195 research outputs found

    Privacy-Aware Architectures for NFC and RFID Sensors in Healthcare Applications

    Get PDF
    World population and life expectancy have increased steadily in recent years, raising issues regarding access to medical treatments and related expenses. Through last-generation medical sensors, NFC (Near Field Communication) and radio frequency identification (RFID) technologies can enable healthcare internet of things (H-IoT) systems to improve the quality of care while reducing costs. Moreover, the adoption of point-of-care (PoC) testing, performed whenever care is needed to return prompt feedback to the patient, can generate great synergy with NFC/RFID H-IoT systems. However, medical data are extremely sensitive and require careful management and storage to protect patients from malicious actors, so secure system architectures must be conceived for real scenarios. Existing studies do not analyze the security of raw data from the radiofrequency link to cloud-based sharing. Therefore, two novel cloud-based system architectures for data collected from NFC/RFID medical sensors are proposed in this paper. Privacy during data collection is ensured using a set of classical countermeasures selected based on the scientific literature. Then, data can be shared with the medical team using one of two architectures: in the first one, the medical system manages all data accesses, whereas in the second one, the patient defines the access policies. Comprehensive analysis of the H-IoT system can be useful for fostering research on the security of wearable wireless sensors. Moreover, the proposed architectures can be implemented for deploying and testing NFC/RFID-based healthcare applications, such as, for instance, domestic PoCs

    Construction of Communication Protocol Using Ring-LWE-Based Homomorphic Encryption in Iot-Cloud Environment

    Get PDF
    The rapid development of wireless communication and sensor networks is the basis for forming an Internet of things(IoT) infrastructure. In IoT-based applications, the cryptographic encryption and access control at cloud must be robust to withstand current attacks. The majority of security protocols are based on integer factorization and discrete logarithm problems, which are proved vulnerable to quantum attacks. In this paper, we proposed a scheme for the security and privacy of the user data in a cloud environment. Various types of homomorphic encryption schemes are studied for data privacy in the cloud. The Ring-LWE-based encryption scheme is presented for privacy protection in the cloud which meets the homomorphic properties. The scheme is analysed for security, privacy, reduced messaging overhead and computation overhead. The objective of this paper is to Design and Construct a Ring-LWE-based homomorphic encryption(HE) communication protocol for authenticated user message encryption in a IoT cloud computing environment. The evaluation function in holomorphic encryption defined based on Ring-LWE encryption for a practical sharing-enabled cloud storage. Then, formally proving the security of the proposed protocol for classical and quantum attacks in cloud environment like Manin-the-middle (MITM) attack, Denial of Service (DoS) and Replay Attack

    Post-Quantum Secure Identity-Based Encryption Scheme Using Random Integer Lattices for IoT-Enabled AI Applications

    Get PDF
    Identity-based encryption is an important cryptographic system that is employed to ensure confidentiality of a message in communication. This article presents a provably secure identity based encryption based on post quantum security assumption. The security of the proposed encryption is based on the hard problem, namely Learning with Errors on integer lattices. This construction is anonymous and produces pseudo random ciphers. Both public-key size and ciphertext-size have been reduced in the proposed encryption as compared to those for other relevant schemes without compromising the security. Next, we incorporate the constructed identity based encryption (IBE) for Internet of Things (IoT) applications, where the IoT smart devices send securely the sensing data to their nearby gateway nodes(s) with the help of IBE and the gateway node(s) secure aggregate the data from the smart devices by decrypting the messages using the proposed IBE decryption. Later, the gateway nodes will securely send the aggregated data to the cloud server(s) and the Big data analytics is performed on the authenticated data using the Artificial Intelligence (AI)/Machine Learning (ML) algorithms for accurate and better predictions

    FPDP: Flexible Privacy-preserving Data Publishing Scheme for Smart Agriculture

    Get PDF
    Food security is a global concern. Benefit from the development of 5G, IoT is used in agriculture to help the farmers to maintain and improve productivity. It not only enables the customers, both at home and abroad, to become more informed about the products they buy, but also help the organizations and governments to assess the status of agricultural production. However, farmers are caught up in worried about the privacy leakage since these data would expose their income, lifestyle, etc. Considerable researches have well addressed the questions of confidentiality, authentication, integrity, and privacy. Unfortunately, to the best of our knowledge, the flexibility requirement of aggregation schemes have not been well solved. In essence, in real-life application, endowing the flexibility and privacy-preserving of aggregation, is imperative to secure and facilitate the development of the IoT environment. To fill this research gap, in this paper, a privacy-preserving data aggregation scheme with a flexibility property is proposed which uses ElGamal Cryptosystem. The analysis and performance show that the proposed scheme is secure, private and flexible

    Modified RSA-based algorithm: a double secure approach

    Get PDF
    Security algorithms like RSA are becoming increasingly important for communications to provide companies, organizations, and users around the world, secure applications who rely heavily on them in their daily work. Security algorithms use different acquaintances among companies which might belong to various countries or even cities. Such data should essentially be encrypted to make sure that there is security in transportation. Thus, the current research paper leads to the novel system of security for the safe transfer of data. This paper examines the general principles of encryption and focuses on the development of RSA and the complexity of the encryption key so that it becomes more secure in the applications used. In this project, we will work on the RSA algorithm by adding some complexity to the 3keys (3k). This addition will increase the security and complexity of the algorithm's speed while maintaining encryption and decryption time. The paper also presents an approach by means of public key encryption to enhance cryptographic security. Moreover, double security is provided by the algorithm of RSA. This novel RSA algorithm was investigated in MATLAB. Numerical results for the various parameters such as Mean Square Error (MSE), correlation and Bit Error Ratio (BER) were implemented for the encryption of the message. The experimental results demonstrated that the proposed algorithm for 3 keys has small error rate in the retrieval of the encoded text

    An Optimized Node Level Lightweight Security Algorithm for Cloud Assisted-IoT

    Get PDF
    The fastest-evolving technology, the Internet of Things (IoT), will advance the fields of agriculture, defense, and medical electronics. IoT is focused on giving every object a purpose. IoT with cloud assistance offers a potential remedy for the issue of data expansion for individual objects with restricted capabilities. With the increasing use of cloud technology, the Internet of Things (IoT) has encountered additional security hurdles when it comes to exchanging data between two parties. To address this issue, a thorough investigation was conducted into a secure cloud-assisted strategy for managing IoT data, which ensures the safety of data during its collection, storage, and retrieval via the cloud, while also considering the growing number of users. To achieve this, a lightweight security mechanism that is optimized at the node level is implemented in the proposed system. By utilizing our technology, a secure IoT infrastructure can be established to prevent the majority of data confidentiality threats posed by both insiders and outsiders. Using a heartbeat sensor and a node MCU, we create a heartbeat monitoring system. At the node MCU level, giving security to the patient's health data and preventing unauthorized users from attacking it. Smaller key sizes and lightweight security techniques for IoT devices with minimal power, lower power and memory consumption and Execution time, transmission capacity reserve is used to achieve security. In order to achieve this. The performance of the RSA and ECC algorithms in terms of execution time, power consumption, and memory use have been tabulated for this experimental arrangement. The ECC method occurs to produce the best results in tiny devices

    An Approach to Provide Safety over cloud using Efficient Encryption

    Get PDF
    Cloud computing is a technology, which enables you to store the data remotely instead of local machines and access the stored data over the internet. This technology is getting overwhelming response from various fields, such as IOT where security is one of major concerned area. So, when our data is exposed to the outside world via internet then security should be provided to protect from an unauthorized access to the data stored on cloud. To protect the data when it is in- transit or at-rest the best mechanism is to encrypt the data. So, I had considered two mechanisms to secure the data stored on cloud. I had used two methods, first is AES and the second is Elgamal Encryption. At the end of this paper we compare these two methods by performance graphs using different parameters
    corecore