layer architecture of the optimal power tracking demand side
management algorithm for EV charging. In layer 1, the DSO determines a target
power signal S based on the estimates of non-elastic power demand D∗ and aggre-
gated total EV demand E∗ and broadcasts to all the EVs. In layer two, with the
knowledge of EV user behavior estimates (arrival times tj,arri, departure times tj,dep,
energy demand E∗

j ), each EVSE performs an optimization to track the power signal
received with minimal deviations.
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5.1.1 First-layer: Optimization for Determining Tracking Sig-
nal

The tracking signal is determined based on the estimated day ahead aggregated
non-EV demand profile (D∗) and the estimated total energy consumption of all the
grid-connected EVs (E∗). The first step to determine the target signal is to obtain
the fill level Z by solving,

NT∑

t=1

max{(Z −D∗
t ), 0} ∆t = E∗, (5.1)

for Z using the two estimates in accordance with the classical water filling algo-
rithm [46]. NT is the total number of time steps of length ∆t in the optimization
window. The difference between the fill level Z and the estimated non-elastic load
profile at each time interval D∗ for the optimization horizon St is computed and
transmitted to the EVs:

St = Z −D∗
t . (5.2)

5.1.2 Second-layer: Optimization for Tracking the Reference
Signal

In the second layer of the OPT, an optimization is performed by each local EV
controller. The local controller attached to the EVSE splits the negative S−

t and
positive S+

t parts of the original power signal received St. The reference signal for
the jth EV,

S+
j,t =

E∗
j∑NT

t=1 S
+
t ∆t

S+
t (5.3)

is derived by scaling S+
t to the estimated next day energy demand for the jth EV, E∗

j .
The optimization routine is devised to track the S+

t with minimal deviation. The
quadratic formulation of the above tracking problem is straightforward but com-
putationally intensive. Furthermore, it has scalability problems as EV penetration
progresses. To address this, a linear approximation to the original tracking problem
is formulated as follows.

min
NT∑

t=1

[aj,t(1 + S-
t) + bj,t] ∆t s. t. (5.4)

− aj,t ≤ S+
j,t − Pj,t ≤ aj,t ∀j,∀t, (5.5)

− bj,t ≤ Pj,t+1 − Pj,t ≤ bj,t ∀j,∀t, (5.6)

SOCj,min ≤ SOCj,t ≤ SOCj,max ∀t, ∀j, (5.7)

Pj,min ≤ Pj,t ≤ Pj,max ∀t,∀j, (5.8)

aj,t ≥ 0 ∀j,∀t, (5.9)

bj,t ≥ 0 ∀j,∀t. (5.10)
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where aj,t and bj,t are two sets of auxiliary variables, SOCj,min and SOCj,max are the
minimum and maximum permissible state of charge of the EVj battery specified by
the manufacturers. Pj,t is the charging power of the EVj at time t. Pj,min and Pj,max

are the minimum and maximum permissible charging power of the battery, set by
either the EVSE or EV manufacturer.

5.1.3 Centralized OPT Implementation

To benchmark the performance, a centralized DSM solution is implemented which
has the same objective as the decentralized method presented. In contrast to the
decentral implementation, the central counterpart track the power signal S+

t by
exploiting the aggregated EV flexibility as given below,

min
NT∑

t=1

(|S+
t −

NEV∑

j=1

Pj,t|(1 + S-
t) +

NEV∑

j=1

Pj,t+1 −
NEV∑

j=1

Pj,t|)∆t (5.11)

subjected to the constraints (5.7-5.8).

5.2 Simulation Setup

A load flow simulation study is performed considering an Austrian LV distribution
grid comprised of an 800 kVA, 10/0.42 kV step-down 3-phase transformer with 52
load nodes and 103 distribution lines. The grid supplies 490 residential consumers,
9 business units, and 77 other consumer units which include heat pumps, public
facilities, etc. The residential loads, non-residential loads, and EV mobility profiles
are modeled similarly to those described in Chapter 4. In the study, the most
commonly used residential charging rate in Austria, i.e., 11 kW is considered. All
the simulations are run on a server with an Intel(R) Xeon(R) CPU E5-2630 v3
@2.40 GHz processor and 31 Virtual CPUs. Load flow simulations for the considered
distribution grid are performed over a week for ten different EV penetrations (10%
-100%, in steps of 10%) for three scenarios; uncontrolled, centralized OPT, and
decentralized OPT.

5.3 Results

The comparison of the different performance indices reflecting effectiveness in achiev-
ing the primary valley filling objective, computational run time, impact on EV user
comfort, and impact on grid operation is evaluated for the simulated week. With
increasing EV penetrations, the dimension of the state variables in the central OPT
becomes very high, making the memory requirements of the optimization problem
prohibitive. Given the high number of state variables at high penetration, the cen-
tralized OPT solution is realized only up to an EV penetration of 40% due to the
limited memory capacity associated with the computational resources stated above.
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The mean absolute deviation (MAD) between the valley fill level Z and the total
demand Dt is defined as,

MAD =
1

NT

NT∑

t=1

|Zt − (Dt +
NEV∑

j=1

Pj,t)| , (5.12)

is used for comparing the effectiveness of the algorithm in achieving the objective.
As depicted in Figure 5.2, the centralized OPT performs better in realizing the

objective of tracking the reference power signal. However, the insignificant discrep-
ancy between the two confirms that the decentralized OPT even with less informa-
tion exchange is capable of yielding a comparable result to the centralized OPT,
offering a compelling alternative to centralized OPT.

A summary of the results including the key indices used for the evaluation at
different penetrations is presented in Table 5.1. The indices such as PAPR, power
losses, and cable overloading, which reflect network operation, indicate that the
decentralized OPT formulation performs comparably to its centralized counterpart
despite the reduced information exchange.

The charging rate which reflects the impact on user comfort is lower in the
decentralized approach in comparison to the central counterpart. This is attributed
to the loss of global information on the EV data in the decentralized implementation.
Despite the lower charging rates, the decentralized OPT complies with the demanded
energy delivery to all EVs as in the decentralized OPT.

Furthermore, the runtime of the two variants of the OPT exhibits a noticeable
difference, where the runtime for the maximum feasible penetration with centralized
OPT (i.e. 40%) is 400 minutes, while that of the decentralized variant is 12 minutes.

The results indicate that the proposed decentralized OPT method is a compelling
alternative to centralized implementation for grid-friendly integration of EVs with
no requirement for bidirectional communication and computationally intensive in-
frastructure.

Figure 5.2: Mean absolute deviation between the valley fill level Z and the total
demand for the centralized and decentralized OPT scenarios.
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Chapter 6

ADSM with IEC Compliant
Charging Characteristics

The proposed ADSM algorithm described in the previous chapter (publication C) is
well suited for practical implementations owing to its reduced computational costs
and communication requirements. However, a variable charging (VC) rate, which
is not in accordance with IEC charging standards, is assumed as reported in the
majority of the literature, in validating the conceptual framework in publication
C. This method is extended in Publication D by adopting a semi-continuous (SC)
charging rate that complies with the charging standards defined in IEC 61851 which
is either zero or varies between the minimum and maximum values. This chapter
presents the mixed integer linear programming (MILP) formulation suggested to
meet this requirement.

6.1 MILP Reformulation

The linear formulation to the optimization in the second layer of the architecture
presented in Figure 5.1 is reformulated in a MILP formulation to achieve semi-
continuous charging characteristics compliant with IEC standards. The objective
and the associated constraints of the optimization problem are listed below, where
j refers to the jth EV.

min
NT∑

t=1

[aj,t(1 + S-
t) + bj,t] ∆t s.t. (6.1)

− aj,t ≤ S+
j,t − Pj,t ≤ aj,t ∀t,∀j, (6.2)

− bj,t ≤ Pj,t+1 − Pj,t ≤ bj,t ∀t,∀j, (6.3)

SOCj,min ≤ SOCj,t ≤ SOCj,max ∀t,∀j, (6.4)

xj,tPj,min ≤ Pj,t ≤ xj,tPj,max ∀t,∀j, (6.5)

xj,t ∈ [0, 1] ∀t,∀j, (6.6)

bj,t ≥ 0 ∀t,∀j, (6.7)

xj,t = 0 ∀j, for t, where the EV is not at home. (6.8)
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Here, aj,t and bj,t are two sets of auxiliary variables, SOCj,min and SOCj,max are the
minimum and maximum permissible state of charge of the battery of EVj, specified
by the manufacturers. The state of charge of vehicle j at time step t, SOCj,t is
derived assuming a linear battery dynamics:

SOCj,t =SOCj,0 +
1

CB
j

{ t∑

s=1

ηj,c Pj,s∆t−
t∑

s=1

Ej,s

}
(6.9)

where, Ej,t refers to the energy demand for driving. Pj,t is the charging power of
the EVj at time t. Pj,min and Pj,max are the minimum and maximum permissible
charging power of the battery either defined by the EVSE or EV manufacturer.
xj,t is a binary variable, which for each EV at time t specifies charging (1) or not-
charging (0). It is used to implement the semi-continuous charging characteristics
in compliance with the IEC standards for each EVj at time t.

The limits imposed on the minimum charging current can result in new peaks
due to simultaneity, especially at high penetrations. To mitigate this drawback, a
randomization and a grouping mechanism are used in the decentralized controllers.

A grouping mechanism, implemented by the DSO, randomly assigns each EV
to one of the Ng groups. A new target signal for each group Sg,t is derived by
segmenting the original target signal St into Ng signals, each exhibiting the same
time integral reflecting energy. A given EV will receive the target signal created for
the group and the total number of EVs present in the group (NEV,g). Subsequently,
the EVs perform the MILP optimization described above alongside a randomization
process.

In the randomization process, each controller generates a random probability
for every time slot of the target signal using a uniform distribution. Only if the
probability is higher than a threshold value, charging is allowed. The threshold
probability PT,t at time step t is determined based on the percentage of EVs in the
group able to charge simultaneously at the minimum charge rate without exceeding
the target signal:

PT,t = 1− (
S+
g,t

PminNEV,g

) (6.10)

6.2 Simulation Setup

The distribution grid is modeled similarly to Chapter 5. The smart meter data
set from the Irish Commission for Energy Regulation (CER) in a smart metering
project is used to model the non-elastic household demand data [47]. These data
having a half-hour sampling time are re-sampled to a sampling interval of 15 minutes.
After filtering the incomplete data, a data set of 4225 customers is considered. The
household demand data spans over a year from 14th July 2009 to 31st December 2010.
This database with a larger data set is considered to capture a more generalized
sample of consumers. The historical residential charging data are obtained from
records of the experimental statistics of the Electric Charging Point Analysis project

29



funded by the Office of Low Emission Vehicles [48]. The records include charging
events spanning over a year for residential charge points in the UK. In contrast
to the mobility profiles generated from the travel survey data, the charge point
data set spans over a more extended time period which enables it to be used in
prediction models to capture their dependencies. In this study, to demonstrate
the feasibility of the concept, a perfect prediction of EV usage behavior and perfect
predictions of non-elastic demands are assumed. Nine scenarios are considered in the
analysis: A reference case with uncontrolled EV charging (Unc), a variable charge
rate scenario as in previous studies with a linear formulation (VC), a semi-continuous
charge rate MILP formulation with no grouping and randomization (SC), a MILP
formulation with randomization and no grouping (SC_1), and MILP formulations
with randomization and grouping from two to six groups (SC_2-SC_6).

6.3 Results

The primary objective of the method is to achieve valley filling utilizing the flexibility
of the EVs. The variance of the demand profile is therefore used to evaluate the
performance across different scenarios considered.

Figure 6.1: Variance in the total demand normalized to the variance of the 0% pen-
etration for uncontrolled (Unc), OPT with variable charge rate (VC), OPT with
semi-continuous charge rate (SC), OPT with semi-continuous charge rate and ran-
domization in charging (SC_1), OPT with semi-continuous charge rate and ran-
domized charging with two to six groups (SC_2-SC_6).

The formulation of OPT with SC charging alone reduces the variance in compar-
ison to uncontrolled EV charging but shows a significant deviation from OPT with
VC, which is more noticeable at high penetrations as observed in Figure 6.1. This
can be attributed to the concurrent charging of a high number of EVs at the mini-
mum permissible charging rate during the deep valley periods. The randomization
process improves performance to a high extent across all penetrations, whilst still
exhibiting a slight variation at high penetration. The inclusion of grouping leads to
a performance much closer to the implementation of OPT with VC rate. Increasing
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the number of groups results in better performance, however, a group number of four
is adequate to achieve similar performance to OPT with VC up to a penetration of
50%.
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Chapter 7

Model Predictive Control Framework
for Uncertainty Handling

The charging scheduling algorithms are often associated with multiple sources of
uncertainty. However, the majority of the existing methods neglect these uncertain-
ties making the assumption of perfect predictions. Adopting the same approach,
the working principle of the proposed OPT approach is evaluated in publication
C under the assumption of perfect predictions. Although few studies analyze EV
scheduling problem considering uncertainty, most of them mainly focus on either the
uncertainties arising from EVs or renewable generation. None of them incorporate
the uncertainties stemming from multiple sources. To bridge this gap, publication E
proposes a framework driven by model predictive control (MPC) considering multi-
ple uncertainties to investigate the impact of various uncertainties on the expected
objectives.

7.1 Uncertainty Modeling

The OPT method as depicted in Figure 7.1 is designed based on three estimates:
1) the non-elastic load demand 2) the aggregated demand of the EVs connected to
the grid 3) the mobility behavior of the EVs. The non-elastic load demand and the
aggregated EV demand estimates are needed at the first layer, being relatively trivial
to obtain due to the aggregation. The mobility behavior is needed at the second
layer, on a local basis for each individual vehicle, which can be attained by historic
data. Since the scope of the study does not address the different forecasting methods,
the known methods from the literature are employed to realize these estimates. The
following sections provide a summary of the methods used to obtain these three
estimates.

7.1.1 Non-elastic demand prediction model

Conventional mathematical techniques such as regression, exponential smoothing,
stochastic time series, autoregression, autoregressive moving average, and support
vector machine as well as soft computing techniques such as fuzzy logic, neural
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networks, and evolutionary algorithms are widely discussed in the literature for
electricity demand forecasting based on historical data (which are summarized in [49,
50, 51, 52, 53, 54]). The intelligent transformer substations [55] in active distribution
grids that are capable of measuring demand at short-term intervals are used more
frequently by the DSOs and provide basic data to predict future demand.

Prediction methods based on neural networks, which are capable of approximat-
ing the non-linear functions in the data, have been considered in the proposed study
since they demonstrate superior performance compared to conventional statistical-
based methods. A long short-term memory (LSTM), a type of a recurrent neural
network that is widely used for short-term demand forecasting is employed to pre-
dict non-elastic demand. Lagged demand data for 24 hours and other exogenous
time-related variables (day of the week, month of the year, week of the month, time
step of the day) are used as inputs for the neural network model. The model com-
prises four hidden layers and "Adam" optimization algorithm is used for training
the data set.

7.1.2 Electric vehicle mobility behavior prediction model

A vital component of effective charging control algorithms is accurate estimations of
the charging session parameters. These parameters are the start time, stay duration,
and overall energy consumption and are necessary inputs for the scheduling algo-
rithms. The OPT algorithm proposed in publication C depends on the estimates
of these session parameters for each individual EV at the local customer level. A
k-nearest neighbor-based approach is used to predict these session parameters, as
it has been proven a valid approach to be effective in predicting usage demand for
MPC-based DSM approaches in the field of water heaters [56]. To apply this ap-
proach, a time series of historic usage is created for each EV which includes the
information on availability and driving energy demand by

Dt =

{ ∑t2
t=t1

Ej,t

t2−t1
: unavailable at t ∈ [t1, t2]

0 : available at t
. (7.1)

charging

schedule

Layer 1

Layer 2

Figure 7.1: Two layer architecture of the optimal power tracking algorithm.
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By comparison of the most recent time steps of usage data to historic daily usage
data on the basis of Euclidean distance, the nearest neighbor is selected that complies
with the availability at the current time step. Ib = 48 time steps back is considered
representing 12 hrs. Id = 24 hr

∆t
yields an integer representing the amount of time steps

spanned by one day. l = 0 and l > 0 represent the indices of current and historic
demand time series. N steps forward in time are considered to be predicted, defined
by the time steps considered for optimization. Then, the expected future usage is
given by D∗ according to:

D(l)
- = (Dt−lId−Ib , . . . , Dt−lId) , 0 ≤ ≤

⌊
t− Ib

Id

⌋

D
(l)
+ = (Dt−lId+1, . . . , Dt−lId+N) , 1 ≤ ≤

⌊
t− Ib

Id

⌋

l∗ = argminl>0∥D(0)
- −D(l)

- ∥, where Dt−lId = 0

D∗ = D
(l∗)
+ . (7.2)

For implementation, MATLAB’s Euclidean distance-based nearest neighbor al-
gorithm [57] is used.

7.1.3 Aggregated EV energy consumption prediction model

A multilayer perceptron (MLP) model which is a class of feedforward neural networks
is employed to determine the aggregated energy demand estimates of EVs. The
historic EV demand data for the week before and the day of the week are used as
input variables for training the model. A five-layer MLP model is used with the
"Levenberg-Marquardt" algorithm as the training function.

7.2 MPC for Uncertainty Handling

MPC is a popular method primarily in the process control industry [58]. The prin-
ciples of the MPC are equally applicable in the DSM domain to reduce the impacts
of underlying uncertainties. In the MPC-based approaches, the optimal control se-
quence is determined at a given time instance for the optimization horizon. However,
only the first samples of the deduced control sequence are applied. The aforemen-
tioned finite horizon optimization is re-iterated at a predefined time interval. By
exploiting the latest available information, the method reduces the sub-optimality
caused by estimation errors of uncertain parameters. MPC-based optimization pro-
cesses are computationally intensive since they typically involve a multitude of com-
putations due to the re-iterative nature of the method. The lower computational
costs and faster run time offered by the distributed nature of OPT, render it a
potential candidate for implementation in an MPC framework.
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7.3 Results

Similar to the previous publications, a set of load flow simulations are performed for
the purpose of evaluations. The household demand profiles and historic charging
data are considered similar to Chapter 6. The performance of the proposed MPC
framework for the OPT charge scheduling algorithm is evaluated considering the
three sources of uncertainties discussed and compared to the ideal case with perfect
predictions. The analysis focuses on two main aspects: 1) performance in achiev-
ing the primary objective of tracking the reference signal and 2) network-related
performance indices. The comparative results include seven scenarios:

• Scenario A: uncontrolled charging

• Scenario B: variable charging assuming perfect predictions

• Scenario C: semi-continuous charging assuming perfect predictions

• Scenario D: MPC-based semi-continuous charging under load demand uncer-
tainty

• Scenario E: MPC-based semi-continuous charging under EV user behavior
uncertainty

• Scenario F: MPC-based semi-continuous charging under load and EV user
behavior uncertainty

• Scenario G: MPC-based semi-continuous charging under load, aggregate EV
demand, and EV user behavior uncertainty

The main results summarizing the performance indicators are presented in Ta-
ble 7.1. The different uncertainties that are present in the system have different
degrees of impact on the optimality of the scheduling algorithms. Comparing MAE,
RMSE, and variance in Table 7.1, uncertainties related to user mobility behavior
resulted in the most significant impact. The combined uncertainties do not indicate
a summed impact, instead, the EV uncertainty dominates the overall effect. Despite
the fact that the proposed MPC-based OPT method deviates from the perfect pre-
diction scenario in achieving the objective, the variance in the aggregated demand
curve is reduced by a factor of 4.8 in comparison to the uncontrolled scenario when
both considered uncertainties are present. The relative reduction in the variance in
scenario C with perfect predictions and IEC-compliant charging is a factor of 7.5.
The network-related performance indicators in the MPC formulations show compa-
rable results to that of the perfect predicted scenario. Hence, the method shows
promising potential for demand response in EVs.

The study presented in Paper E, emphasizes the significance of incorporating
uncertainty in the DSM methods for exploiting EV flexibility and suggests the MPC-
based approach as a promising tool for EV charging scheduling problems under
uncertainty.
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Chapter 8

Conclusions

This thesis focuses on developing a conceptual framework of a techno-economic and
practically viable autonomous DSM method to address the grid challenges arising
from uncoordinated charging. The existing literature confirms that the flexibility
of EVs has a high potential for providing DSM services. However, the majority of
these studies are based on centralized control systems where communication is bidi-
rectional. The expensive communication being the main drawback, these methods
also suffer from scalability issues at high market penetrations. The decentralized
approaches focusing on efficient, simple, cost-effective practically viable DSM solu-
tions for EV charging are discussed sparsely. Hence the aim of this research work
is to propose a decentralized charging scheduling algorithm for EVs which exhibits
the aforementioned attributes.

To begin with, the feasibility of a communication-free charging control algorithm
that has been discussed in the literature focusing on the reduction of voltage vio-
lations is analyzed and summarised in Chapter 3 (cf. publication A). The analysis
conducted in the existing literature is limited to slow charging rates and a con-
stricted range of penetrations. The systematic study presented in publication A,
accounting for the typically available residential charging rates and covering the full
range of penetrations, provides new insights into this domain of research. The results
demonstrate that the method successfully mitigates voltage violation at slow charg-
ing rates for all penetrations. However, considering that the current market trend
is leading to high nominal charging rates, the technical feasibility of the method is
questionable at the high market penetration of EVs.

Publications B, C, D, and E propose and evaluate an ADSM algorithm for EV
scheduling based on a signal originating from the utility. The main features of the
proposed algorithm are as follows.

• The communication is strictly unidirectional. Therefore, more limited invest-
ments are required in the communication infrastructure.

• A two-layer hierarchical framework is proposed where the computational bur-
den is distributed. Hence, the scalability at the high market penetrations is
not a constraint.
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• A linear approximation to the optimization is employed which exhibits a rea-
sonable approximation to the original non-linear problem formulation. This
feature resulted in reduced run time and computational cost. Consequently,
required hardware specifications can be fulfilled with an embedded system that
enables easy integration into the existing charging infrastructure.

• A semi-continuous charging characteristic is employed to comply with the IEC
charging standards. Thereby enabling the economical operation of the EV
battery as recommended by the manufacturers.

The proposed method, in contrast to the existing literature, is evaluated using
simulation studies featuring the following aspects:

• Systematic time series load flow simulations;

• Realistic distribution grid topologies and demand profiles;

• Realistic EV mobility profiles;

• Wide range of EV market penetration.

Publication B investigates the feasibility of applying a market-based pricing sig-
nal to serve as the grid-originated signal. This paper draws the conclusion that the
methods with simple pricing schemes tend to suffer from the avalanche effect form-
ing new peaks in the demand curve. To mitigate this drawback, employing a power
signal is suggested and optimization is formulated to achieve valley filling in the de-
mand curve. The results indicate that the proposed method is techno-economically
compelling for grid-friendly EV integration.

All the simulation studies carried out, with the exception of publication E, as-
sume perfect predictions of the uncertain parameters. Nevertheless, in practice,
these parameters have to be estimated and errors in estimation lead to suboptimal
solutions. Most of the literature neglects the influence of uncertainties adhering to
perfect predictions or only considers a single type of uncertainty. To bridge the gap,
an MPC-based framework is proposed, as described in Chapter 7, which accounts
for different sources of uncertainties on the EV user side and the network side. The
results suggest that the EV mobility behavior estimates are the most critical. Fur-
thermore, the results show that the proposed MPC framework provides a reasonably
robust solution against these uncertainties.

Driven by technological advancements and worldwide awareness of sustainability,
the market penetration of EVs is on the rise, offering both challenges and oppor-
tunities for the electricity network. The managed charging shows a high potential
for relieving the stress on the grid. However, the costs associated with these ameni-
ties must be weighed against the rewards they offer. The proposed method in this
thesis can be considered a cost-effective solution that can be deployed with reduced
infrastructural upgrades and offers distribution grid operators a convincing solution
for the grid-friendly integration of EVs.
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Chapter 9

Outlook

The current energy system is transforming into a more complex system integrated
with intermittent distributed generation, high power and energy-intensive consumer
loads such as EVs and heat pumps, and increasing participation of prosumers. Sus-
taining the stability of the grid is becoming an increasingly challenging task with
these new developments. Integration of advanced technologies in smart grids enables
these challenges to be seen as opportunities. EV loads exhibit a high potential in
offering opportunities for the provision of grid services through DSM methods owing
to their temporal flexibility and high energy density. In the scope of this work, an
ADSM method for charging scheduling is proposed and validated with simulation
studies. However, the design of communication protocols between smart meters,
charging equipment, and programmable logic controllers (PLC) for implementation
and testing is an essential aspect for further development. The author with her
colleagues has initiated investigations into this area.

The proposed scheduling algorithm in this thesis is only limited to load-shift
potential. However, the method could be further extended to provide V2G services.
Within the scope of this thesis, a simplistic linear battery dynamics is assumed.
However, with the inclusion of the V2G services, a more detailed battery model
describing the state of charge dependant charging behaviors and degradation from
the cyclic charging events is of importance. Accordingly, the proposed method can
be extended to account for these aspects. Furthermore, the incentives for consumer
participation in providing grid services and the policy framework for the implemen-
tation in practice remain to be developed by the DSO.

Across Europe, there are new regulations emerging for multi-residential com-
plexes where charging facilities are mandatory. The charging scheduling algorithms
for charging scheduling of EV fleets in these facilities are a potential research ques-
tion.

Due to the current trends in the energy sector, the interests of the utility, as
well as consumers, are gaining toward distributed generation. Photovoltaic (PV)
systems are becoming increasingly popular. The author together with her colleagues
investigates the quantification methods for hosting capacities in distribution grids as
discussed in Publication F. Concomitantly, developing a management algorithm for a
system where PVs and EVs interact is an interesting research direction. Furthermore,
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the integration of the flexibilities of the thermal and electrochemical energy storage
systems is a potential extension.
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Abstract: If left uncontrolled, electric vehicle charging poses severe challenges to distribution grid op-
eration. Resulting issues are expected to be mitigated by charging control. In particular, voltage-based
charging control, by relying only on the local measurements of voltage at the point of connection,
provides an autonomous communication-free solution. The controller, attached to the charging
equipment, compares the measured voltage to a reference voltage and adapts the charging power
using a droop control characteristic. We present a systematic study of the voltage-based droop control
method for electric vehicles to establish the usability of the method for all the currently available
residential electric vehicle charging possibilities considering a wide range of electric vehicle penetra-
tions. Voltage limits are evaluated according to the international standard EN50160, using long-term
load flow simulations based on a real distribution grid topology and real load profiles. The results
achieved show that the voltage-based droop controller is able to mitigate the under voltage problems
completely in distribution grids in cases either deploying low charging power levels or exhibiting low
penetration rates. For high charging rates and high penetrations, the control mechanism improves the
overall voltage profile, but it does not remedy the under voltage problems completely. The evaluation
also shows the controller’s ability to reduce the peak power at the transformer and indicates the
impact it has on users due to the reduction in the average charging rates. The outcomes of the paper
provide the distribution grid operators an insight on the voltage-based droop control mechanism for
the future grid planning and investments.

Keywords: electric vehicles; demand response; demand side management; voltage-based droop
control; distribution grids; voltage violations

1. Introduction

The electrification of the transportation sector provokes many challenges in the power
system operation, most notably in the low voltage (LV) distribution networks [1–3]. If
left uncontrolled, private electric vehicles (EV) are more likely to be charged at high
coincidence when most of the EV owners return home from their work. As a result, EV
charging raises the already existing peak demand at the distribution transformers in this
period leading to many operational problems: voltage drops; increased power losses;
increased probability in overloading of distribution transformers and cables; higher risk
of service interruptions [1,2,4–8]. Demand side management (DSM) strategies exploit the
flexibility of EV charging to reduce these adverse impacts on the grid operation [9–12]. In
this manner, DSM approaches enable the efficient use of existing network capacity and
reduce the cost-sensitive grid reinforcements even at high EV penetrations.

Voltage-dependent charge control methods are discussed as a feasible solution for
the voltage deviations arising from EV charging [6,13–16]. Depending only on local
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voltage measurements at the point of connection, these controllers work on a simple droop
control mechanism, which can be easily installed in already existing electric vehicle supply
equipment. In contrast to other approaches, a voltage dependent control mechanism
demands no communication infrastructure [17]. It can be easily integrated into the existing
network at low costs and is robust as it is not subject to potential communication failures.
The potential of this approach to improve grid voltage profile has been demonstrated
using LV distribution grid simulations. Relevant publications are reviewed hereafter, an
overview of the referenced work and existing approaches in literature being provided in
Table 1.

Table 1. An overview of literature on voltage-based charging control and the proposed study.

Ref. Penetration Nominal Charging Power (kW)

[6] 50 %, (60 %, 70 %) 6.6
[13] 10 EVs 4
[14] 39 EVs 3.3
[15] 43 EVs 3.7
[16] 80% undefined
[this paper] 5%, 10–100% 3.3, 6.6, 11

(in steps of 10%)

The impact of the voltage droop charging method for EVs in a large LV residential
grid comprised of 1020 households is assessed by Al-Awami et al. [6]. The authors consider
three different EV penetrations (50%, 60%, 70%) assuming a charging power of 6.6 kW. The
mobility behavior of the EVs are modeled using a Gaussian distribution. Voltage variations
in extreme nodes, average charging time and total loading in the grid are evaluated for a
period of a single day. The results indicate that this method is capable of eliminating the
voltage violations caused by EV charging in cooperation with voltage control devices.

Geth et al. [13] evaluate the voltage droop charging method in a residential feeder
for two scenarios. In the first scenario, only one out of 20 EVs is controlled by the droop
mechanism. In the latter, all EVs are controlled by the droop mechanism. The paper
demonstrates the potential voltage improvements with droop controlling in a distribution
grid and evaluates the impact on the average charging rates. Comparing the two scenarios,
the authors conclude that the effectiveness of the method improves with increasing number
of controlled electric vehicles.

Leemput et al. [14] evaluate the voltage droop method for EVs using long-term
simulations (for a period of a half year), considering a scenario with a total number of
39 EVs and a charging power of 3.3 kW. The LV grid model consists of a main feeder with
39 households and five other parallel feeders. These parallel feeders are modeled in a
simplified manner with a total load equal to the aggregated load of the main feeder. The
compliance with the EN50160 voltage standards [18], charging time of the EVs and the
maximum transformer power are discussed in detail in the results. The authors conclude
that the impact on the charging time is very limited and, the droop control alone does not
provide the results in compliance with the EN50160 standard.

Álvarez et al. [15] study four voltage dependent solutions for controlling the charging
of EVs in a real Danish network. The network consists of a main feeder with 43 households
and three other feeders that are represented by a single aggregated load. 43 EVs and
a maximum charging power of 3.7 kW are considered. The simulations are conducted
assuming a typical winter day, i.e., a high load case. The impact of the proposed methods
on the voltage profiles of several important nodes are analyzed in the paper. They conclude
that a simple droop controller together with a hysteresis comparator improves the power
quality of a power system.

An analysis on the voltage droop charging method for EVs on a Victorian LV grid
with an EV penetration of 80 % is presented by Xia et al. [16]. The voltage improvements
on all the nodes and the total grid power are evaluated for a single day.
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Three-phase home charging with 11 kW power is now preferred in most European
countries, owing to the availability of three-phase electricity at households. None of the
available research investigates the applicability of the voltage droop control mechanism
for 11 kW EV charging. Therefore, it is unclear whether the conclusions drawn hold
equally with regard to 11 kW charging. Furthermore, most of the references discussed,
only evaluate the results for a small set of EV penetrations. Except the work by Leemput
et al. [14], which considers a simulation time of half a year, the presented publications
base their results on single day or weekly simulations. Only the authors in [14] present a
comprehensive analysis on the voltage profile and evaluate the compliance with the voltage
magnitude standards as defined in ENE50160. Therefore, no comprehensive assessment on
the benefits and limitations of the voltage-based control for charging EVs in a distribution
grid has yet been provided. Our goal is to find, if the LV distribution grids are able to
comply with the voltage magnitude standards with droop controlled EV charging for all
combinations of penetrations and currently available residential charging power levels.
To this end, we present a systematic study of voltage-based EV charging control, taking
into account:

• three currently available charging power levels (3.3 kW, 6.6 kW, 11 kW);
• a full range of EV penetrations (5%, 10–100%, in steps of 10%);
• long term simulations (half a year);
• real distribution grid topology and load data.

We present our results including an assessment of:

• the voltage magnitude compliance with the standards;
• the peak power in the grid;
• the average charging rates over a range of EV penetrations and three charging

power levels.

The rest of the paper is structured as follows: Section 2 describes the concept of the
voltage-based charging controller, as well as the simulation framework used to evaluate
the voltage-based charging control method; the results are presented in Section 3, followed
by a conclusion in Section 4.

2. System Modeling
2.1. Voltage Based Controller Characteristics

Reducing voltage deviations stemming from EV charging, and, thereby improving
the voltage profile of distribution grids, is the main objective of the voltage-based control
approach considered. To facilitate the control mechanism, it is assumed that each EV
charging infrastructure is equipped with a droop controller accompanied by an advanced
metering infrastructure (AMI) at the point of connection [19] capable of measuring the
voltages. The general concept of the voltage droop mechanism is depicted in Figure 1.

The measured voltage of the AMI at the point of connection serves as input to the
voltage droop control mechanism. The charging current of the EV is set according to the
droop characteristics, as shown in Figure 2.

I(V) =





Imin, V ≤ Vref,1

Imax, V ≥ Vref,2

Imin +
V −Vref,1

Vref,2 −Vref,1
(Imax − Imin) , else.

(1)

As defined in Equation (1), if the node voltage V, measured at the point of connection,
falls below the lower reference value Vref,1, the charging current I is limited to the minimum
charging current Imin. According to the IEC-61851 EV charging standards, this is to be 30%
of the rated charging current. If the node voltage exceeds the upper reference value Vref,2,
the charging is not limited by the controller and allowed to be carried out at the maximum
current Imax. This limit for charging current is determined based on the nominal charging
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power levels. If the voltage lies between the lower and upper voltage reference values, the
charging current is controlled in accordance to the linear droop characteristics.

Adavanced Metering 

Infrastructure

voltage measurements

power low

information low

Electric Vehicle 

Supply Equipment

current

Point of 

Connection

Figure 1. Voltage droop control mechanism.

Figure 2. Voltage droop characteristics for EV charging current control.

2.2. Simulation Framework

The topological data and grid parameters of a real Austrian distribution grid were
provided by the local distribution system operator (DSO), Vorarlberger Energienetze
GmbH [20]. The simulated LV grid comprises two 630 kVA, 10/0.42 kV step down 3-phase
transformers with 221 load nodes. The grid supplies 600 residential consumers, 52 business
units, and 99 other consumer units which include heat pumps, public facilities, etc. Figure 3
shows the geographical representation of the simulated LV network.

An in-house simulation tool [21] for load flow simulations is used. It is implemented
in MATLAB [22] and provides interfaces to implement DSM strategies for flexible devices
and energy storage systems. The load flow calculation is implemented using the backward
forward sweep flow method as proposed by Ghatak and Mukherjee [23]. For the load flow
calculation, the load currents are calculated in the backward sweep and the bus voltages are
calculated in the forward sweep based on the currents determined. The process is repeated
until convergence of node voltages with respect to a limiting tolerance value. To map the
voltage-base control of EVs, in each iteration the charging current is calculated according
to the droop control characteristics. In our study, we conducted a balanced three-phase
load flow simulations with a time resolution of 15 min for randomly chosen 25 weeks in
the winter season, where the electricity demands are typically high.
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Figure 3. LV distribution grid model.

Residential loads are modeled using real smart meter data recorded in a field test
by the local energy provider illwerke vkw AG (VKW) [24]. The consumption data over
a year for 351 households with a time resolution of 15 min were available. The smart
meter data are assigned to the household loads by mapping the annual energy demand.
Non-residential loads are modeled using standard load profiles of the Austrian clearing
and settlement agency [25]. These standard profiles are scaled in accordance with the
annual energy demand of a specific consumer. The power factor for the loads was tuned to
0.98 based on active and reactive power measurements at the substation.

Existing PV generations with an installed capacity of 5.96 kWp are considered in the
simulation. Typical PV power profiles from the region of the grid with a 15-min resolution
are used and scaled to match the installed capacity of a particular PV installation.

2.3. EV Model

A linear model is used to characterize the system dynamics of the EV battery. The
energy content of the EV battery at time t, E(t) can be expressed mathematically by

E(t) = E(t− 1) + ηc P(c)(t)∆t − P(d)(t)∆t, (2)

where E(t) is the time dependent energy content of the battery, P(c)(t) is the charging
power and P(d)(t) is the discharging power at time t. ηc is the charging efficiency of the
charging equipment and ∆t is the time step. The model neglects the standby losses of
the battery.

The state of charge of the ith EV at discrete time step n is given by

SOCi,n =SOCi,0 +
1
Ci

{
n

∑
t=1

(
ηc P(c)

i,n ,−P(d)
i,n

)
∆t

}

∀n = 1, . . . , N, ∀i = 1, . . . , I. (3)

SOCi,0 and SOCi,n refer to the initial SOC and the SOC at time step n of the ith EV, respec-
tively. Ci is the battery capacity of the ith EV. N is the total number of time steps and I is
the total number of EVs present.

The battery capacity of an EV is set to Ci = 24 kWh which corresponds to a Nissan
Leaf [26]. The charging efficiency is set to ηc = 0.9. Three currently available residential
nominal charging power levels were considered in the study: P(c)

max = 3.3 kW, 6.6 kW,
11 kW.
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The EV usage behavior is modeled using the statistical data from the Austrian national
mobility survey conducted in 2013 [27]. The survey provides detailed data on the departure
and arrival times, as well as the distances traveled for all journeys recorded. Based on
these data, the user behavior profiles are generated, which include energy consumption
and availability for charging at each time step. The energy consumption is computed
based on the distances driven and the duration of the journey, assuming a specific energy
consumption of ηd = 0.15 kWh/km [28]. Furthermore, it is assumed that the vehicle is
available at home before it departs for the first trip and after it returns from the last trip of
the day. The entries with long daily distances are excluded from the data to comply with the
electric ranges of the EVs. Moreover, it is assumed that the EV charging is controlled only
at private charging infrastructure. The 15-min based usage profiles for EVs are generated
by taking the differences in weekend and weekday journeys into account. After cleaning
the data of the available on the survey, 15,320 weekday and 5696 weekend driving profiles
were created and used as a library for usage behavior modeling. These profiles were
assigned for the EVs randomly.

The EVs are randomly assigned to the network nodes for a given penetration, with a
maximum of one EV per household. The same random pattern is kept over all the scenarios
to assure the consistency. At each subsequent penetration the new EVs are progressively
added to the existing EV fleet.

2.4. Scenarios

To evaluate the implications of the droop control charging on grid operation, several
scenarios were simulated. An overview is given in Table 2.

Table 2. Overview of the scenarios considered in the simulations: benchmark scenario (BM), un-
controlled scenarios (U1–U3) and controlled scenarios (C1–C3) for three different charging power
ratings each.

Scenario Nominal Power (Kw) Description

BM - benchmark, no EVs are connected to the grid
U1 11 EVs charge at nominal power as soon they arrive home
U2 6.6 EVs charge at nominal power as soon they arrive home
U3 3.3 EVs charge at nominal power as soon they arrive home
C1 11 EVs charging with voltage droop control
C2 6.6 EVs charging with voltage droop control
C3 3.3 EVs charging with voltage droop control

For all the six scenarios except the benchmark scenario, eleven EV penetrations (5%,
10–100%, in steps of 10%) were considered, resulting in a total of 67 grid simulation runs
over a time horizon of half a year.

The reference voltages for the voltage-based controller are set to Vref,1 = 0.92 p.u. and
Vref,2 = 0.96 p.u. to comply with the voltage magnitude standards specified in ENE50160.
The lower voltage reference limit was chosen to account for the maximum possible voltage
drop in the cable connecting the load node to the charging controller.

3. Results

The plausibility of voltage-based control for EV charging in complying with the voltage
magnitude standards was investigated for different charging power levels and a full range
of EV penetrations. The analysis was performed considering several aspects, separately
discussed in the sections hereafter: the compliance with the voltage magnitude standards
defined in EN50160; the normalized charging rate; the peak power at the transformer; a
statistical analysis on the nodal voltages.
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3.1. Compliance of the Voltage with the International Standard EN50160

For the satisfactory operation of the customer electrical equipment, the voltage mag-
nitude should be maintained within a regulated range. The European standard EN50160
specifies that the 10-min rms value of the supply voltage in LV distribution networks
should not deviate from the nominal value more than 10% for 95% of the time within a
week. Additionally, the 10-min rms values of the supply voltage has to remain in the range
of [−15%,+10%] in any case. The first condition will be referred to as the time limit, the
latter to as the minimum and maximum voltage limit, respectively.

To investigate the impact of the droop-control on the voltage magnitude, we evaluated
the compliance with the voltage magnitude standards defined in EN50160 as described
above. The evaluation is conducted on a weekly basis for the 25 weeks simulated. Figure 4
shows the maximum duration of the rms values of the nodal voltages exceeding a −10% of
the nominal voltage value and the violations of the−15% voltage limit. Table 3 summarizes
the voltage compliance for the two conditions (time and voltage limit) defined in the
EN50160 standard for the six scenarios.

Table 3. Compliance with the EN50160 voltage standards for the six scenarios (uncontrolled
U1–U3 and controlled C1–C3) for the range of penetrations; −/−: compliant with the time limit and
compliant with the minimum voltage limit; −/+: compliant with the time limit and violation of the
minimum voltage limit; +/−: violation of the time limit and compliant with the minimum voltage
limit; +/+ : violation of the time limit and violation of the minimum voltage limit. Shaded text is
used to highlight the mitigation effects achieved by the droop controller.

Scenario Penetration (%)
5 10 20 30 40 50 60 70 80 90 100

U1 −/− −/− −/− −/− −/− −/+ −/+ −/+ +/+ +/+ +/+
C1 −/− −/− −/− −/− −/− −/− −/− −/− −/− −/+ −/+
U2 −/− −/− −/− −/− −/− −/− −/− −/+ −/+ +/+ +/+
C2 −/− −/− −/− −/− −/− −/− −/− −/− −/− −/− −/−
U3 −/− −/− −/− −/− −/− −/− −/− −/− −/+ −/+ +/+
C3 −/− −/− −/− −/− −/− −/− −/− −/− −/− −/− −/−

As illustrated in the bottom plot of the Figure 4, the voltage deviation exceeds the
−10%-limit already in the benchmark scenario (without EVs). Nevertheless, the grid
voltage is in compliance with the EN50160 voltage standards as the maximum duration
below the −10%-limit is less than 5% of the time. The compliance with time limit is met in
all the scenarios up to 70% penetration as illustrated from the top plot of Figure 4, however,
utilization of the available voltage reserves grows steadily with increasing penetration
for the uncontrolled scenarios (U*), most notably in the scenario U1 (uncontrolled 11 kW-
scenario). In contrast, the minimum voltage deviation exceeds the −15%-limit already at
lower penetrations, resulting in a violation of the voltage limit defined in the ENE50160
standards. Specifically, at 50% penetration in case of 11 kW (U1) followed by 6.6 kW (U2)
at 70% penetration, and 80% for the 3.3 kW (U3) charging rate.

With 11 kW charging power level, the droop controller (C1) eliminates the time and
voltage limit violations for 50%–80% penetrations, ensuring the compliance with the
EN50160 voltage standards up to 80% penetration. For the penetrations above 80%, the
controller is not capable of eliminating the violation of the −15%-limit (voltage limit)
anymore. With 6.6 kW and 3.3 kW scenarios (C2, C3), the droop controller mitigates the
time and voltage limit violations successfully, and ensures the voltage compliance with
the EN50160 standard for penetration rates where it is violated in case of uncontrolled
charging, cf. Table 3.
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Figure 4. Maximum duration of the rms voltage deviation below the −10% threshold (top), minimum voltage deviation (bottom) for
the benchmark case (BM), the uncontrolled (U1–U3) and controlled (C1–C3) scenarios. The dashed lines show the threshold limits
defined in the EN50160 standard.

The outcomes of Leemput et al. [14] states that the droop controlling fails to meet the
time limit defined in ENE50160 for a EV charging rate of 3.3 kW at 100% penetration. In
contrast, the results of this research show that the droop controlling assists in complying
with the defined time limit at this charging rate. The reason for this discrepancy is the
differences in the voltage reference points in the controller. The authors in this paper use a
lower and upper voltage reference point of 0.85 p.u. and 0.90 p.u., respectively. In contrast,
we use a more restricted set of reference points, with the lower and upper reference points
being set at 0.92 p.u. and 0.96 p.u., respectively.

The results indicate that at high charging power (11 kW) and at high penetrations (at
90% and above), although the controller does not contribute to the compliance with the
minimum voltage limit, i.e., −15%, the compliance with the time limit is achieved. How-
ever, even in these cases the grid voltage is very close to the threshold limits. Furthermore,
even the controlled scenarios with low charging power levels approach the minimum
voltage limit, at high penetrations, exhibiting a reduced voltage reserve. Therefore, DSOs
should be aware of the fact that though the method is well suited to mitigate the voltage
problems when charging at low power levels and low penetrations, it does not provide a
full assurance at high charging power levels and high penetrations.

3.2. Average Charging Rate

In order to estimate the impact on the user comfort due to prolonged charging times
caused by the control mechanism, the relative average charging rate was examined. Table 4
summarizes the average charging power normalized to the respective nominal charging
power for the scenarios and penetrations considered. Already for the case of lowest load
increase (3.3 kW charging rate at 5% penetration), a significant impact with a reduction of
20% is observed with the controlling. In the extreme case of a high charging power of 11 kW
and full EV penetration, a noticeable impact on the charging rate of 57% is observed. For
the increasing penetrations from low 5% to high 100%, the average charging rate reduces
by over 10% for all the charging power levels considered.
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Table 4. Normalized average charging rate for the droop controlled scenarios (C1–C3).

Penetration (%) C1 C2 C3

5 0.67 0.74 0.80
10 0.65 0.72 0.79
20 0.65 0.71 0.78
30 0.64 0.71 0.78
40 0.64 0.70 0.77
50 0.63 0.69 0.76
60 0.62 0.69 0.75
70 0.61 0.67 0.74
80 0.60 0.66 0.72
90 0.59 0.64 0.71

100 0.57 0.62 0.69

3.3. Peak Power

As a consequence of the changes in the charging demand due to the intervention of
the controller, the power profile at the transformer changes, which, in turn, affects the peak
power. To show this effect, the peak power and the relative reduction in the peak power at
the transformer resulting from the droop controlled charging are depicted in Figure 5. Peak
power increases with progressive EV penetration in all six scenarios. At high penetrations,
the peak power exceeds the transformer rated capacity in the uncontrolled scenarios (U*).
In the voltage droop controlled scenarios, a consistent reduction in relative peak power
at the transformer could be noticed: from 1%, over 3% , up to 12% for the different
penetration rates of 5%, 50%, and 100%, respectively. This shows that in addition to the
voltage regulation services provided to the DSOs, the method provides a reduction in peak
power at the transformer, preventing potential transformer upgrades.

Figure 5. Maximum relative peak power at the transformer for the six scenarios (left), relative reduction in the peak power at the
transformer by the voltage droop controlling (right).

3.4. Nodal Voltages

We conducted a quantitative analysis of the number of under voltage events in order
to gain a more in-depth understanding of the voltage droop control. The histograms in
Figure 6 compare the number of under voltage events for the six scenarios at 10% and
90% penetration. The histograms show that the number of under voltage events has been
reduced in the three droop controlled scenarios (C1–C3) for both penetrations. In addition,
the evaluation confirms the elimination of severe under voltage events due to the droop
control, which occur in uncontrolled charging at high penetrations. Furthermore, it clearly
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shows the direct dependency of the relative reduction in under voltage events on the EV
penetration rate.

Figure 6. Comparison of the histograms of the voltages below the lower voltage threshold Vcri = 0.90 p.u. for the droop controlled EV
charging and uncontrolled EV charging for 10% EV penetration (left), and 90% EV penetration (right).

4. Conclusions

This paper presents a detailed systematic study on the voltage-based droop control
method for EV charging to determine its aptitude in view of recent trends in residential
charging infrastructure. We evaluated the results using long-term load flow simulations,
considering real topological parameters of a residential grid and load profiles. The impact
on the grid voltage status was investigated, considering a wide range of EV penetrations
and three currently available residential charging power levels focusing particularly on
11 kW charging.

The results indicate that, at low EV charging power levels, the voltage-based droop
control method facilitate the compliance with the the voltage magnitude standards defined
in ENE50160 for the full range of EV penetrations. For EV penetrations up to 80%, the
droop-controller is capable of mitigating the violations even for 11 kW charging ensuring
the compliance with the voltage magnitude standards as discussed in previously published
literature. However, the grid is not in compliance with the EN50160 standards with a high
penetrations of EVs charging at 11 kW charging, as the droop control is not capable of
curtailing the voltage deviation such that it is kept above the limit of −15% at all times.

In addition to the grid voltage improvements, the droop controller is also capable
of providing peak power reduction at the transformer by over 10% at 100% penetration.
In this manner, voltage droop method has the potential to reduce the stress on the distri-
bution transformers. However, the EV users will experience longer charging times most
particularly at 11 kW charging as charging rates are reduced by up to 43%. This limitation
can be ameliorated by adding local PV production, which can recover the charging droops.

The voltage-based control method is discussed as a relatively inexpensive and easy-
to-deploy solution, which only requires the local voltage measurements at the point of
connection. However, it is highly necessary to investigate the usability of the method
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also for upcoming trends in the EV deployment, as the grid planning and investments are
intended for long-term. Our results show that the method does not guarantee the safe
operating conditions in the grids at high charging power levels and high penetrations.
However, it can be concluded that the approach is well suited for the early stages of EV
market penetration, and even can provide a solution for high penetration rates, if low
nominal EV charging power levels are deployed which would allow DSOs more time until
sophisticated methods are available.
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Abstract—The electricity demand due to the increasing number
of EVs presents new challenges for the operation of the electricity
network, especially for the distribution grids. The existing grid
infrastructure may not be sufficient to meet the new demands
imposed by the integration of EVs. Thus, EV charging may
possibly lead to reliability and stability issues, especially during
the peak demand periods. Demand side management (DSM) is a
potential and promising approach for mitigation of the resulting
impacts. In this work, we developed an autonomous DSM strategy
for optimal charging of EVs to minimize the charging cost and
we conducted a simulation study to evaluate the impacts to the
grid operation. The proposed approach only requires a one way
communicated incentive. Real profiles from an Austrian study
on mobility behavior are used to simulate the usage of the
EVs. Furthermore, real smart meter data are used to simulate
the household base load profiles and a real low voltage grid
topology is considered in the load flow simulation. Day-ahead
electricity stock market prices are used as the incentive to drive
the optimization. The results for the optimum charging strategy
is determined and compared to uncontrolled EV charging. The
results for the optimum charging strategy show a potential cost
saving of about 30.8% compared to uncontrolled EV charging.
Although autonomous DSM of EVs achieves a shift of load as
pursued, distribution grid operation may be substantially affected
by it. We show that in the case of real time price driven operation,
voltage drops and elevated peak to average powers result from
the coincident charging of vehicles during favourable time slots.

Index Terms—electric vehicles, peak demand, demand side
management, unidirectional communication, optimum charging
strategy

NOMENCLATURE

Cbat Battery capacity (kWh)
c Incentive function (EUR/MWh)
E Energy content of the battery (kWh)
N Number of time steps (-)
Pc Nominal charging power (kW)
P d Power consumed during driving (kW)
SOC State of charge (%)
SOC0 Initial state of charge (%)
SOCmax Maximum state of charge (%)
SOCmin Minimum state of charge (%)
u Switching signal (-)

The financial support by the Austrian Federal Ministry of Science, Research
and Economy and the National Foundation for Research, Technology and
Development is gratefully acknowledged.

V min Minimum voltage (pu)
ηc Charging efficiency (-)
∆t Time step (s)

I. INTRODUCTION

Electric vehicles (EVs) are emerging as an attractive alter-
native to internal combustion vehicles due to the increasing
concerns over environmental issues and economic aspects.
However, transition towards e-mobility poses new challenges
for power grids.

The expected increasing number of EVs connected to power
systems for charging will have significant impact on the power
system operation, including: 1) transformer overloading; 2)
increased line congestion levels; and 3) changes in load profile.
Among these, the impact of EV charging load on the system
load profile claims most attention [1]. Furthermore, uncoordi-
nated and random charging activities could significantly stress
the distribution systems causing severe voltage fluctuations and
power quality problems [2].

Enhancements in the existing generation capacity and net-
work assets are required to avoid the negative impacts of EV
integration on the grid. However, demand side management
(DSM) is considered as a promising approach to mitigate the
resulting impacts due to charging of EVs without substantial
expansions in the grid.

Most of the DSM approaches for EVs discussed in literature
are centralized [2,3]. In the approaches referred to, a central
entity determines the charging strategy taking into account
information on the EVs (SOC, connectivity, preferred end
charging time), the grid (voltage, frequency, power losses,
line overloading, peak demand), and the market place (elec-
tricity prices). In these approaches, the control signals for
EV charging are communicated to the EVs individually. As
a result, these approaches require two-way communication
between a central controller and EVs as well as large amount
of data transfer. Moreover, computational burden on the central
controller increases with high penetration levels of EVs.

In contrast, decentralized approaches for EV charge man-
agement require less communication infrastructure and the
computational burden is distributed among the local con-
trollers. In literature, few decentralized approaches have been
proposed. Vay and Anderson [4] propose a decentralized EV



charging management approach, which is based on a time
of use tariff (TOU). Yet, simple DSM schemes based on
TOU are not necessarily beneficial at high vehicle penetrations
levels [5]. Another decentralized charging control algorithm
for plugin EVs has been proposed by Ma and Callaway
[6], where the vehicle charging schedules are computed in
situ based on a pricing signal received. This information is
communicated to the utility, which in turn updates the pricing
signal and communicates it again to the EV. This procedure
is done until convergence. Therefore, it needs bi-directional
communication infrastructure. Richardson et al. [7] propose
and compare a local and a centralized method for the optimal
charging of EVs in low voltage grids to maximize the total
amount of energy consumed by EVs, while maintaining the
network within acceptable operating limits. But they do not
evaluate the energy costs and diversity in the vehicle usage is
also not considered.

Simple decentralized charging strategies based on real time
pricing (RTP) are discussed to reduce the detrimental effects
on the operation of the power system from charging of EVs,
but they are analyzed insufficiently. Therefore, we investigate
a decentralized DSM strategy for EVs, which is based on cost
minimization. The main contribution of this paper is to provide
a more realistic analysis of a RTP driven decentralized DSM
approach and its impact on the distribution grid. The main
features of this paper compared to the studies available in
literature can be summarized as follows:
• We present an autonomous optimization method for EV

charging based on a unidirectional cost function that
would only require one-way communication, hence re-
sulting in less communication infrastructure requirements
and data processing. The proposed approach aims to
obtain the optimal solution to minimize the charging cost
of individual vehicles.

• We incorporate real statistical data on driving in the
simulation framework.

• We consider real household load profiles instead of syn-
thetic load profiles.

• We analyze the optimum cost savings with respect to the
current electricity market prices.

• We evaluate the changes in the performance of the grid
under the proposed optimization strategy with different
penetration levels of EVs using a load flow of a real
distribution grid and consider long-term simulations.

Thereby, this study will provide not only an analysis of the
market driven load shift potential, but also quantify the impacts
of autonomous RTP driven DSM of EVs on the distribution
grid operation.

The paper is structured as follows. Section 2 describes
the concept of autonomous DSM for EVs, the EV model,
and presents the formulation of the corresponding linear
optimization problem. The simulation framework used to test
and evaluate the suggested method is described in detail in
section 3. The results are presented in section 4, followed by
a conclusion in section 5.

II. APPROACH

A. DSM Concept

The DSM concept proposed in this paper is based on
autonomous optimum EV charging with unidirectional com-
munication as illustrated in Fig. 1.

The incentive function is a one way communicated price
signal transmitted from a central entity to the DSM devices.
The incentive signal received serves as cost function c(t) for
the optimizer to determine the charging schedule for the EV.
A mathematical model of the EV is used to formulate the
problem of charging cost minimization. The switching signal
u(t) is determined as the solution of this optimization, taking
into account the state of charge (SOC) of the vehicle and the
expected driving demand. In this work, perfect knowledge of
the vehicle usage is assumed. The optimization problem is
formulated such that the energy demand for the next day is
fulfilled.

The behaviour of the EV with the switching signal deter-
mined by the optimizer is simulated using the EV model in
the simulation.

The applicability of the proposed method of DSM has been
evaluated for domestic hot water heaters and stationary battery
energy storage systems by Kepplinger et al. [8] and Faessler
et al. [9].

B. EV Model

In this study, the dynamic behaviour of the EV battery is
considered to be linear. The EV model used in the simulations
is mathematically expressed by

dE

dt
= ηc Pc u(t) − P d(t), (1)

where E(t) is the time dependent energy content of the

battery. The optimization and the simulation are both based
on this linear model.

C. Optimization Problem

The objective of the optimization is to find the charging
strategy for each individual EV, which minimizes costs with
respect to the incentive. It is assumed that the driving pattern
of the user is known in advance. The objective function for

Fig. 1. Concept for autonomous DSM of EVs.

the optimization problem for N time steps can be formulated
as follows:



min
u

N

∑
i=1

ci ui Pc ∆t s.t. (2)

SOCmin ≤ SOCi ≤ SOCmax ∀i, (3)
0 ≤ ui ≤ 1 for i, where vehicle is at home, (4)
0 = ui else. (5)

The optimization is formulated such that it guarantees that
the SOC of the battery always remains within the upper and
lower operational bounds by the constraint defined in Eq. (3).

The charging rate of the EV is varied in a continuous
manner within the upper and lower limits by setting the
constraint in Eq. (4).

The constraint defined in Eq. (5) is used to ensure that the
charging of the vehicle occurs only when it is connected to
the charger at home, thus charging at workplace and public
charging is not considered.

The SOC at time step i is calculated by

SOCi =SOC0 +
1

Cbat
{ i

∑
j=1

ui ηc Pc ∆t −
i

∑
j=1

P d,j ∆t}
∀i = 1, . . . , N. (6)

where P d,j and SOCi refer to the discretization of P d(t) and
SOC(t), respectively.

III. SIMULATION SETUP

The optimization for scheduling the charging of the EVs
as defined in Eq. (2-5) is implemented using the linear op-
timization tool available in MATLAB [10] and evaluated in
a simulated distribution grid for a total of nine scenarios to
reflect increasing EV penetration rates.

The simulation framework used for load flow of distribution
grids was implemented in MATLAB [11] based on a direct
numerical method as proposed by Ghatak and Mukherjee [12].
The implementation provides interfaces, which allow to test
and evaluate the proposed DSM strategy for EVs [13]. In the
following section, the data used as input for the simulation
study is presented in detail.

A. Distribution Grid Topology

In this study, real data for a weakly meshed low voltage
distribution grid in Vorarlberg, Austria is considered. The data
for the grid is made available by the local system operator,
Vorarlberger Energienetze GmbH [14]. The considered distri-
bution grid comprises 49 nodes including the slack node and
is operated at a nominal voltage of 230 V.

B. Household Base Load Curves

The base loads for the households are represented by real
smart meter data collected from Vorarlberger Kraftwerke AG
(VKW) [15] with a time resolution of 15 minutes. The smart
meter data are available for 351 households for the period of
01.04.2016 to 01.09.2016. The household data are assigned to
load nodes of the distribution grid randomly using a uniform
probability distribution.

Fig. 2. EV presence at the node for the different scenarios in the dis-
tribution grid: • None ◀ : Scenario 1-8; × : Scenario 2-8; ▼ : Scenario 3-
8; ⧫ : Scenario 4-8; ∗ : Scenario 5-8; + : Scenario 6-8; � : Scenario 7-
8; ▲ : Scenario 8

C. EV Parameters

The EV batteries are modelled with a capacity of
Cbat = 24 kWh and a nominal charging power of Pc = 6.6 kW
assuming a 230 V single phase connection. The charging
efficiency of the EV charger is assumed to be ηc = 90% and
the energy consumption efficiency of EV during driving is
considered to be 0.15 kWh/km. The minimum SOC of the
EV battery is set to SOCmin = 30% from the nominal value
and the maximum SOC is set to SOCmax = 90%.

D. Mobility Profiles

The driving profiles of the EVs are simulated based on the
Austrian mobility survey “ Österreich unterwegs 2013/2014”
[16]. The records in this survey comprise the details of the
departure and arrival times of trips and the distance driven
in each trip for different vehicle users. These records are
used to generate the driving profiles, which include the energy
consumption during driving and the availability for charging.
With the recorded data, 29,162 driving profiles are created
and used for the simulation. It is assumed that the vehicle is
available at home before it departs for the first trip and after
the last trip of the day. Moreover, the charging is assumed to
be occurring only when parked at home, so public charging
and charging at work place is not considered.

E. Incentive Function

Day ahead stock market prices from the Austrian electricity
market (Energy Exchange Austria EXAA) with a time resolu-
tion of 15 minutes are used as the incentive function for the
optimization [17]. The prices are available at 12 noon for the
next 36 hours. The optimization problem is solved every 24
hours at noon, taking the available prices for the next 36 hours
into account.



Fig. 3. Two consecutive optimization time windows. The horizontal lines refers to the beginning and ending of the overlapping time window. Left: Optimization
time window for day 1 Right: Optimization time window for day 2. Top: Charging rate, power usage during driving, SOC and the SOC limits for uncontrolled
charging. Middle: The cost function and the availability of the EV for charging. Bottom: Charging rate, power usage during driving, SOC and the SOC limits
for optimized charging.

F. Simulation Scenarios

The load flow simulation for the distribution grid is con-
ducted for price optimized charging of EVs for eight different
scenarios reflecting different penetration rates. In scenario 1,
five EVs are connected randomly to the grid nodes and in
each successive scenario, five more EVs are added. As a
comparative setting, a case with uncoordinated charging of
EVs is simulated for all the considered EV penetration rates.
In the uncoordinated charging, EVs are allowed to charge
at maximum charging rate Pc as soon as they arrive home,
until fully charged. In all the simulated scenarios, the same
household base load profiles are maintained at all the nodes
for both uncontrolled and optimized charging to assure the
consistency. Fig. 2 shows the assignment of EVs to the grid
nodes for the evaluated scenarios.

As a reference case, a simulation is conducted without the
presence of EVs for comparison.

IV. RESULTS

A. Single EV

The charging process of a single vehicle for two consecutive
days for both operation modes, uncontrolled and optimized
charging, is shown in Fig. 3. The shaded area in the middle
plot represents the time periods where the vehicle is avail-
able at home and, therefore, available for charging. In the
uncontrolled operation mode, the vehicle charges regardless
of the incentive, i.e., as soon as it arrives home. In the case
of optimized charging, the charging is shifted to low price
periods to realize minimum charging cost. Furthermore, the
EV is only charged to ensure that the mobility needs for
the considered 36 h time window are met. Additionally, the
SOC of the EV is kept within the defined minimum and
maximum limits. At the beginning of the next optimization

time window (12 noon), the optimization is repeated and the
charging schedule is adapted considering the latest available
stock market prices and mobility needs of the EV user.
This overlapping optimization time windows ensures that all
information, which is available at the point in time considered,
is taken into account for the optimization process.

B. Different EV penetrations

Simulation results for all the simulated scenarios for un-
controlled and price optimized charging are summarized in
Table I.

For scenario 1 (10.4% of EV penetration), the cost savings
per kWh charging with the proposed price optimization is
30.8%. For the highest penetration rate considered in scenario
8 (83.3% of EV penetration) the cost savings are even higher
with 31.6%. Therefore, the proposed method performs reason-
ably well with low vehicle penetration rates as well as high
penetration rates in terms of cost savings.

The results show that optimized charging leads to an aver-
age cost saving of 31.1% with respect to the uncoordinated
charging.

These results corresponds to an incentive signal based on
stock market prices, since a correlation between the demand
and the price on the market is a reasonable assumption.

Furthermore, the amount of energy for charging is nearly
4.2% lesser in the case of price optimized charging for all the
scenarios.

C. Grid Impacts

Although the proposed method results in reduced charging
costs, the overall impact on the grid has to be evaluated in
order to examine how it effects grid operation.

The total power variation at the slack node on a single
day with 25 EVs connected (52% EV penetration rate), is
illustrated in Fig. 4.



TABLE I
SIMULATION RESULTS OVERVIEW FOR THE DIFFERENT SCENARIOS, AS WELL AS UNCONTROLLED (UNC) AND OPTIMIZED (OPT) OPERATION OF EVS.

Scenario Nr. of Penetration Total Cost (EUR) Total Energy (kWh) Savings per PAPR Relative Losses (%) V min (pu)
EVs rate (%) Unc Opt Unc Opt kWh (%) Unc Opt Unc Opt Unc Opt

Ref - - - - - 2.653 0.785 0.96
1 5 10.4 136.64 90.37 4835.6 4619.5 30.77 2.545 2.550 0.8632 0.8605 0.95 0.95
2 10 20.8 277.50 183.99 9830.7 9410.8 30.74 2.477 2.976 0.9330 0.9348 0.93 0.93
3 15 31.3 410.33 269.86 14544 13918 31.28 2.457 3.564 1.0083 1.0214 0.93 0.92
4 20 41.7 568.69 376.54 20059 19192 30.80 2.703 4.174 1.0564 1.0840 0.93 0.90
5 25 52.1 701.46 464.36 24801 23757 30.89 2.732 4.754 1.1106 1.1525 0.93 0.89
6 30 62.5 841.10 553.04 29685 28462 31.42 2.875 5.054 1.1691 1.2333 0.93 0.89
7 35 72.9 976.96 641.12 34514 33091 31.55 3.082 5.424 1.2351 1.3219 0.93 0.89
8 40 83.3 1113.40 730.18 39359 37747 31.62 3.592 5.760 1.3021 1.4176 0.92 0.89

The uncontrolled charging of the EVs coincides with the
nominal peak demand and even increases it further. In contrast,
the price optimized charging shifts the charging load to the low
price periods from the nominal peak demand time. However,
the aggregated effect of EV charging leads to power spikes at
the slack node, which, in turn exacerbate the effects on the
distribution grid operation.

In order to evaluate the resulting impacts of the proposed
optimization on the distribution grid, the peak to average
power ratio (PAPR) at the slack node, the total distribution
line losses and the minimum per unit voltage (V min) at the
nodes are examined and summarized in Table I.

The results show an increase in PAPR for both operation
modes with increasing penetration rates. The increment of
PAPR for the optimized charging is higher compared to the
uncontrolled charging, as it leads to simultaneous charging of
EVs during low cost time periods. Thus, overloading of the
transformer during these time periods is more likely.

The minimum voltage in the system is reduced for increas-
ing EV penetration rates for both operation modes. Moreover,
for scenarios 4-8, i.e. above 41.7% EV penetration rate, the
minimum voltage decreases to 0.89 pu for optimized charging.
Hence, these scenarios present challenging impacts for the
reliability of the distribution network.

The relative distribution losses increase for higher penetra-

Fig. 4. Total power variation at the slack node with 52% EV penetration rate

tion rates from 0.79% in the reference case up to 1.41% in
scenario 8 with optimized charging.

V. CONCLUSION

This paper takes up the idea to use real time pricing
mechanisms for DSM, as discussed in literature, and applies
it to EVs. The impact of both, uncontrolled and autonomously
optimized charging of EVs in a real distribution grid topology
is investigated. Although the autonomous DSM approach
shows a high potential considering the real electricity market
data, the negative impact on the grid is even higher as in the
case of uncontrolled charging. This can be attributed to the
spread of the arrival times, which results in lower simultaneity
of EV charging, if plugged in on arrival. This study shows the
imperative need of conducting distribution grid simulations to
analyze DSM algorithms.
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A B S T R A C T   

Increasing electric vehicle penetration leads to undesirable peaks in power if no proper coordination in charging 
is implemented. We tested the feasibility of electric vehicles acting as flexible demands responding to power 
signals to minimize the system peaks. The proposed hierarchical autonomous demand side management algo-
rithm is formulated as an optimal power tracking problem. The distribution grid operator determines a power 
signal for filling the valleys in the non-electric vehicle load profile using the electric vehicle demand flexibility 
and sends it to all electric vehicle controllers. After receiving the control signal, each electric vehicle controller 
re-scales it to the expected individual electric vehicle energy demand and determines the optimal charging 
schedule to track the re-scaled signal. No information concerning the electric vehicles are reported back to the 
utility, hence the approach can be implemented using unidirectional communication with reduced infra-
structural requirements. The achieved results show that the optimal power tracking approach has the potential to 
eliminate additional peak demands induced by electric vehicle charging and performs comparably to its central 
implementation. The reduced complexity and computational overhead permits also convenient deployment in 
practice.   

1. Introduction 

Transition towards e-mobility poses new challenges for the operation 
of electricity networks and especially for the distribution grids. The 
uncoordinated and random charging activities could significantly stress 
the distribution system causing increased peak demands, severe voltage 
fluctuations, increased losses, increased transformer and cable ageing, 
sub-optimal generation dispatch, degraded system efficiency and econ-
omy, as well as increasing the likelihood of blackouts due to network 
overloads [1–4]. These undesirable impacts can be mitigated by proper 
coordination of EV charging with demand response strategies. Electric 
vehicle (EV) loads offer high temporal flexibility since they are available 
for charging over prolonged periods of time. Therefore, the flexibility of 
the EV demand can be exploited to improve the operation of distribution 
networks through various load management strategies with the objec-
tive to provide valley filling and/or peak shaving services, reduced 
distribution network losses, reduced ageing of transformers and lines, 
and increased renewable energy penetration [5,6]. 

The integrated functions of smart grids in the domains of commu-
nication, networking, monitoring and advanced control enable auto-
mated energy management systems. These systems result in improved 
load management and energy efficiency [7]. Decentralized autonomous 
demand side management (ADSM) is one such management strategy in 
which the computations are distributed over the respective participating 
appliances. Scalability due to the reduced dimension of the associated 
optimization problems permits it to be feasible even at high EV pene-
tration. These features, in conjunction with the reduced communication 
requirement, render decentralized ADSM a cost-efficient solution for EV 
charging management compared to the centralized ADSM approaches 
[8]. In literature, ADSM strategies for EV charging are proposed to 
reduce the detrimental impacts for the grid operation, many of which 
have been focused on flattening the load curve. Although the EV 
scheduling is determined locally, existing approaches often need bi- 
directional communication between a central entity and the EVs. 

Ma et al. [9] propose a decentralized non-cooperative game theoretic 
approach for the charging management of an infinite homogeneous 
Plug-in electric vehicle (PEV) population, where the PEVs are coupled 
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through a common price signal. The method aims to minimize the 
generation cost through valley filling using the aggregated PEV demand. 
The utility collects the individual charging schedules of all the EVs and 
broadcasts the updated total demand (aggregated EV demand and non- 
EV demand). Each of the EVs determines its optimal charging schedule 
to minimize the cost and reports back to the utility. A penalty is imposed 
if the charging schedule of an EV deviates from the average changing 
schedule of the population. The process is iterated until the charging 
strategies are in Nash equilibrium. 

In contrast, an iterative optimal decentralized protocol to achieve 
valley filling for both homogeneous and heterogeneous EV fleets is 
suggested by Gan et al. [10]. The utility determines and broadcasts a 
control signal (e.g. electricity price) to incentivize the EVs to shift their 
electricity consumption to the time slots with lower demands. In 
response, the EVs update their schedules to minimize the total electricity 
cost and the penalty for deviating from the previous iteration, and report 
them back to the utility. The utility progressively guides the EVs by 
altering the control signal in response to the received EV schedules. 

Although both the methods in [9,10] achieve the objective of the 
load valley filling, they suffer from the longer execution times due to the 
iterative nature. 

In contrary, Binetti et al. [11] propose a decentralized non-iterative 
real-time EV charging strategy to shift the charging to night valleys. The 
algorithm sequentially determines the charging schedules of each EV 
taking into account an estimate of the non-EV load for the planning 
horizon. Each time when an EV connects, it receives the aggregated load 
profile from the Distribution system operator (DSO). With this infor-
mation, EV solves an optimization problem locally to achieve valley 
filling and reports obtained schedule to the DSO. The DSO updates the 
aggregated load profile with the newly received charging schedule and 
whenever a new EV connects, the updated aggregated load profile is 
communicated. Although the method is decentralized and requires 
limited information exchange, it necessitates a bi-directional commu-
nication channel between the grid operator and the EVs. And there exists 
the risk of forming adverse second peaks if a large number of EVs grid- 
connect at the same time [12]. 

A decentralized offline valley filling algorithm for EV charging, 
solving a joint optimum power flow (OPF)-EV problem is presented by 
Chen et al. [13]. In addition, the authors also present a decentralized 
online algorithm that dynamically tracks the valley filling characteristic. 
In the online algorithm, the utility broadcasts the valley level to all EVs 

in a given time step, and each EV computes its charging rate locally to 
track the received valley level and reports its schedule back to the utility. 
Afterwards, the utility updates the next valley level based on the 
collected charging schedules. The results indicate that the proposed 
decentralized online method achieves near optimality. However, the 
authors consider only a small set of EVs (9 EVs) in the results presented. 
But at high EV penetrations, the results may not achieve the valley filling 
due to simultaneity in charging. 

Nimalsiri et el. [14] propose a decentralized method for EV charge 
scheduling by exploiting the notion of water-filling to track a forecasted 
energy generation profile. The charge profile of each EV is determined 
one at a time at the plug-in time of the EV. Upon receiving the expected 
aggregated demand profile and the energy generation profile from the 
operator, a given EV determines its' charging profile locally to track the 
generation profile and sends it to the operator. Then the aggregated 
demand profile is updated with the received charging profile. The simple 
arithmetic operations applied to the classical water filling algorithm, 
facilitates easily integration into local controllers. 

All these decentralized approaches [9–11,13,14] achieve a flattened 
load profile through managing EV charging. Although EV scheduling is 
decentralized, all of these methods require bi-directional 
communication. 

In contrast to the decentralized methods proposed in the literature, 
we are interested in developing ADSM methods of energy storage sys-
tems (ESS) in distribution grids which only require a unidirectional 
communication channel owing to the advantages of reduced commu-
nication infrastructure and computational burden [15,16]. 

Decentralized approaches based on unidirectionally communicated 
pricing signals for EV charging management are discussed in the liter-
ature, but are analysed insufficiently. Cao et al. [17] propose an intel-
ligent method to control EV charging loads in response to a TOU price in 
a regulated market to minimize the charging cost. However, they only 
analyse the mass of energy shifted to the valley periods and do not 
examine the effects of simultaneous charging for grid operation during 
valley periods. We investigated the potential of ADSM with pricing 
signals for EVs charging with electricity market price as the signal 
communicated in our previous work [18]. The results show that it leads 
to unfavorable distribution grid operations and tends to form a new peak 
during the off-peak triggered by the low electricity prices. 

Vay and Anderson [19] describe a price-based decentralized 
approach for the ADSM of EVs. The method aims to determine the time- 

Nomenclature 

ADSM autonomous demand side management 
DSO distribution system operator 
ESS energy storage system 
EV electric vehicle 
LV low voltage 
OPF optimal power flow 
OPT optimal power tracking 
PEV plug-in electric vehicles 
SOC state of charge 
TOU time of use 
Cj

B battery capacity of the jth EV (kWh) 
E total energy requirement of the EVs for a given time frame 

for driving (kWh) 
Eavg average energy consumption of an EV during driving 

(kWh/km) 
Ej energy requirement of the jth EV for the optimization time 

window (kWh) 
Ej,s energy requirement of the jth EV at time s for driving 

(kWh) 

NEV number of EVs in the grid 
NT number of time steps 
D aggregated non-EV load profile for a given time frame 

(kW) 
Dt aggregated base load power at time t (kW) 
Pj,t charging power of the jth EV at time t (kW) 
Pj,max charging power of the jth EV at time t (kW) 
Pj, t maximum charging power of the jth EV (kW) 
Pj,min minimum charging power of the jth EV (kW) 
Rmax maximum driving range of an EV (km) 
St broadcasted power signal at time t (kW) 
St
+, St

− positive and negative parts of the broadcasted power signal 
respectively at time t (kW) 

Sj, t
+ tracking signal for the jth EV at time t (kW) 

SOCj, 0 initial SOC of the jth EV (%) 
SOCj, t SOC of the jth EV at time t (%) 
SOCj, max maximum SOC of the jth EV (%) 
SOCj, min minimum SOC of the jth EV (%) 
Z valley fill level (kW) 
Δt time step (s) 
ηj,c charging efficiency of the jth EV  
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of-use (TOU) tariff that minimizes the charging cost without overloading 
the assets. The individual vehicles optimize their charging based on this 
TOU tariff. Two variants of the proposed approach have been examined: 
one with a system-wide tariff and the other with different tariffs at 
different nodes. The decentralized approach with system-wide prices 
leads to high simultaneity in charging, therefore does not lead to a 
smooth load profile. Although the decentralized approach with nodal 
prices results in a load profile close to perfect valley filling, it is prob-
lematic to set different prices for different groups of EV customers. 

In previous research, we propose that with unidirectional commu-
nication, power signals are more efficient than pricing signals for 
exploiting the demand side flexibility [20]. The objective of this study is 
to control the demand side flexibility of EV loads using a unidirection-
ally communicated power signal to achieve a flattened demand curve at 
the distribution grid level. The main contributions of the paper are listed 
below.  

• We propose an autonomous decentralized, hierarchical algorithm for 
exploiting EV flexibility. The proposed method achieves valley filling 
by optimally tracking a power signal. The solution to the tracking 
problem is formulated as a convex optimization which demands 
reduced computational overhead and communication contrary to the 
methods reported. Therefore, it can be easily integrated into an 
embedded local controller attached to charging infrastructure and is 
also suitable for high EV penetrations due to its scalability.  

• A load flow simulation of a distribution grid is conducted to evaluate 
the impact of the proposed optimal power tracking (OPT) based 
ADSM method on the grid operation. Most of the relevant literature 
analyse the power balance and often lack the investigation of per-
formance indicators in relation to the grid operation. In contrast, we 
further analysed the performance indices including the grid voltage, 
line overloading and power losses to provide a better insight into the 
grid operation.  

• The evaluation is performed over a wide range of EV penetrations to 
demonstrate the impact of the method on grid operation and 
computational costs for varying EV densities.  

• A benchmark centralized solution is provided to evaluate the 
computational advantages (computational costs and scalability) of 
the proposed decentralized solution.  

• A comparison on the charging rates and the average charging times 
between the centralized and decentralized solutions is discussed. 
This illustrates the impact of the ADSM on the EV charging time, so 
far not reported in literature. 

The rest of the paper is organized as follows: In Section 2, we present 
the formulation of the optimization problem and in Section 3 we show 
the simulation framework we used including the models of different 
elements in the grid model. Section 3 includes the results representing 
the performance indicators used for the comparison followed by the 
conclusion in Section 5. 

2. Approach 

In this paper, we proposed an ADSM for EV charging management by 
tracking a power signal hence referred to as OPT. The solution to the 
tracking problem is formulated in a decentralized form to enable easy 
integration to embedded controller at the EV charging infrastructure. 
The objective of the proposed decentralized ADSM approach is to charge 
the EVs such that the aggregated non-EV load and the EV charging load 
profile is flattened as much as possible. We assume that the non-EV loads 
have no flexibility for demand response and are only interested in the 
potential of ADSM in EV load. Charging schedules of the EVs are 
determined to fill the valleys of the non-EV load profile, thereby 
achieving a load profile as flat as possible. We do not consider V2G 
within the scope of this study. 

We formulate the proposed OPT problem in a two-layer structure and 

the overall concept is presented in Fig. 1. In the first layer as depicted in 
Fig. 1(a), the power signal to be tracked is determined by a central entity 
using two estimates: 1) the forecasted non-EV load profile D 2) the 
predicted aggregated EV demand E. Forecasting aggregated EV demand 
can be justified by the multiple methods proposed in the literature, some 
of which are k-nearest neighbor, pattern sequence algorithms, lazy 
learning algorithms, auto-regressive integrated moving average 
methods, modified pattern-based sequence forecasting methods etc. 
[21]. Short-term aggregated load prediction is realized in the literature 
using statistical based methods such as linear regression, auto-regressive 
integrated moving average and seasonal decomposition or artificial in-
telligence methods such as bio-inspired/evolutionary computational 
methods, neural networks techniques, support vector regression, ma-
chine learning, deep learning, agent-based systems [22]. 

The solution to the classical water filling problem [23] is used to 
determine the constant power level (fill level) Z, to optimally allocate 
the EV charging demand over the time steps of the planning horizon. The 
fill level Z is obtained by solving, 

∑NT

t=1
max{(Z − Dt), 0}Δt = E, (1)  

for Z. The power signal St which is broadcasted to all the EVs is the 
difference between the non-EV load profile and the valley fill level Z at 
each time interval, i.e., 

St = Z − Dt. (2) 

The second layer of the OPT approach includes the local control 
mechanism where each local controller attached to EVs firstly determine 
the positive part St

+ and the negative part St
− of the received power signal 

St. Then the signal Sj
+ is scaled as given in Fig. 2(b) with the purpose of 

obtaining the signal to be tracked by the jth EV using a prediction on the 
required energy demand of the jth EV, i.e., 

S+
j,t =

Ej
∑NT

t=1S+
t Δt

S+
t . (3) 

Each EV tracks Sj, t
+ with minimal deviation. Hence, we refer to the 

approach proposed as Optimal Power Tracking. When individual EVs 
track the locally scaled global signal, the aggregated effect leads to a 
flattened global load profile at the transformer. The OPT approach only 
requires the predicted non-EV load profile D at the transformer and the 
total aggregated EV demand E at the central entity. The information 
related to the EV (SOC, availability, arrival and departure times, usage, 
specifications etc.) is required locally, therefore sensitive EV informa-
tion is not communicated to a central entity unlike in the other bi- 
directional based optimization approaches. The predictions of the EV 
specific information can be realized either using traditional statistical 
models such as time series method, auto regressive integrated moving 
average, regression analysis, Kalman filtering etc. or artificial intelli-
gence methods such as artificial neural networks, support vector ma-
chines, and deep learning methods [24]. 

Within the scope of our study, we present the deterministic solution 
to the scheduling problem assuming the perfect predictions to establish 
the feasibility of the optimum power tracking based decentralized ADSM 
method. 

2.1. Decentralized OPT based EV charging 

Formulating the OPT problem as a quadratic problem is straight-
forward, but leads to a computationally expensive implementation. 
Therefore, we propose a formulation as a linear problem which can be 
easily integrated into a simple embedded hardware attached to EV 
charging infrastructure. 

The charging schedule for the jth EV is determined by solving the L1- 
Norm, non-linear optimization problem 
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min
∑NT

t=1

(⃒
⃒
⃒S+

j,t − Pj,t|
(
1+ S−

t

)
+ |Pj,t+1 − Pj,t|

)
Δt s.t. (4)  

Pj,min ≤ Pj,t ≤ Pj,max ∀t, (5)  

SOCj,min ≤ SOCj,t ≤ SOCj,max ∀t, (6)  

Pj,t = 0 for t,where the EV is not at home. (7) 

The charging rate of the EV can be varied continuously within the 
upper and lower limits given by the constraints (5). Constraints defined 
in (6) guarantee that the SOC of the EV battery always remains within 
the upper and lower operational bounds. The constraint defined in (7) is 
used to ensure that the charging of the EV occurs only when it is 
available at the point of charging, thus optimization of the charging at 
public charging infrastructure is not considered. The SOC of the jth EV at 
time step t is calculated by 

SOCj,t = SOCj,0 +
1

CB
j

{
∑t

s=1
ηj,cPj,sΔt −

∑t

s=1
Ej,s

}

. (8) 

Note that charging and discharging of a given EV do not occur 
simultaneously. 

The negative part St
− of the broadcasted signal St is merely used as a 

weighting factor and serves as a penalty for charging activities during 
high demand periods of the non-EV load profile. The term ∣Pj, t+1 − Pj, t∣ 
in (4) is included to avoid high charging rates during deep valley 

Fig. 1. OPT concept: (a) broadcast signal determination (BSD) controller for determination of the broadcasted power signal using the valley fill level Z based on the 
predicted non-EV load profile D and the total EV energy demand for the optimization horizon E (b) localized OPT controller for decentralized EV charging scheduling. 

Fig. 2. Low voltage distribution grid.  
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periods. As the aggregated effect might lead to power spikes during deep 
valley periods, the term penalizes high gradients in charging. 

The optimization problem (4) is non-linear in its original form but 
can be reformulated to an equivalent linear form by adding the auxiliary 
variables aj,t, bj,t rewriting the objective function as in (9), and adding 
the constraints (10)–(13). 

min
∑NT

t=1

[
aj,t
(
1 + S−

t

)
+ bj,t

]
Δt s.t. (9)  

− aj,t ≤ S+
j,t − Pj,t ≤ aj,t ∀j, ∀t, (10)  

− bj,t ≤ Pj,t+1 − Pj,t ≤ bj,t ∀j, ∀t, (11)  

aj,t ≥ 0 ∀j, ∀t, (12)  

bj,t ≥ 0 ∀j, ∀t. (13)  

2.2. Centralized OPT based EV charging 

The centralized implementation of the problem for scheduling EVs to 
achieve valley filling by tracking a power signal defined in Section 2.1, is 
performed to provide a comparative assessment to the decentralized 
implementation. In the centralized solution, the aggregated charging 
power of all the EVs available for charging should track the power signal 
St
+. The objective function of the centralized solution is given by, 

min
∑NT

t=1

(⃒
⃒
⃒
⃒
⃒
St + −

∑NEV

j=1
Pj,t|
(
1+ S−

t

)
+
∑NEV

j=1
Pj,t+1 −

∑NEV

j=1
Pj,t |

)

Δt (14)  

subjected to the constraints (5)–(7). 

2.3. Uncontrolled EV charging 

As a benchmark, we simulate the uncontrolled EV charging scenario 
where the EVs start charging at maximum charging rate as soon as they 
arrive at the point of charging until fully charged. This case gives a 
general understanding of the effects of increasing EV penetration levels 
in the distribution grids. It also serves as a benchmark to understand the 
potential improvements in the distribution grid operation with the 
proposed OPT algorithm. 

3. Case study 

Most of the related research in literature having the objective of 
valley filling focuses only on the power balance and the impact on the 
peak demand. Other performance indicators related to grid operations 
such as line load, power losses and voltage drops are equally important, 
yet often left non-assessed. We performed load flow simulations of a 
distribution grid in our study to assess these indicators. This section 
describes the framework including different grid elements which we 
used for the load flow. The load flow simulation uses the backward 
forward sweep flow method as proposed by Ghatak and Mukherjee [25]. 
The simulation tool is implemented in MATLAB® [26] and it serves as an 
interface to test different optimization algorithms for different demand 
response devices, in our case EVs [27]. The OPT linear optimization 
problem is solved using the MATLAB® optimization toolbox. We con-
ducted simulations over a week with a time resolution of 15 min. The 
selected week was chosen from the winter season as it exhibits a higher 
demand with respect to other seasons. The optimization problem is 
solved every 24 h at noon, taking into account the forecasts for the next 
36 h. We consider overlapping time windows for the optimization, to 
ensure that the SOC of the vehicle is always within the limits guaran-
teeing the energy required for the driving is delivered without failure. 

3.1. Distribution grid 

Fig. 2 shows the geographical representation of the low voltage (LV) 
grid located in Austria which is used in this study. The data used to 
model the grid including information of the distribution transformer, 
loads (location, load type, annual energy consumption), topology 
(connectivity, cable type, length), were provided by the local DSO, 
Vorarlberger Energienetze GmbH [28]. The simulated LV distribution 
grid comprises a 800 kVA, 10/0.42 kV step down 3-phase transformer 
with 52 load nodes and 103 distribution lines. The grid supplies 490 
residential consumers, 9 business units and 77 other consumer units 
which include heat pumps, public facilities, etc. Data related to the 
annual energy consumption for each consumer was also made available 
by the local DSO. The grid simulation was conducted considering the LV 
side of the transformer as the slack node with a reference voltage of 1 p. 
u. 

3.2. Non-EV load profiles 

The load profiles for the residential consumers were represented by 
real smart meter data from a field test of the local energy provider ill-
werke vkw AG (VKW) [29] with a temporal resolution of 15 min. The 
smart meter data of 351 households over one year was used. A database 
for the residential power profiles was set after pre-processing the data. 
Then, the smart meter data were assigned to residential consumers by 
mapping the annual energy demand. For the non-residential loads, the 
standard load profiles of the Austrian clearing and settlement agency 
[30] were used. These standard profiles were scaled according to the 
annual energy consumption of the particular consumer unit. A power 
factor of 0.96 was selected. 

3.3. EV model 

In this study, the dynamic behaviour of the EV battery is considered 
to be linear as expressed in (8). In modelling the electric vehicle, we used 
the specifications for the Nissan Leaf as summarized in Table 1. 

We assume that the charging infrastructure is equipped with a 3- 
phase 400V/16 A semi fast charger with a maximum charging power 
of 11 kW having a charging efficiency ηc of 0.9. 

3.4. Mobility profiles 

We used the Austrian mobility survey “Österreich unterwegs 2013/ 
2014” [31] to simulate the usage behaviour of the EVs. It contains the 
travel details of different modes of transport including the arrival and 
departure time, distance driven, the purpose of the journey and the day 
of the week. Only the motor vehicles having private related journeys 
were considered. Statistical filtering techniques were used to remove 
inconsistencies. The journeys with distances exceeding the maximum 
range Rmax of the selected type of the EV were excluded. The specific 
energy consumption for a unit time step was calculated using the driving 
distance and duration, assuming an average energy consumption Eavg of 
0.15 kWh/km. The generated driving profiles contain the energy con-
sumption of the given vehicle at each time step and the availability at 
the point of charging. Only the charging of the vehicles at the private 
charging infrastructure was considered. The difference between week-
day and weekend trips was also taken into account in generating the EV 

Table 1 
EV model specifications.  

ηc 0.9 
CB 24 kWh 
Eavg 0.15 kWh/km 
SOCmax 90% 
SOCmin 30% 
Rmax 160 km  
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usage profiles. A total of 15,320 profiles for weekday travels and 6460 
profiles weekend travels were generated for the EV user behaviour 
database. A summary of the mobility profiles including the arrival times, 
departure times and the daily travelled distances are shown in Fig. 3. 
The selected mobility profiles have a mean departure time of 09:20 and a 
mean arrival time of 16:15. The mean distance travelled by a vehicle is 
34 km. 

We defined the penetration rate as the number of EVs per total 
number of consumer units. With a penetration rate of 100%, 490 private 
EVs are considered to be grid-connected. We considered ten different 
progressively increasing penetrations. The assignment of the EVs to 
nodes at a given penetration rate was random and EVs were added 
progressively to maintain consistency. The geographical representation 
of the locational details for the range of EV penetrations is shown in 
Fig. A1, in the Appendix A. 

4. Results 

All the Matlab simulations were run on a server with an Intel(R) Xeon 
(R) CPU E5-2630 v3 @2.40 GHz processor and 31 Virtual CPUs. Load 
flow simulations for the considered distribution grid over a week were 
conducted for ten different EV penetrations (10%–100%, in steps of 
10%) for the three scenarios; uncontrolled, centralized OPT and 
decentralized OPT. In addition, a benchmark case with no EVs is 
considered which is represented as 0% penetration case. This section 
includes a comparison of the outcomes for the above three scenarios and 
the benchmark scenario with no EVS. We used the minimum voltage of 
the nodes, maximum loading of the lines, total power losses in the lines, 
peak power at the grid transformer and peak to average power ratio as 
the indicators to evaluate the impacts on grid operation. As EV pene-
tration increases, the dimension of the state variables in the central OPT 
becomes very high, making the memory requirements of the optimiza-
tion problem prohibitive. Given the limited computational capacity, the 
centralized OPT solution to the scheduling problem is implemented only 
up to an EV penetration of 40%. A comparison of the execution times for 
the centralized and decentralized implementations is also presented. 

We compared the valley filling capability of the proposed decen-
tralized OPT algorithm against its central implementation. Fig. 4 shows 

the power profile at the distribution transformer at 40% EV penetration 
on an example winter day, where the two OPT scenarios and the un-
controlled scenario are compared. In the event of uncontrolled charging, 
the charging time of the EVs coincides with the peak demand period of 
the non-EV load profile. Caused by the high simultaneity of the charging 
events in the uncontrolled scenario, the peak demand in this example 
case increases from 380 kW to 515 kW. Both the OPT algorithms shift 
the charging of the EVs to valley hours as they try to follow the reference 
signal as much as possible. With the decentralized OPT solution, indi-
vidual EVs track the scaled reference power signal locally, and the 
aggregated result eventually leads to a flattened load curve. During the 
daytime and the early morning hours, OPT fails to follow the tracking 
signal, mostly due to the absence of the EVs at the point of charging. 
Nevertheless, the constraints defined in the optimization problem al-
ways guarantee that the SOC of the EVs remain within the specified 
limits and fulfil the driving requirements. To benchmark the effective-
ness of tracking the reference signal, we computed the mean absolute 
deviation (MAD) between the valley fill level Z and the total demand 

MAD =
1

NT

∑NT

t=1
∣Zt −

(

Dt +
∑NEV

j=1
Pj,t

)

∣, (15)  

Fig. 3. A summary of the mobility profile statistics representing arrival times, 
departure times and daily travel distance. (a) The box plots representing the 
arrival and departure times for the EV profiles used in the simulation. (b) The 
box plot representing the daily travel distances of the EV profiles used in 
the simulation. 

Fig. 4. Power variation at the distribution grid transformer at 40% EV pene-
tration on an example winter day for centralized OPT, decentralized OPT and 
uncontrolled charging scenarios. 

Fig. 5. Mean absolute deviation between the valley fill level Z and the total 
demand for the centralized and decentralized OPT scenarios. 
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for the centralized and decentralized OPT scenarios which are shown in 
Fig. 5. As depicted in Fig. 5, the centralized OPT performs better in 
realizing the objective of tracking the reference power signal. However, 
the insignificant discrepancy between the two confirms that the 
decentralized OPT even with less information exchange is capable of 
yielding a comparable result to the centralized OPT, offering a 
compelling alternative to centralized OPT. 

To provide a more concise summary of the results, we compare the 
impact of the two OPT algorithms on the aggregated demand profile for 
the different penetrations considered in Fig. 6(a). The peak load in the 
uncontrolled scenario increases with increasing penetration and exceeds 
the rated capacity of the transformer at an EV penetration of 90%. The 
peak load in both the OPT scenarios always stays well below the 
transformer capacity and remains almost the same for all the penetra-
tions considered. OPT achieves this by avoiding EV charging during 
peak hours and by regulating the charging rates during the valley hours 
to stay below the valley fill level Z. In this manner, both OPT scenarios 
are capable of reducing the stress on the distribution grid transformers 
that could be caused by random charging. Most interestingly, decen-
tralized OPT solution with lower computation complexity is also capable 
of realizing comparable results as the centralized solution at all the EV 
penetration ranges. These results are also reflected in the peak to 
average power ratio(PAPR) as depicted in Fig. 6(b). 

Uncontrolled charging can lead to high current flows in the distri-
bution cables and may even exceed their rated current limits. To assess 
the impact of different scenarios considered towards the current flow of 
the cables, we analysed the degree of the loading on the cables; defined 
as the percentage ratio between the current flow and the rated current of 
a cable. Fig. 7 shows the comparison on the maximum loading of the grid 
cables over a week for the three scenarios at different penetrations. The 
cable loading exceeds the permissible limits even at 10% penetration in 
case of uncontrolled charging. However, with both OPT scenarios, the 
observed maximum cable loading remains the same and does not exceed 
the permissible limits even at high penetrations. Therefore, OPT sup-
ports the integration of EVs into distribution grids and reduces the 
requirement of cable enhancements. Table 2 provides an overview 
related to the number of cables exceeding the rated capacity in the 
simulated week for the uncontrolled charging scenario. For both OPT 
scenarios, no violations in the cable overloading are observed over all 
the penetrations. 

Compliance of the permissible voltage ranges specified in the stan-
dards such as ANSI C84.1 is a mandatory requirement for the operation 
of the distribution grids. The uncontrolled charging can lead to unac-
ceptable voltage drops and cause violation of the specified standards. As 
shown in Fig. 8, at penetrations above 80%, the minimum voltage of the 
grid nodes over the simulated week falls below 0.9 p.u. and cause 
violation in the voltage standards. In OPT scenarios, the minimum nodal 
voltages do not fall below the standard limits even at high EV penetra-
tions. Therefore it is evident that OPT not only mitigates the peak power 
problems but also any probable voltage quality problems. A summary of 
the voltage violations in the uncontrolled scenario is given in Table 2. 

Fig. 9 presents the total power losses in the distribution cables over 
the selected week. The OPT scenarios result in lower total power losses 

Fig. 6. (a) Bar chart indicating peak, mean and the minimum power at the 
distribution grid transformer for the decentralized OPT, centralized OPT and 
uncontrolled charging scenarios over a period of a week in winter season. (b) 
The peak to average power ratio (PAPR) for the decentralized OPT, centralized 
OPT and uncontrolled charging scenarios over a period of a week in 
winter season. 

Fig. 7. Maximum resulting cable loading of the distribution cables for the 
decentralized OPT, centralized OPT and uncontrolled charging scenarios over a 
period of a week in winter season. 

Table 2 
Voltage violations and line overloading for uncontrolled charging, eliminated in 
OPT scenarios.  

Penetration NV<0.9
Nodes Nloading>100 %

Lines  

10 –  2  
20 –  2  
30 –  2  
40 –  5  
50 –  8  
60 –  8  
70 –  8  
80 –  10  
90 2  10  
100 3  13  
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compared to the uncontrolled scenario due to the distribution of the 
charging events over time which in turn leads to distribution of currents 
over time. At 100% penetration, the decentralize OPT limits power 
losses nearly to half from that of the uncontrolled scenario. As such OPT 
also contribute to improve the efficiency of the grid operation. 

The key indicators presented above concerning the grid operation, 
clearly indicate that the decentralized method performs as good as the 
centralized equivalent, despite the reduced information exchange. 
Furthermore, the execution time between the two methods exhibits a 
clear difference as depicted in Fig. 10. As can be seen in the plot, even at 
40% penetration the simulation time for the centralized implementation 
is around 400 min. The memory requirement for the optimization of the 
central OPT is very high due to the increasing number of state variables 
at high penetrations making it debatable for practical implementations. 
In our simulation, the optimization of the individual EVs are performed 
sequentially, but in practice this process will be performed in parallel. 
Hence, the simulation time will be even lower than the values indicated 
in Fig. 10. Fig. 8. Minimum nodal voltage in the distribution grid transformer for the 

decentralized OPT, centralized OPT and uncontrolled charging scenarios for a 
period of a week in winter season. The dotted straight line represents the lower 
tolerance boundary of voltage. 

Fig. 9. Total power losses in the distribution cables for the decentralized OPT, 
centralized OPT and uncontrolled charging scenarios over a period of a week in 
winter season. 

Fig. 10. Computational costs to solve the load management problem for the 
decentralized OPT and centralized OPT scenarios for a period of a week. 

Fig. 11. Comparison of the charging rate and the average charging time be-
tween the centralized and decentralized OPT implementations over the range of 
penetrations (a) charging rate for the decentralized OPT and centralized OPT 
scenarios for a period of a week. (b) Average charging time per day for the 
decentralized OPT and centralized OPT scenarios for a period of a week. 
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Fig. 11 shows a comparison of the charging rates and the average 
charging time per day over the simulated week for the centralized and 
decentralized OPT implementations over the range of penetrations 
considered. The charging rate of the decentralized implementation is 
lower compared to that of the centralized implementation. This is 
attributed to the loss of global information on the EV data in the 
decentralized implementation. Consequently, average charging time is 
higher in the decentralized OPT compared to central OPT as can be seen 
in Fig. 11(b). Despite the lower charging rates, the decentralized OPT 
complies with the demanded energy delivery to all the EVs as in the 
decentralized OPT. 

The results reveal that the uncontrolled charging of EVs leads to 
increased peak demands, voltage violations, cable overloading and 
higher power losses, hindering the healthy operation of the distribution 
grids. Both the centralized and decentralized OPT algorithms improve 
the distribution grid operation by reducing the peak demand. In addi-
tion, these two methods reduce power losses and eliminate voltage vi-
olations and cable overloading. Furthermore, the decentralized OPT 
with local controllers performs equally well as the central OPT. The 
reduced execution time together with the reduced computational load 
makes the decentralized OPT a more viable load management strategy 
especially for high EV penetrations expected in future mobility systems. 

5. Conclusions 

We proposed a decentralized hierarchical ADSM algorithm for the 
charging management of EVs where the communication requirement is 
only unidirectional. We formulated the charging scheduling problem as 
an optimal power tracking algorithm that aims to reduce the peak de-
mand in distribution grids induced by EV charging. In the first layer, the 
power signal to be broadcasted is determined using only two pre-
dictions: the aggregated time-varying non-EV load profile and the total 
EV demand in the grid. Then in the second layer, the individual EV 
controllers solve a localized optimization to realize the charging 
schedule by optimally tracking the re-scaled broadcasted power signal. 
Predictions on the individual EV usage behaviour based on historic data 
are required locally for the scaling and tracking algorithm. We used 
deterministic non-EV load profiles and EV energy demands in our 
implementation. The effect of uncertainties related to the predictions 
will be considered in future implementations. We included a central 
implementation as a benchmark for comparison purposes. 

The results demonstrate that the decentralized OPT approach elim-
inates the additional peak demand increments induced by EV charging 
and performs comparably to the centralized OPT implementation. In 
addition to the peak reduction, benefits also include the reduction of the 
power losses in the cables as well as prevention of voltage limit viola-
tions and cable overloading. A further intriguing feature of the OPT is 
the reduced computational overhead that makes it well suited for inte-
grating into local embedded controllers attached to existing charging 
infrastructure. Despite the fact that the decentralized OPT, in contrast to 
the centralized OPT, leads to longer charging times due to the loss of 
information on the full extent of the EV data, it ensures the demanded 
energy delivery to all the EVs. In light of all these facts, is evident that 
the method is a compelling strategy for grid friendly integration of EVs 
with no requirement for bidirectional communication and computa-
tionally intensive infrastructure in comparison to the centralized 
methods. 
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Appendix A. EV locations 

The heatmaps illustrating the number of EVs connected to the nodes at the grid for the different penetrations considered are shown in Fig. A1. The 
EVs were assigned to the nodes based on the number of households at each node. As can be seen in the Fig. A1(j), the nodes with high EV numbers are 
distributed over the grid. Even though most EVs are connected at the end of the feeders, the performance indices lie within the safe operating bounds 
for all configurations. 
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Fig. A1. Geographical representation of locational details for the different EV penetrations in the Austrian low voltage grid. The heatmap represents the number of 
EVs at each node at the respective EV penetration. The allocation of the EVs is based on the number of households at each node. 

Appendix B. Summary of the results 

A summary of the results including all the key indices we used for the evaluation and the details of the EV assignments to the different nodes for the 
range of penetrations is presented in Table B.1.  

Table B.1 
The summary of the assignation details of EV to network nodes and the results representing key performance indices for the different EV penetrations.  

Penetration No of 
EVs 

No. of 
nodes 
with EVs 

PAPR Minimum Maximum Power Charging  

Voltage (p.u.) Line loading (%) Loss (kWh) Time (hours) 

Unc OPT- 
C 

OPT- 
D 

Unc OPT- 
C 

OPT- 
D 

Unc OPT- 
C 

OPT- 
D 

Unc OPT- 
C 

OPT- 
D 

Unc OPT- 
C 

OPT- 
D  

0  0  0  1.83    0.96    89.7    517    0.72    
10  49  23  1.94  1.74  1.74  0.95  0.96  0.96  116.6  89.7  89.7  605  564  562  0.74  4.65  7.28  
20  98  30  1.99  1.67  1.67  0.94  0.96  0.96  125.5  89.7  89.7  685  610  604  0.75  6.17  9.64  
30  148  35  1.98  1.59  1.60  0.94  0.96  0.96  135.6  89.7  89.7  790  672  659  0.74  7.06  10.95  
40  196  35  2.18  1.52  1.54  0.93  0.96  0.96  147.2  89.7  89.7  911  736  714  0.75  7.86  11.72  
50  245  40  2.30   1.49  0.92   0.96  163.1   89.7  1016   763  0.74   12.10  
60  293  45  2.30   1.45  0.92   0.96  169.9   89.8  1135   820  0.74   12.46 

(continued on next page) 
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Table B.1 (continued ) 

Penetration No of 
EVs 

No. of 
nodes 
with EVs 

PAPR Minimum Maximum Power Charging  

Voltage (p.u.) Line loading (%) Loss (kWh) Time (hours) 

Unc OPT- 
C 

OPT- 
D 

Unc OPT- 
C 

OPT- 
D 

Unc OPT- 
C 

OPT- 
D 

Unc OPT- 
C 

OPT- 
D 

Unc OPT- 
C 

OPT- 
D  

70  342  47  2.45   1.40  0.91   0.96  176.1   89.8  1242   867  0.74   12.79  
80  392  48  2.48   1.35  0.90   0.96  191.7   89.9  1390   931  0.74   13.09  
90  441  49  2.56   1.31  0.89   0.96  198.6   90.1  1526   991  0.74   13.34  
100  490  52  2.69   1.32  0.87   0.96  205.7   90.2  1659   1045  0.74   13.40  
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Abstract

Charging scheduling algorithms play a vital role in diminishing the negative consequences on electricity networks from the
widespread adaptation of electro-mobility. Therefore, there is a growing interest in a pragmatic solution that requires only modest
resources. To reach this goal, we propose a decentralized, IEC charging standard compliant, two-layer charging scheduling
algorithm, which only requires unidirectional communication and reduced computing capabilities. The objective of the algorithm
proposed is to achieve valley filling by exploiting the flexibility of electric vehicles through optimal tracking of a target signal. The
IEC standard compliant, semi-continuous charging characteristic is attained with a mixed-integer linear formulation. Different
formulations of the problem by forming vehicle groups and randomization in charging events are examined. The results show that
the IEC 61851-compliant formulation with a semi-continuous charging characteristic for the proposed method fails to perform as
good as the variable charging rate formulation, which has a 2.8 and 3.9-fold deviation in the variance of the total demand relative
to the variable charging rate at 50% and 100% penetration rates, respectively. Nevertheless, the inclusion of randomization
and grouping improves the performance of the IEC standard-compliant formulation. Considering four groups, the variance in
demand of semi-continuous charging formulation at 50% penetration is nearly equal to that of the variable charging rate proofing
the viable potential of the technically feasible solution proposed.

1 Introduction

The increasing trend towards electrification of the transporta-
tion sector has raised a series of technical problems affecting
the healthy operation of the electricity network. A num-
ber of studies have already highlighted such negative con-
sequences [1–4]. To reduce the impacts of the widespread
integration of electro-mobility on the distribution grids, control
strategies for electric vehicle (EV) charging are crucial.

A wide range of such demand side management strategies,
which exploit the temporal flexibility of the EVs, are discussed
in the literature demonstrating a strong potential [5–10]. These
studies employ distinct control architectures and methodolo-
gies for the charging scheduling process. The majority of the
charging schemes proposed employ a variable charge rate, con-
sidering that the EV can withdraw power at any rate between
zero and a given maximum rate. However, the IEC 61851
standard specifies that beyond the standby mode, the charging
current has to be in the range from 6 A to 48 A, being then a
semi-continuous variable [11]. Therefore, the studies with vari-
able charge rates, do not meet compliance with the standard
IEC 61851. Due to the limitations of the charging technol-
ogy, the economic and practical deployment of the proposed
strategies are therefore debatable.

In a previous study, we proposed an autonomous decen-
tralized demand side management (ADSM) algorithm for EV
charging scheduling to flatten the aggregated demand at the
low voltage (LV) distribution transformer [12]. The proposed
control architecture can be easily deployed by means of a sim-
ple embedded controller attached to the EV supply equipment
(EVSE) owing to the linear formulation of the optimization.
The method also only relies on unidirectional communication
and therefore requires few communication resources. These
features render it well suited for practical implementations.
Similar to the works in [5–9], a variable charging rate, which is
not in accordance with IEC charging standards, was assumed,
in our previous implementation [12]. Hence in this paper, we
aim to adapt this control architecture to comply with charg-
ing limits specified in the standards. To meet the requirement
defined in the standards, a semi-continuous charging rate is
used, which is either zero or varies between the minimum and
maximum values. The semi-continuous charging characteristic
is realized using a mixed integer linear programming (MILP)
formulation.

The aim of the study proposed is to provide an exemplary
case that demonstrates the impacts of compliance with stan-
dards in control algorithms of EV charging upon the intended
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outcomes and establish a simple, practically viable control
algorithm for EV charging scheduling.

The rest of the paper is arranged as follows. A detailed
description of the MILP formulation for the decentralized
ADSM method proposed is presented in Section 2. Section 3
includes the simulation setup that we used for the analysis.
The simulation results are presented in Section 4 followed by a
conclusion in Section 5.

2 Method

The decentralized hierarchical ADSM approach proposed in
our previous study is referred to as Optimal Power Track-
ing (OPT) [12], since the fundamental principle is to track
a predefined reference power signal with minimal deviations.
The tracking signal is determined to achieve valley filling by
exploiting the flexibility of EV demand. The algorithm is for-
mulated in a two-layer architecture as presented in Figure 1.
In the first layer, the DSO determines a target power signal
S based on the estimates of non-elastic power demand D∗

and aggregated total EV demand E∗ and broadcasts to all
the EVs. In the second layer, with the knowledge of EV user
behaviour estimates (arrival times tj,arri, departure times tj,dep,
energy demand E∗

j ), each EVSE scales the received signal to
the expected day ahead EV energy demand and performs an
optimization to track the scaled signal with minimal deviations.

2.1 Determination of the target signal

The tracking signal is determined based on the estimated day
ahead aggregated non-EV demand profile (D∗) and the esti-
mated total EV energy demand of all the grid-connected EVs
(E∗). The day-ahead prediction of the non-elastic load profile
is realizable through forecasting tools, in particular, AI-based

Fig. 1 The two-layer architecture of the optimal power track-
ing demand side management algorithm for EV charging.

techniques that are capable of learning complex nonlinear rela-
tionships from the historic data [13]. The recent developments
in substations equipped with intelligent transformers facilitate
the measured load demands [14]. Sub-metering systems offer
the possibility to measure the historical EV demand data which
can be used to decouple the EV demand to obtain the non-
elastic demand. The estimation of the aggregated EV flexibility
in the form of a total energy demand value is also achievable
with AI-based techniques [15].

The first step to determine the target signal is to obtain the
fill level Z by solving,

NT∑

t=1

max{(Z −D∗
t ), 0} ∆t = E∗, (1)

for Z using the two estimates in accordance with the classi-
cal water filling algorithm [16]. NT is the total number of time
steps of length ∆t in the optimization window. The mismatch
between the fill level and the estimated non-elastic load pro-
file at each time interval for the optimization horizon St is
computed and transmitted to the EVs:

St = Z −D∗
t . (2)

2.2 Local optimization at the EVSE with MILP

In the second layer of the OPT, a local optimization is per-
formed by each EV controller. The local controller attached to
the EVSE, splits the negative S−

t and positive S+
t parts of the

original power signal received St. Thereafter, the tracking sig-
nal to be optimally tracked is determined using the estimated
next-day EV demand for each EV. The tracking signal for the
j th EV,

S+
j,t =

E∗
j∑NT

t=1
S+

t ∆t
S+

t (3)

is derived by scaling S+
t to the estimated next day energy

demand for the j th EV, E∗
j . The optimization problem is

devised to track the S+
t with minimal deviation given the EV

user behaviour predictions. Methods for EV user behaviour
predictions based on clustering [17], data-learning [18], data-
driven [19], etc. are discussed in the literature. We proposed
a linear formulation in [12] to the optimization problem
stated, which demands reduced computational cost. However,
as already stated above, the previous implementation assumes
a variable charging rate. To meet compliance with the limits
specified by the IEC 61851 standards, we re-formulated the
original, linear optimization in a MILP formulation. The objec-
tive and the associated constraints of the optimization problem
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are listed below, where j refers to the j th EV.

min
NT∑

t=1

[aj,t(1 + S-
t) + bj,t] ∆t s.t. (4)

− aj,t ≤ S+
j,t − Pj,t ≤ aj,t ∀t, ∀j, (5)

− bj,t ≤ Pj,t+1 − Pj,t ≤ bj,t ∀t,∀j, (6)

SOCj,min ≤ SOCj,t ≤ SOCj,max ∀t,∀j, (7)

xj,tPj,min ≤ Pj,t ≤ xj,tPj,max ∀t,∀j, (8)

xj,t ∈ [0, 1] ∀t,∀j, (9)

bj,t ≥ 0 ∀t, ∀j, (10)

xj,t = 0 ∀j, for t, where the EV is not at home. (11)

Here, aj,t and bj,t are two sets of auxiliary variables, SOCj,min

and SOCj,max are the minimum and maximum permissible
state of charge of the battery of EVj , specified by the manufac-
turers. The SOC of vehicle j at time step t is derived assuming
a linear battery dynamics:

SOCj,t =SOCj,0 +
1

CB
j

{ t∑

s=1

ηj,c Pj,s ∆t−
t∑

s=1

Ej,s

}
(12)

where, Ej,t refers to the energy demand for driving. Pj,t is
the charging power of the EVj at time t. Pj,min and Pj,max are
the minimum and maximum permissible charging power of the
battery either defined by the EVSE or EV manufacturer. xj,t

is a binary variable, which for each EV at time t specifies
charging (1) or not-charging (0). It is used to implement the
semi-continuous charging characteristics in compliance with
the IEC standards for each EVj at time t.

2.3 Randomization and grouping

The limits imposed on the minimum charging current can result
in new peaks due to simultaneity, especially at high pene-
trations. To mitigate this drawback, a randomization and a
grouping mechanism are used in the decentralized controllers.

A grouping mechanism, implemented by the DSO, randomly
assigns each EV to one of the Ng groups. A new target sig-
nal for each group Sg,t is derived by segmenting the original
target signal St into Ng signals, each exhibiting the same
time integral reflecting energy. A given EV will receive the
target signal created for the group and the total number of
EVs present in the group (NEV,g). Subsequently, the EVs per-
form the MILP optimization described in the previous section
alongside a randomization process.

In the randomization process, each controller generates a
random probability for every time slot of the target signal using
a uniform distribution. Only if the probability is higher than a
threshold value, charging is allowed. The threshold probabil-
ity PT,t at time step t is determined based on the percentage of
EVs in the group able to charge simultaneously at the minimum

charge rate without exceeding the target signal:

PT,t = 1− (
S+

g,t

PminNEV,g

) (13)

The performance of the method is highly dependent on the
number of groups. Hence, we evaluate and compare the results
for different numbers of groups.

3 Simulation Setup

In our study, we conducted load flow simulations of a distribu-
tion grid to assess different performance indicators. The load
flow simulation [20] implemented in MATLAB® [21] uses the
backward forward sweep flow method [22] which is equally
applicable for both radial and weakly meshed grids as proposed
by Ghatak and Mukherjee. The OPT linear optimization prob-
lem is solved using the MATLAB® implementation of cutting
plane and branch and bound algorithms. We conducted simu-
lations over a week with a time resolution of 15 minutes. The
selected week was chosen from the winter season as it exhibits
a higher demand compared to other seasons. The optimization
problem is solved every 24 hours at noon, taking into account
the forecasts for the next 36 hours. We consider overlapping
time windows for the optimization to ensure that the SOC of
the vehicle is always within the limits, guaranteeing the energy
required for driving is delivered without failure. The simula-
tions are performed under the assumption of perfect predictions
of the uncertain parameters since the scope of the study is to
evaluate the feasibility of the proposed concept.

3.1 Grid simulation model

The topological data of a LV grid in Austria was used as the
test grid in this study. The data used to model the grid includ-
ing information on the distribution transformer, loads (location,
load type, annual energy consumption), and topology (connec-
tivity, cable type, length) were provided by the local DSO,
Vorarlberger Energienetze GmbH [23]. The simulated LV dis-
tribution grid comprises a 800 kVA, 10/0.42 kV step-down,
3-phase transformer with 52 load nodes and 103 distribution
lines. The grid supplies 490 residential consumers, 9 business
units, and 77 other consumer units including heat pumps, pub-
lic facilities, etc. Data related to the annual energy consumption
for each consumer was also made available by the local DSO.
The grid simulation was conducted considering the LV side of
the transformer as the slack node with a reference voltage of
1 p.u.

3.2 Household load demand

For the non-elastic household demand data, the Irish Com-
mission for Energy Regulation (CER) dataset from a smart
metering project was used [24]. These data having a half-hour
sampling time were re-sampled to a sampling interval of 15
minutes. After filtering the incomplete data, a data set of 4225
customers was considered. The household demand data spans
over a year from 14th July, 2009 to 31st December, 2010.
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3.3 EV load demand data

The historical residential charging data were obtained from
records of the experimental statistics of the Electric Charging
Point Analysis project funded by the Office of Low Emission
Vehicles [25]. The records include charging events spanning
over a year for residential charge points in the UK. The data
contains time-stamp data that determines the corresponding
time of connection (start time of charging session), the time of
the disconnection (end time of charging session), the amount
of energy supplied, and the charging rate for each identified
charging session. To demonstrate the feasibility of the concept,
a perfect prediction of EV usage behaviour was assumed.

3.4 EV specifications

In modeling the electric vehicle, we used the specifications of
the Nissan Leaf with a battery capacity of CB

j = 40 kWh. We
assume that the charging infrastructure is equipped with a 3-
phase 400 V/16 A semi-fast charger with a maximum charging
power of 11 kW having a charging efficiency of ηj,c = 0.9.

3.5 Simulation scenarios

The simulations were performed for a range of EV penetrations
(0% - 100%, in steps of 10%). We defined EV penetration as the
percentage of households that own an EV. The benchmark case
with no EVs is included in the analysis for the purpose of refer-
ence, which is referred to as the 0% penetration case. We also
simulated the uncontrolled EV charging scenario (Unc), where
the EVs start charging as soon as they arrive at the point of
charging, at a maximum charging rate until fully charged. The
results for the proposed MILP-based scenarios are compared
with our previously proposed setting with a variable charge
rate scenario (hereafter referred to as VC). Different formu-
lations of the proposed MILP solution to the OPT approach
were considered to achieve comparable optimality to the VC
scenario. The outcomes of the straight transformation of the
OPT approach into MILP are denoted as SC. As discussed
in Section 2, the MILP formulation of OPT with randomized
charging events without group formulation is represented by
the scenario SC_1. The MILP formulation with randomiza-
tion and grouping from two to six groups is represented by the
scenarios SC_2-SC_6.

4 Results

This section provides a comparative analysis of the perfor-
mance of the MILP formulations of OPT for EV charging
management presented in Section 3.5 using several perfor-
mance indicators. The intended objective of the OPT algorithm
is to fill the valleys of the non-elastic demand curve utilizing
EV demand flexibility by tracking a pre-defined reference sig-
nal. Valley filling is primarily employed to reduce the variance
in the demand profile. Therefore, we used the variance in total
demand as an index to measure the performance of the differ-
ent formulations proposed which is shown in Figure 2 for the
penetration range considered. For the purpose of comparison,

the variance normalized to the variance of the 0% penetration
is used.

Fig. 2 Variance in the total demand normalized to the vari-
ance of the 0% penetration for uncontrolled, OPT with variable
charge rate (VC), OPT with semi-continuous charge rate (SC),
OPT with semi-continuous charge rate and randomization in
charging (SC_1), OPT with semi-continuous charge rate and
randomized charging with two to six groups (SC_2-SC_6).

The formulation of OPT with semi-continuous (SC) charg-
ing alone reduces the variance in comparison to uncontrolled
EV charging, but shows a significant deviation from OPT with
VC, which is more noticeable at high penetrations as observed
in Figure 2. This can be attributed to the concurrent charging
of a high number of EVs at the minimum permissible charging
rate during the deep valley periods. The randomization process
improves performance to a high extent across all penetrations,
whilst still exhibiting a slight variation at high penetration. The
inclusion of grouping leads to a performance much closer to
the implementation of OPT with VC. Increasing the number of
groups results in better performance, however, a group number
of four is adequate to achieve similar performance to OPT with
VC up to a penetration of 50%.

The valley-filling nature of OPT also aids in reducing the
peak-to-average power ratio (PAPR) of the networks. A com-
parison of the PAPR is shown in Figure 3.

Similar to the results presented in Figure 2, the PAPR of the
OPT algorithm with SC charging is on an equitable level to
that of OPT with VC only at low penetrations, in our specific
configuration up to a penetration of 30%. The SC charging with
randomization shows comparable results up to a penetration
of 70%. The adoption of grouping further improves the PAPR
results. The results also demonstrate that at high penetrations, a
high number of groups leads to more favorable results in PAPR.

The OPT method has several other advantages besides valley
filling and peak reduction capabilities. We have demonstrated
in [12] that the OPT approach positively influences the voltage
violations in the nodes and current violations of the cables in
the LV grids. Therefore, we evaluated the variations between
the different OPT formulations on these two parameters. A
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Fig. 3 Peak to average power ratio (PAPR) for uncon-
trolled (Unc), OPT with variable charge rate (VC), OPT with
semi-continuous charge rate (SC), OPT with semi-continuous
charge rate and randomized charging (SC_1), OPT with semi-
continuous charge rate and randomized charging with two to
six groups (SC_2-SC_6).

comparison of voltage deviations for the penetration ranges
considered is presented in Figure 4. In summary, the influence
of the different MILP formulations on the voltage deviations
follows a similar trend to that of the variance and PAPR indices.

Fig. 4 Maximum voltage deviations in the grid nodes for
uncontrolled (Unc), OPT with variable charge rate (VC),
OPT with semi-continuous charge rate (SC), OPT with semi-
continuous charge rate and randomized charging (SC_1), OPT
with semi-continuous charge rate and randomized charging
with two to six groups (SC_2-SC_6).

Further, we examined compliance with the voltage standard
criteria defined in EN 50160. The selected LV network exhib-
ited a resilient behaviour in terms of voltage. The compliance
with EN 50160 was found to be violated at a penetration of
70% at uncontrolled charging of EVs. All OPT formulations

with randomized charging provided successful mitigation to
these voltage violations.

An overview of the number of events where the cables
exceed the permissible currents in the simulated week is shown
in Table 1. The number of cables exceeding the limit is denoted
in the brackets.

Table 1 Summary of cable overloading events (number of cables
affected) within the simulated week
Penetra- Unc VC SC SC_1 SC_2 SC_3 SC_4 SC_5 SC_6tion (%)

10 2 (2)
20 40 (2)
30 111 (6)
40 203 (8) 4 (2) 6 (4) 4 (2) 4 (2) 4 (2) 4 (2) 4 (2) 4 (2)
50 273 (11) 12 (4) 26 (5) 20 (4) 18 (4) 14 (4) 14 (4) 14 (4) 12 (4)
60 381 (11) 28 (4) 79 (6) 44 (4) 40 (4) 42 (4) 42 (4) 38 (4) 32 (4)
70 527 (12) 66 (4) 256 (10) 102 (4) 102 (4) 96 (4) 88 (4) 86 (4) 72 (4)
80 688 (16) 120 (4) 402 (13) 157 (5) 152 (4) 160 (4) 138 (4) 134 (4) 132 (4)
90 833 (20) 167 (7) 568 (16) 221 (7) 212 (7) 200 (7) 206 (7) 191 (7) 188 (7)
100 981 (25) 203 (7) 632 (18) 261 (9) 260 (8) 259 (7) 255 (7) 234 (7) 235 (7)

In the selected grid, cable overloading problems start to
occur already at low EV penetration rates, i.e., at 10%. The
OPT with VC mitigates the cable overloading problems up
to a penetration of 30% while reducing the overloading prob-
lems at penetrations beyond that. The SC formulations with
grouping realize comparable results to that of the VC formu-
lation. The SC formulation having random load scheduling
and a grouping of six shows the closest performance to the
OPT implementation with VC rate in reducing the overloading
events.

In summary, the findings demonstrate that the MILP for-
mulation to the OPT algorithm to achieve semi-continuous
charging characteristics as defined by the IEC standards, does
not perform as well as OPT formulation with the variable
charge rate. The introduction of randomization and group-
ing improves performance, whereby an increasing number of
groupings contributes positively.

5 Conclusion

We present a decentralized charging scheduling algorithm that
is practically feasible, requires less communication and com-
putational cost, and complies with IEC 61851 charging stan-
dard. The primary objective of the algorithm is valley filling,
achieved by optimally tracking a target power signal exploit-
ing the flexibility of EVs. The method exhibited promising
results when used in a previous implementation with a vari-
able charging rate which is not in compliance with the IEC
standards.

In this study, the proposed method is extended to ensure
compliance with the IEC standards. A mixed-integer linear
optimization formulation was adopted to realize the semi-
continuous charging characteristic to meet compliance with the
IEC standards. The results show that the MILP formulation
fails to perform successfully compared to the variable charging
rate implementation, indicating a 2.8 and 3.9-fold deviation in
the variance in demand at 50% and 100% penetration rates.
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To overcome this limitation, the method is extended with a
modification involving a randomization and grouping mecha-
nism. The randomization process alone improves the perfor-
mance of the variance in demand, being 1.2 and 1.5-fold with
respect to the variable charge rate at 50% and 100% penetra-
tion rates, respectively. The adoption of the grouping enhances
the performance further, in particular for high penetrations. The
best performance was achieved with six groups; the highest
number of groups we employed, with a variance in demand
of 1.04 times that of the variable charge rate, at 100% pen-
etration rate, indicating the proposed method to be a feasible
implementation.

The performance of the proposed method subjected to the
various uncertainties associated will be considered in a future
implementation. The incentives for consumer participation and
the policy framework for the implementation in practice remain
to be developed by the DSO.
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