36,360 research outputs found

    Direct strain and elastic energy evaluation in rolled-up semiconductor tubes by x-ray micro-diffraction

    Full text link
    We depict the use of x-ray diffraction as a tool to directly probe the strain status in rolled-up semiconductor tubes. By employing continuum elasticity theory and a simple model we are able to simulate quantitatively the strain relaxation in perfect crystalline III-V semiconductor bi- and multilayers as well as in rolled-up layers with dislocations. The reduction in the local elastic energy is evaluated for each case. Limitations of the technique and theoretical model are discussed in detail.Comment: 32 pages (single column), 9 figures, 39 reference

    Implementation and extension of the impulse transfer function method for future application to the space shuttle project. Volume 1: Analysis and correlation studies

    Get PDF
    Computer programming, data processing, and a correlation study that employed data collected in the first phase test were used to demonstrate that standard test procedures and equipment could be used to collect a significant number of transfer functions from tests of the Lunar Module test article LTA-11. The testing consisted of suspending the vehicle from the apex fittings of the outrigger trusses through a set of air springs to simulate the free-free state. Impulsive loadings were delivered, one at a time, at each of the landing gear's attachment points, in three mutually perpendicular directions; thus a total of 36 impulses were applied to the vehicle. Time histories of each pulse were recorded on magnetic tape along with 40 channels of strain gage response and 28 channels of accelerometer response. Since an automated data processing system was not available, oscillograph playbacks were made of all 2400 time histories as a check on the validity of the data taken. In addition, one channel of instrumentation was processed to determine its response to a set of forcing functions from a prior LTA-11 drop test. This prediction was compared with drop test results as a first measure of accuracy

    A Nonvolume Preserving Plasticity Theory with Applications to Powder Metallurgy

    Get PDF
    A plasticity theory has been developed to predict the mechanical response of powder metals during hot isostatic pressing. The theory parameters were obtained through an experimental program consisting of hydrostatic pressure tests, uniaxial compression and uniaxial tension tests. A nonlinear finite element code was modified to include the theory and the results of themodified code compared favorably to the results from a verification experiment

    Correlating microstrain and activated slip systems with mechanical properties within rotary swaged WNiCo pseudoalloy

    Get PDF
    Due to their superb mechanical properties and high specific mass, tungsten heavy alloys are used in demanding applications, such as kinetic penetrators, gyroscope rotors, or radiation shielding. However, their structure, consisting of hard tungsten particles embedded in a soft matrix, makes the deformation processing a challenging task. This study focused on the characterization of deformation behavior during thermomechanical processing of a WNiCo tungsten heavy alloy (THA) via the method of rotary swaging at various temperatures. Emphasis is given to microstrain development and determination of the activated slip systems and dislocation density via neutron diffraction. The analyses showed that the grains of the NiCo2W matrix refined significantly after the deformation treatments. The microstrain was higher in the cold swaged sample (44.2 x 10(-4)). Both the samples swaged at 20 degrees C and 900 degrees C exhibited the activation of edge dislocations with {110} or {111} slip systems, and/or screw dislocations with slip system in the NiCo2W matrix. Dislocation densities were determined and the results were correlated with the final mechanical properties of the swaged bars.Web of Science131art. no. 20

    Hydrostatic compression on polypropylene foam

    Get PDF
    Models currently used to simulate the impact behaviour of polymeric foam at high strain rates use data from mechanical tests. Uniaxial compression is the most common mechanical test used, but the results from this test alone are insufficient to characterise the foam response to three-dimensional stress states. A new experimental apparatus for the study of the foam behaviour under a state of hydrostatic stress is presented. A flywheel was modified to carry out compression tests at high strain rates, and a hydrostatic chamber designed to obtain the variation of stress with volumetric strain, as a function of density and deformation rate. High speed images of the sample deformation under pressure were analysed by image processing. Hydrostatic compression tests were carried out, on polypropylene foams, both quasi statically and at high strain rates. The stress–volumetric strain response of the foam was determined for samples of foam of density from 35 to 120 kg/m3, loaded at two strain rates. The foam response under hydrostatic compression shows a non-linear elastic stage, followed by a plastic plateau and densification. These were characterised by a compressibility modulus (the slope of the initial stage), a yield stress and a tangent modulus. The foam was transversely isotropic under hydrostatic compression

    Role of the cell-wall structure in the retention of bacteria by microfiltration membranes

    Get PDF
    This experimental study investigates the retention of bacteria by porous membranes. The transfer of bacteria larger than the nominal pore size of microfiltration track-etched membranes has been studied for several kinds of bacterial strains. This unexpected transfer does not correlate to the hydrophobicity,neither to the surface charge of the microorganism, as suggested in previous reports. We conclude that,in our conditions, the kind of bacteria (Gram-positive or Gram-negative) is finally the most important parameter. As the distinction between those two types of bacteria is related to the cell-wall structure, we provide an experimental evidence, via the action of an antibiotic, that the cell-wall flexibility triggers the transfer of the bacteria through artificial membranes, when the pores are smaller in size than the cell

    Comparison of measured temperatures, thermal stresses and creep residues with predictions on a built-up titanium structure

    Get PDF
    Temperature, thermal stresses, and residual creep stresses were studied by comparing laboratory values measured on a built-up titanium structure with values calculated from finite-element models. Several such models were used to examine the relationship between computational thermal stresses and thermal stresses measured on a built-up structure. Element suitability, element density, and computational temperature discrepancies were studied to determine their impact on measured and calculated thermal stress. The optimum number of elements is established from a balance between element density and suitable safety margins, such that the answer is acceptably safe yet is economical from a computational viewpoint. It is noted that situations exist where relatively small excursions of calculated temperatures from measured values result in far more than proportional increases in thermal stress values. Measured residual stresses due to creep significantly exceeded the values computed by the piecewise linear elastic strain analogy approach. The most important element in the computation is the correct definition of the creep law. Computational methodology advances in predicting residual stresses due to creep require significantly more viscoelastic material characterization

    A Finite Element‑Based Methodology for the Thermo‑mechanical Analysis of Early Age Behavior in Concrete Structures

    Get PDF
    This paper presents a general procedure based on fracture mechanics models in order to analyze the level of cracking and structural safety in reinforced concrete elements at early ages, depending on the stripping time. Our procedure involves the development of a thermo-mechanical numerical model based on the finite element method that accounts for the change in the mechanical properties of concrete with time. Moreover, fracture mechanisms are analyzed by means of a material damage model, which is characterized via specific experimental results obtained for standard specimens and notched beams under three-point bending testing. The loading conditions are both thermal and mechanical, and are obtained from the hydration process for a given concrete dosage. The presented methodology allows for the determination of the optimal stripping time, whereas it helps assessing the analysis of the cracking and the stress states of the elements under consideration. A practical application, namely the analysis of a retaining wall, is used to validate our methodology, showing its suitability in engineering practice.Ministerio de Economía y Competitividad BIA2016-75431-

    A micromechanics inspired constitutive model for shape-memory alloys: the one-dimensional case

    Get PDF
    This paper presents a constitutive model for shape-memory alloys that builds on ideas generated from recent micromechanical studies of the underlying microstructure. The presentation here is in one dimension. It is applicable in a wide temperature range that covers both the shape-memory effect and superelasticity, is valid for a wide range of strain rates and incorporates plasticity. The thermodynamic setting of the model is explained and the model is demonstrated through examples

    Ultrasonic nondestructive evaluation, microstructure, and mechanical property interrelations

    Get PDF
    Ultrasonic techniques for mechanical property characterizations are reviewed and conceptual models are advanced for explaining and interpreting the empirically based results. At present, the technology is generally empirically based and is emerging from the research laboratory. Advancement of the technology will require establishment of theoretical foundations for the experimentally observed interrelations among ultrasonic measurements, mechanical properties, and microstructure. Conceptual models are applied to ultrasonic assessment of fracture toughness to illustrate an approach for predicting correlations found among ultrasonic measurements, microstructure, and mechanical properties
    corecore