4 research outputs found

    Improving the Upper Bound on the Length of the Shortest Reset Word

    Get PDF
    We improve the best known upper bound on the length of the shortest reset words of synchronizing automata. The new bound is slightly better than 114 n^3 / 685 + O(n^2). The Cerny conjecture states that (n-1)^2 is an upper bound. So far, the best general upper bound was (n^3-n)/6-1 obtained by J.-E. Pin and P. Frankl in 1982. Despite a number of efforts, it remained unchanged for about 35 years. To obtain the new upper bound we utilize avoiding words. A word is avoiding for a state q if after reading the word the automaton cannot be in q. We obtain upper bounds on the length of the shortest avoiding words, and using the approach of Trahtman from 2011 combined with the well-known Frankl theorem from 1982, we improve the general upper bound on the length of the shortest reset words. For all the bounds, there exist polynomial algorithms finding a word of length not exceeding the bound

    Synchronizing Deterministic Push-Down Automata Can Be Really Hard

    Get PDF
    The question if a deterministic finite automaton admits a software reset in the form of a so-called synchronizing word can be answered in polynomial time. In this paper, we extend this algorithmic question to deterministic automata beyond finite automata. We prove that the question of synchronizability becomes undecidable even when looking at deterministic one-counter automata. This is also true for another classical mild extension of regularity, namely that of deterministic one-turn push-down automata. However, when we combine both restrictions, we arrive at scenarios with a PSPACE-complete (and hence decidable) synchronizability problem. Likewise, we arrive at a decidable synchronizability problem for (partially) blind deterministic counter automata. There are several interpretations of what synchronizability should mean for deterministic push-down automata. This is depending on the role of the stack: should it be empty on synchronization, should it be always the same or is it arbitrary? For the automata classes studied in this paper, the complexity or decidability status of the synchronizability problem is mostly independent of this technicality, but we also discuss one class of automata where this makes a difference

    Synchronization of Deterministic Visibly Push-Down Automata

    Get PDF
    We generalize the concept of synchronizing words for finite automata, which map all states of the automata to the same state, to deterministic visibly push-down automata. Here, a synchronizing word w does not only map all states to the same state but also fulfills some conditions on the stack content of each run after reading w. We consider three types of these stack constraints: after reading w, the stack (1) is empty in each run, (2) contains the same sequence of stack symbols in each run, or (3) contains an arbitrary sequence which is independent of the other runs. We show that in contrast to general deterministic push-down automata, it is decidable for deterministic visibly push-down automata whether there exists a synchronizing word with each of these stack constraints, more precisely, the problems are in EXPTIME. Under the constraint (1), the problem is even in P. For the sub-classes of deterministic very visibly push-down automata, the problem is in P for all three types of constraints. We further study variants of the synchronization problem where the number of turns in the stack height behavior caused by a synchronizing word is restricted, as well as the problem of synchronizing a variant of a sequential transducer, which shows some visibly behavior, by a word that synchronizes the states and produces the same output on all runs

    35th Symposium on Theoretical Aspects of Computer Science: STACS 2018, February 28-March 3, 2018, Caen, France

    Get PDF
    corecore