150 research outputs found

    Atypical plug formation in internal elastoviscoplastic fluid flows over a non-smooth topology

    Full text link
    An experimental and computational investigation of the internal flow of elastoviscoplastic fluids over non-smooth topologies is presented in two complimentary studies. In the first study, we visualize the creeping flow of a Carbopol gel over a cavity embedded in a thin slot using Optical Coherence Tomography (OCT) and confocal microscopy. We measure the size and shape of the plug as a function of Bingham and Weissenberg numbers. An asymmetry in the plug shape is observed which is also evident in our second study -- numerical simulations using adaptive finite element method based upon an augmented Lagrangian scheme. We quantify the asymmetry and present the results as a function of the product of the Weissenberg and Bingham numbers which collapse onto a single curve for each of these geometries. These findings underscore the theoretical underpinnings of the synergy between elasticity and plasticity of these complex fluids

    A thermoviscoplastic model with damage for simultaneous hot/cold forging analysis

    Get PDF
    A constitutive model is presented for simultaneous hot/cold forming processes of steels. The phenomenological material theory is based on an enhanced rheological model and accounts temperature dependently for nonlinear hardening, thermally activated recovery effects, an improved description of energy storage and dissipation during plastic deformations, and damage evolution as well. A thermomechanically consistent treatment of dissipative heating due to inelastic deformations, recovery processes and damage mechanisms is applied. The constitutive model is implemented into a commercial FE-code. The material parameters of the effective model response are identified for a low alloyed steel and validated by means of a simultaneous hot/cold forging process

    Cluster-Based Optimization of Cellular Materials and Structures for Crashworthiness

    Get PDF
    The objective of this work is to establish a cluster-based optimization method for the optimal design of cellular materials and structures for crashworthiness, which involves the use of nonlinear, dynamic finite element models. The proposed method uses a cluster-based structural optimization approach consisting of four steps: conceptual design generation, clustering, metamodel-based global optimization, and cellular material design. The conceptual design is generated using structural optimization methods. K-means clustering is applied to the conceptual design to reduce the dimensional of the design space as well as define the internal architectures of the multimaterial structure. With reduced dimension space, global optimization aims to improve the crashworthiness of the structure can be performed efficiently. The cellular material design incorporates two homogenization methods, namely, energy-based homogenization for linear and nonlinear elastic material models and mean-field homogenization for (fully) nonlinear material models. The proposed methodology is demonstrated using three designs for crashworthiness that include linear, geometrically nonlinear, and nonlinear models

    Effects of elastoviscoplastic properties of mucus on airway closure in healthy and pathological conditions

    Get PDF
    Airway mucus is a complex material with both viscoelastic and viscoplastic properties that vary with healthy and pathological conditions of the lung. In this study, the effects of these conditions on airway closure are examined in a model problem, where an elastoviscoplastic (EVP) single liquid layer lines the inner wall of a rigid pipe and surrounds the air core. The EVP liquid layer is modelled using the Saramito-HB model. The parameters for the model are obtained for the mucus in healthy, asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF) conditions by fitting the rheological model to the experimental data. Then the liquid plug formation is studied by varying the Laplace number and undisturbed liquid film thickness. Airway closure is a surface-tension-driven phenomenon that occurs when the ratio of the pulmonary liquid layer thickness to the airway radius exceeds a certain threshold. In previous studies, it has been found that airway epithelial cells can be lethally or sublethally damaged due to the high peak of the wall stresses and stress gradients during the liquid plug formation. Here we demonstrate that these stresses are also related to the EVP features of the liquid layer. Yielded zones of the liquid layer are investigated for the different mucus conditions, and it is found that the liquid layer is in a chiefly unyielded state before the closure, which indicates that this phase is dominated by the elastic behavior and solvent viscosity. This is further confirmed by showing that the elastic coefficient is one of the most critical parameters determining whether the closure occurs. This parameter also largely affects the closure time. The wall stresses are also investigated for the pathological and healthy cases. Their peaks for COPD and CF are found to be the highest due to the viscoelastic extra stress contribution. Contrary to the Newtonian case, the wall stresses for COPD and CF do not smoothly relax after closure, as they rather remain effectively almost as high as the Newtonian peak. Moreover, the local normal wall stress gradients are smaller for the COPD and CF liquid layer due to their higher stiffness causing a smaller curvature at the capillary wave. The local tangential wall stress gradients are also shown to be smaller for these cases because of the slower accumulation of the liquid at the bulge

    Multiscale Modeling of Multiphase Polymers

    Get PDF
    Accurately simulating material systems in a virtual environment requires the synthesis and utilization of all relevant information regarding performance mechanisms for the material occurring over a range of length and time scales. Multiscale modeling is the basis for the Integrated Computational Materials Engineering (ICME) Paradigm and is a powerful tool for accurate material simulations. However, while ICME has experienced adoption among those in the metals community, it has not gained traction in polymer research. This thesis seeks establish a hierarchical multiscale modeling methodology for simulating polymers containing secondary phases. The investigation laid out in the chapters below uses mesoscopic Finite Element Analysis (FEA) as a foundation to build a multiscale modeling methodology for polymer material systems. At the mesoscale a Design of Experiments (DOE) parametric study utilizing FEA of polymers containing defects compared the relative impacts of a selection of parameters on damage growth and coalescence in polymers. Of the parameters considered, the applied stress state proved to be the most crucial parameter affecting damage growth and coalescence. At the macroscale, the significant influence of the applied stress state on damage growth and coalescence in polymers (upscaled from the mesoscale) motivated an expansion of the Bouvard Internal State Variable (ISV) (Bouvard et al. 2013) polymer model stress state sensitivity. Deviatoric stress invariants were utilized to modify the Bouvard ISV model to account for asymmetry in polymer mechanical performance across different stress states (tension, compression, torsion). Lastly, this work implements a hierarchical multiscale modeling methodology to examine parametric effects of heterogeneities on Polymer/Clay Nanocomposite’s (PCNs) mechanical performance under uncertainty. A Virtual Composite Structure Generator (VCSG) built three-dimensional periodic Representative Volume Elements (RVEs) coupled to the Bouvard ISV model and a Cohesive Zone Model (CZM) which featured a Traction-Separation (T-S) rule calibrated to results upscaled from Molecular Dynamics (MD) simulations. A DOE parametric examination utilized the RVEs to determine the relative effects of a selection of parameters on the mechanical performance of PCNs. DOE results determined that nanoclay particle orientation was the most influential parameter affecting PCN elastic modulus while intercalated interlamellar gallery strength had the greatest influence on PCN yield stres
    corecore