1,119 research outputs found

    Software Defined Networks based Smart Grid Communication: A Comprehensive Survey

    Get PDF
    The current power grid is no longer a feasible solution due to ever-increasing user demand of electricity, old infrastructure, and reliability issues and thus require transformation to a better grid a.k.a., smart grid (SG). The key features that distinguish SG from the conventional electrical power grid are its capability to perform two-way communication, demand side management, and real time pricing. Despite all these advantages that SG will bring, there are certain issues which are specific to SG communication system. For instance, network management of current SG systems is complex, time consuming, and done manually. Moreover, SG communication (SGC) system is built on different vendor specific devices and protocols. Therefore, the current SG systems are not protocol independent, thus leading to interoperability issue. Software defined network (SDN) has been proposed to monitor and manage the communication networks globally. This article serves as a comprehensive survey on SDN-based SGC. In this article, we first discuss taxonomy of advantages of SDNbased SGC.We then discuss SDN-based SGC architectures, along with case studies. Our article provides an in-depth discussion on routing schemes for SDN-based SGC. We also provide detailed survey of security and privacy schemes applied to SDN-based SGC. We furthermore present challenges, open issues, and future research directions related to SDN-based SGC.Comment: Accepte

    Review of the State-of-the-Art on Adaptive Protection for Microgrids based on Communications

    Full text link
    The dominance of distributed energy resources in microgrids and the associated weather dependency require flexible protection. They include devices capable of adapting their protective settings as a reaction to (potential) changes in system state. Communication technologies have a key role in this system since the reactions of the adaptive devices shall be coordinated. This coordination imposes strict requirements: communications must be available and ultra-reliable with bounded latency in the order of milliseconds. This paper reviews the state-of-the-art in the field and provides a thorough analysis of the main related communication technologies and optimization techniques. We also present our perspective on the future of communication deployments in microgrids, indicating the viability of 5G wireless systems and multi-connectivity to enable adaptive protection.Comment: Accepted to IEEE Trans. on Industrial Informatic

    Real-time Prediction of Cascading Failures in Power Systems

    Get PDF
    Blackouts in power systems cause major financial and societal losses, which necessitate devising better prediction techniques that are specifically tailored to detecting and preventing them. Since blackouts begin as a cascading failure (CF), an early detection of these CFs gives the operators ample time to stop the cascade from propagating into a large-scale blackout. In this thesis, a real-time load-based prediction model for CFs using phasor measurement units (PMUs) is proposed. The proposed model provides load-based predictions; therefore, it has the advantages of being applicable as a controller input and providing the operators with better information about the affected regions. In addition, it can aid in visualizing the effects of the CF on the grid. To extend the functionality and robustness of the proposed model, prediction intervals are incorporated based on the convergence width criterion (CWC) to allow the model to account for the uncertainties of the network, which was not available in previous works. Although this model addresses many issues in previous works, it has limitations in both scalability and capturing of transient behaviours. Hence, a second model based on recurrent neural network (RNN) long short-term memory (LSTM) ensemble is proposed. The RNN-LSTM is added to better capture the dynamics of the power system while also giving faster responses. To accommodate for the scalability of the model, a novel selection criterion for inputs is introduced to minimize the inputs while maintaining a high information entropy. The criteria include distance between buses as per graph theory, centrality of the buses with respect to fault location, and the information entropy of the bus. These criteria are merged using higher statistical moments to reflect the importance of each bus and generate indices that describe the grid with a smaller set of inputs. The results indicate that this model has the potential to provide more meaningful and accurate results than what is available in the previous literature and can be used as part of the integrated remedial action scheme (RAS) system either as a warning tool or a controller input as the accuracy of detecting affected regions reached 99.9% with a maximum delay of 400 ms. Finally, a validation loop extension is introduced to allow the model to self-update in real-time using importance sampling and case-based reasoning to extend the practicality of the model by allowing it to learn from historical data as time progresses

    Methodologies synthesis

    Get PDF
    This deliverable deals with the modelling and analysis of interdependencies between critical infrastructures, focussing attention on two interdependent infrastructures studied in the context of CRUTIAL: the electric power infrastructure and the information infrastructures supporting management, control and maintenance functionality. The main objectives are: 1) investigate the main challenges to be addressed for the analysis and modelling of interdependencies, 2) review the modelling methodologies and tools that can be used to address these challenges and support the evaluation of the impact of interdependencies on the dependability and resilience of the service delivered to the users, and 3) present the preliminary directions investigated so far by the CRUTIAL consortium for describing and modelling interdependencies

    Power systems automation, communication, and information technologies for smart grid: A technical aspects review

    Get PDF
    Smart grid (SG) introduced proven power system, based on modernized power delivery system with introduction of advanced data-information and communication technologies (ICT). SGs include improved quality of power transmission/distribution from power generation to end-users with optimized power flow and efficiency. In addition to above modern automation, two-way communications, advanced monitoring, and control to optimize power quality issues are the classic features of SGs. This ensures the efficiency and reliability of all its interconnected power system elements against potential threats and life time cycle. By integrating ICT into the power system SGs improved the working capabilities of the utility companies. Resultant of ICT with SG leads to better management of assets and ensure energy management for end users. This review article presents the different areas of communication and information technology areas involved in SG automation

    Improving resilience in Critical Infrastructures through learning from past events

    Get PDF
    Modern societies are increasingly dependent on the proper functioning of Critical Infrastructures (CIs). CIs produce and distribute essential goods or services, as for power transmission systems, water treatment and distribution infrastructures, transportation systems, communication networks, nuclear power plants, and information technologies. Being resilient, where resilience denotes the capacity of a system to recover from challenges or disruptive events, becomes a key property for CIs, which are constantly exposed to threats that can undermine safety, security, and business continuity. Nowadays, a variety of approaches exists in the context of CIs’ resilience research. This dissertation starts with a systematic review based on PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) on the approaches that have a complete qualitative dimension, or that can be used as entry points for semi-quantitative analyses. The review identifies four principal dimensions of resilience referred to CIs (i.e., techno-centric, organizational, community, and urban) and discusses the related qualitative or semi-quantitative methods. The scope of the thesis emphasizes the organizational dimension, as a socio-technical construct. Accordingly, the following research question has been posed: how can learning improve resilience in an organization? Firstly, the benefits of learning in a particular CI, i.e. the supply chain in reverse logistics related to the small arms utilized by Italian Armed Forces, have been studied. Following the theory of Learning From Incidents, the theoretical model helped to elaborate a centralized information management system for the Supply Chain Management of small arms within a Business Intelligence (BI) framework, which can be the basis for an effective decision-making process, capable of increasing the systemic resilience of the supply chain itself. Secondly, the research question has been extended to another extremely topical context, i.e. the Emergency Management (EM), exploring the crisis induced learning where single-loop and double-loop learning cycles can be established regarding the behavioral perspective. Specifically, the former refers to the correction of practices within organizational plans without changing core beliefs and fundamental rules of the organization, while the latter aims at resolving incompatible organizational behavior by restructuring the norms themselves together with the associated practices or assumptions. Consequently, with the aim of ensuring high EM systems resilience, and effective single-loop and double-loop crisis induced learning at organizational level, the study examined learning opportunities that emerge through the exploration of adaptive practices necessary to face the complexity of a socio-technical work domain as the EM of Covid-19 outbreaks on Oil & Gas platforms. Both qualitative and quantitative approaches have been adopted to analyze the resilience of this specific socio-technical system. On this consciousness, with the intention to explore systems theoretic possibilities to model the EM system, the Functional Resonance Analysis Method (FRAM) has been proposed as a qualitative method for developing a systematic understanding of adaptive practices, modelling planning and resilient behaviors and ultimately supporting crisis induced learning. After the FRAM analysis, the same EM system has also been studied adopting a Bayesian Network (BN) to quantify resilience potentials of an EM procedure resulting from the adaptive practices and lessons learned by an EM organization. While the study of CIs is still an open and challenging topic, this dissertation provides methodologies and running examples on how systemic approaches may support data-driven learning to ultimately improve organizational resilience. These results, possibly extended with future research drivers, are expected to support decision-makers in their tactical and operational endeavors

    The role of communication systems in smart grids: Architectures, technical solutions and research challenges

    Get PDF
    The purpose of this survey is to present a critical overview of smart grid concepts, with a special focus on the role that communication, networking and middleware technologies will have in the transformation of existing electric power systems into smart grids. First of all we elaborate on the key technological, economical and societal drivers for the development of smart grids. By adopting a data-centric perspective we present a conceptual model of communication systems for smart grids, and we identify functional components, technologies, network topologies and communication services that are needed to support smart grid communications. Then, we introduce the fundamental research challenges in this field including communication reliability and timeliness, QoS support, data management services, and autonomic behaviors. Finally, we discuss the main solutions proposed in the literature for each of them, and we identify possible future research directions

    Reviewing qualitative research approaches in the context of critical infrastructure resilience

    Get PDF
    Modern societies are increasingly dependent on the proper functioning of critical infrastructures (CIs). CIs produce and distribute essential goods or services, as for power transmission systems, water treatment and distribution infrastructures, transportation systems, communication networks, nuclear power plants, and information technologies. Being resilient becomes a key property for CIs, which are constantly exposed to threats that can undermine safety, security, and business continuity. Nowadays, a variety of approaches exist in the context of CIs’ resilience research. This paper provides a state-of-the-art review on the approaches that have a complete qualitative dimension, or that can be used as entry points for semi-quantitative analyses. The study aims to uncover the usage of qualitative research methods through a systematic review based on PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses). The paper identifies four principal dimensions of resilience referred to CIs (i.e., techno-centric, organisational, community, and urban) and discusses the related qualitative methods. Besides many studies being focused on energy and transportation systems, the literature review allows to observe that interviews and questionnaires are most frequently used to gather qualitative data, besides a high percentage of mixed-method research. The article aims to provide a synthesis of literature on qualitative methods used for resilience research in the domain of CIs, detailing lessons learned from such approaches to shed lights on best practices and identify possible future research directions
    • …
    corecore