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Abstract
We improve the best known upper bound on the length of the shortest reset words of synchronizing
automata. The new bound is slightly better than 114n3/685+O(n2). The Černý conjecture states
that (n−1)2 is an upper bound. So far, the best general upper bound was (n3−n)/6−1 obtained
by J.-E. Pin and P. Frankl in 1982. Despite a number of efforts, it remained unchanged for about
35 years.

To obtain the new upper bound we utilize avoiding words. A word is avoiding for a state q
if after reading the word the automaton cannot be in q. We obtain upper bounds on the length
of the shortest avoiding words, and using the approach of Trahtman from 2011 combined with
the well-known Frankl theorem from 1982, we improve the general upper bound on the length of
the shortest reset words. For all the bounds, there exist polynomial algorithms finding a word of
length not exceeding the bound.
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1 Introduction

We deal with deterministic finite complete (semi)automata A (Q,Σ, δ), where Q is the set of
states, Σ is the input alphabet, and δ : Q× Σ→ Q is the transition function. We extend δ
to the function Q× Σ∗ → Q in the usual way. Throughout the paper, by n we denote the
number of states |Q|.

By Σ≤i we denote the set of all words over Σ of length at most i. Given a state q ∈ Q
and a word w ∈ Σ∗ we write shortly q ·w = δ(q, w). Given a subset S ⊆ Q we write S ·w for
the image {q · w | q ∈ S}. Then, S · w−1 is the preimage {q ∈ Q | q · w ∈ S}, and when S is
a singleton we also write q · w−1 = {q} · w−1.

The rank of a word w ∈ Σ∗ is the cardinality of the image of Q under the action of
this word: |Q · w|. A word is reset or synchronizing if it has rank 1. An automaton is
synchronizing if it admits a reset word. The reset threshold rt(A ) is the length of the shortest
reset words.

© Marek Szykuła;
licensed under Creative Commons License CC-BY

35th Symposium on Theoretical Aspects of Computer Science (STACS 2018).
Editors: Rolf Niedermeier and Brigitte Vallée; Article No. 56; pp. 56:1–56:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/157699287?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:msz@cs.uni.wroc.pl
http://dx.doi.org/10.4230/LIPIcs.STACS.2018.56
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


56:2 Improving the Upper Bound on the Length of the Shortest Reset Words
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Figure 1 The Černý automaton with 4 states.

We say that a word w ∈ Σ∗ compresses a subset S ⊆ Q if |S · w| < |S|. A word w ∈ Σ∗
avoids a state q ∈ Q if q /∈ Q ·w. A state that admits an avoiding word is avoidable. We also
say that a state q is avoidable from a subset S if there exists a word w such that q /∈ S · w.

The famous Černý conjecture, formally formulated in 1969, is one of the most longstanding
open problems in automata theory. It states that every synchronizing n-state automaton has
a reset word of length at most (n− 1)2. This bound would be tight, since it is reached for
every n by the Černý automata [7]. Fig. 1 shows the Černý automaton with n = 4 states.
Its shortest reset word is ba3ba3b.

The first general upper bound for the reset threshold given by Černý in [7] was 2n−n− 1.
Later, it was improved several times: 1

2n
3 − 3

2n
2 + n+ 1 given by Starke [23] in 1966, 1

3n
3 −

3
2n

2 + 25/6n−4 by Černý, Pirická, and Rosenauerová [8] in 1971, 7
27n

3−17/18n2 + 17/6n−3
by Pin [19] in 1978, and ( 1

2 −
π
36 )n3 + o(n3) by Pin [21] in 1981.

Then, the well known upper bound was established in 1982 by Pin and Frankl through
the following combinatorial theorem:

I Theorem 1 ([12, 21]). Let A (Q,Σ, δ) be a strongly connected synchronizing automaton,
and consider a subset S ⊆ Q of cardinality ≥ 2. Then there exists a word such that |S ·w| < |S|
of length at most

(n− |S|+ 2) · (n− |S|+ 1)
2 .

For integers 1 ≤ i, j ≤ n we define

C(j, i) =
j∑

s=i+1

(n− s+ 2) · (n− s+ 1)
2 .

From Theorem 1, C(j, i) is an upper bound on the length of the shortest words compressing a
subset of size j to a subset of size at most i: starting from a subset S of size j, we iteratively
apply Theorem 1 to bound the length of a shortest word compressing each (in the worst
case) of the obtained subsets of sizes j, j − 1, . . . , i+ 1. This yields the well known bound on
the length of the shortest reset words:

rt(A ) ≤ C(n, 1) = n3 − n
6 .

This bound was also discovered independently in [17]. Actually, the best bound was n3−n
6 − 1

(for n ≥ 4), since Pin [21] proved that (for n ≥ 4) there is a word compressing Q to a subset
of size n− 3 by a word of length 9 (instead of 10). Theorem 1 also bounds the lengths of a
compressing word found by a greedy algorithm (e.g. [1, 11]), which is an algorithm finding a
reset word by iterative application of a shortest word compressing the current subset. For
about 35 years, there was no progress in improving the bound in the general case.
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However, better bounds have been obtained for a lot of special classes of automata, for
example for oriented (monotonic) automata [11], circular automata [10], Eulerian automata
[15], aperiodic automata [26], generalized and weakly monotonic automata [2, 29], automata
with a sink (zero) state [18], one-cluster automata [3, 25], quasi-Eulerian and quasi-one-cluster
automata [5], automata respecting intervals of a directed graph [14], decoders of finite prefix
codes [4, 6], automata with a letter of small rank [4, 20], and 1-contracting automata [9]. See
also [28] for a survey.

In 2011, Trahtman claimed the better upper bound (7n3 +6n−16)/48 [27]. Unfortunately,
the proof contains an error, and so the result remains unproved. The idea was to utilize
avoiding words; [27, Lemma 3] states that for every q ∈ Q there exists an avoiding word of
length at most n−1. A counterexample to this was found in [13], where it was also suggested
that providing any linear upper bound on the length of avoiding words would also imply an
improvement for the upper bound on the reset threshold.

The avoiding word problem is similar to synchronization: instead of bringing the au-
tomaton into one state, we ask how long word we require to not being in a particular state.
For the automaton from Fig. 1, the shortest avoiding words for states 1, 2, 3, 4 are ba, baa,
baaa, and b, respectively. So far, only a trivial cubic upper bound rt(A ) + 1 was known for
synchronizing automata. Avoiding words do not necessarily exist in general, but they always
do for every state in the case of a synchronizing automaton unless there is a sink state ([18]),
for which all letters act like identity.

The main contributions in this paper are as follows: We prove upper bounds on the
length of the shortest avoiding words, in particular the quadratic bound (n− 1)(n− 2) + 2.
Also, the length of avoiding words is connected with the length of compressing words. We
show that for every state q and a subset of states S, either there is a short avoiding word for
q from S or a short compressing word for S. This connection leads to the main idea for the
improvement of the general upper bound on the reset threshold: either improve by avoiding
words, or use shorter compressing words directly to reduce the bound obtained by Theorem 1.
In contrast to the previous approaches, which bounded the length of the compressing words
independently for each size |S|, the new bound utilizes a conditional approach.

The new upper bound is

(85059n3 + 90024n2 + 196504n− 10648)/511104,

which is slightly better than the much simpler formula 114n3/685 + O(n2). The latter
improves the coefficient of n3 by 1/4110. In the last section we discuss open problems and
further possibilities for improvements.

2 Avoiding words

For the next lemma, we need to introduce a few definitions from linear algebra for automata
(see, e.g., [4, 15, 20]). By Rn we denote the real n-dimensional linear space of row vectors.
Without loss of generality we assume that Q = {1, 2, . . . , n}. For a vector v ∈ Rn, we denote
the value at an i-th position by v(i). For a subset S ⊆ Q, by [S] we denote its characteristic
row vector, which has [S](i) = 1 if i ∈ S, and [S](i) = 0 otherwise. Similarly, for a matrix
M , we denote the value at an i-th row and a j-th column by M(i, j). For a word w ∈ Σ∗, by
[w] we denote the n× n matrix of the transformation of w: [w](i, j) = 1 if i · w = j (state i
is mapped to state j by the transformation of w), and [w](i, j) = 0 otherwise.

Right matrix multiplication corresponds to concatenation of two words; i.e. for every
two words u, v ∈ Σ∗ we have [uv] = [u] · [v]. For a subset S we have ([S][u])(i) equal to
the number of states from S mapped by the transformation of u to state i. In particular,

STACS 2018



56:4 Improving the Upper Bound on the Length of the Shortest Reset Words

([S][u])(i) ≥ 1 if and only if [S · u](i) = 1. Note that for w ∈ Σ∗, the matrix [w] contains
exactly one 1 in each row. Therefore, these are stochastic matrices, and we have the property
that for any v ∈ Rn, right matrix multiplication by [w] preserves the sum of the entries, i.e.∑
i∈Q[v](i) =

∑
i∈Q([v][w])(i).

For example, for the automaton from Fig. 1 we have:

[a] =
(

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

)
, [b] =

(
1 0 0 0
0 1 0 0
0 0 1 0
1 0 0 0

)
, [ba] =

(
0 1 0 0
0 0 1 0
0 0 0 1
0 1 0 0

)
.

If [S] = [1, 0, 1, 1], then [S][ba] = [S][b][a] = [0, 2, 0, 1].
The linear subspace spanned by a set of vectors V is denoted by span(V ). Given a

linear subspace L ⊆ Rn and an n × n matrix m, the linear subspace mapped by m is
Lm = {vm | v ∈ L}. The dimension of a linear subspace L is denoted by dim(L).

The following key lemma states that by a short (linear) word we can either avoid a state
(or one of the states from some set A) from the current subset or compress the current subset.

I Lemma 2. Let A (Q,Σ, δ) be an n-state automaton. Consider a non-empty subset S ⊆ Q
and a non-empty proper subset A ( S. Suppose that there is a word w ∈ Σ∗ such that
A * S · w. Then there exists a word w length at most n− |A| satisfying either
1. A * S · w, or
2. |S · w| < |S|.

Proof. Let Li = span({[S][w] | w ∈ Σ≤i}). We consider the following sequence of linear
subspaces:

L0 ⊆ L1 ⊆ L2 ⊆ . . . ,

and use the ascending chain condition (see, e.g., [4, 15, 20, 24]):
If Lk = Lk+1, then we claim that also Lk+1 = Lk+2 = . . . holds. Observe that for all
i ≥ 0 we have:

Li+1 = span
(
Li ∪

⋃
a∈Σ

Li[a]
)
.

Hence, if Lk = Lk+1, then for i = k we obtain

Lk+1 = span
(
Lk+1 ∪

⋃
a∈Σ

Lk+1[a]
)

= Lk+2,

and so Lk+i = Lk for all i ≥ 0.
Let i be the smallest integer such that Li = Li+1. Then m = dim(Li) is the maximum
among the dimensions of the subspaces from the above sequence.
dim(L0) = 1 and the dimensions grow by at least 1 up to m. Hence, we have

dim(Ln−|A|) ≥ min{m,n− |A|+ 1}.

Note that if for a word w the vector v = [S][w] has v(q) = 0 for some q ∈ A, then q /∈ S ·w,
and we have Case (1). If v = [S][w] has v(q) ≥ 2 for some q ∈ A, then a pair of states from
S is compressed by the action of w (to state q), and we have Case (2).

Now, we show that in the spanning set of Ln−|A| there must be a vector that contains
either 0 or an integer ≥ 2 at the position corresponding to a state from A, which implies that
there exists a word w of length at most n−|A| satisfying either Case (1) or Case (2). Suppose
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for a contradiction that this is not the case. Every vector v ∈ Lk is a linear combination
of the vectors from the spanning set; let c be the sum of the coefficients of the spanning
vectors in such a linear combination. Every vector [S][w] in the spanning set has the sum
of elements equal to |S| and has 1 at all the positions corresponding to the states from A.
Hence, the sum of the entries in v is equal to c|S|, and at every position corresponding to the
states from A we have value c. The sum of the entries at the positions corresponding to the
states from Q \A equals c(|S| − |A|). Therefore, every q ∈ A satisfies the following equality:

v(q) = 1
|S| − |A|

·
∑

p∈Q\A

v(p).

It follows that the values at the positions corresponding to the states from A are completely
determined by the sum of the values from the other positions, which means that the dimension
of Ln−|A| is at most n− |A|. We assumed in the lemma that there exists a word w avoiding
a state from A. Hence, [S][w] has 0 at some position corresponding to a state from A, and
therefore breaks the above equality for this state, as the right side is non-zero. Therefore, the
subspace L|w| must have a larger dimension than dim(Ln−|A|). This means that the dimension
of Ln−|A| is not maximal, which contradicts dim(Ln−|A|) ≥ min{m,n− |A|+ 1}. J

Lemma 2 can be applied iteratively to obtain a word compressing the given subset to the
desired size.

I Lemma 3. Let A (Q,Σ, δ) be an n-state automaton. Consider a non-empty subset S ⊆ Q
and a non-empty proper subset A ( S. Let k ≥ 1 be an integer. Suppose that there exists
a word w ∈ Σ∗ such that A * S · w. Then there is a word w of length at most k(n − |A|)
satisfying either:
1. A * S · w, or
2. |S · w| ≤ |S| − k.

Proof. If Case (1) holds for some w ∈ Σ≤k(n−|A|) then we are done; suppose this is not the
case.

We iteratively apply Lemma 2 k times for subset A starting from subset S: For i = 1, . . . , k
we apply the lemma for the subset S · w1 . . . wi−1, where wj ∈ Σ≤n−|A| is the word obtained
from the lemma in the j-th iteration.

In every iteration, we must get Case (2) of Lemma 2 (|S · w| < |S|), as otherwise
A * S · w1 . . . wi, which contradicts our assumption that Case (1) does not hold for every
word of length at most k(n − |A|) ≥ i(n − |A|). Also, for i ≤ k − 1, we must have
A ⊂ S · w1 . . . wi (i.e. A is a proper subset); otherwise A * S · w1 . . . wia for some letter
a ∈ Σ as A contains a state that can be avoided from S, and this word has length at most
k(n− |A|) which again contradicts our assumption. Therefore, the conditions are met for
every iteration so we can apply the lemma k times.

It follows that the obtained word w1 . . . wk is such that |S · w1 . . . wk| ≤ |S| − k. J

If the subset A of states to avoid is large, the following approach can lead to a better
bound:

I Lemma 4. Let A (Q,Σ, δ) be an n-state automaton. Consider a non-empty subset S ⊆ Q
and a non-empty subset A ⊆ S. If there exists a word w ∈ Σ∗ such that A * S ·w, then there
exists such a word of length at most (|S| − |A|)(n− |A|) + 1.

STACS 2018



56:6 Improving the Upper Bound on the Length of the Shortest Reset Words

Proof. As in the proof of Lemma 3, we iteratively apply Lemma 2 at most |S| − |A| times
for subset A starting from subset S, stopping if the conditions are not met. It is possible
that we do not do any iteration, which is the case when A = S.

In every iteration, we obtain a word wi of length at most n − |A|. If we get A *
S ·w1 . . . wi in some i-th iteration, then we are done as the word w1 . . . wi has length at most
(|S| − |A|)(n− |A|).

If we get A = S · w1 . . . wi for some i ∈ {0, . . . , |S| − |A|}, then observe that there must
exist a letter a ∈ Σ such that A · a 6= A, because A contains an avoidable state from S ⊇ A.
Note that since |S ·w1 . . . wi| < |S ·w1 . . . wi−1| for every i = 1, . . . , k, after the (|S| − |A|)-th
iteration we must have |S · w1 . . . wk| ≤ |S| − (|S| − |A|) = |A|, we must get this case after
the last iteration. It follows that in any case we obtain the word w1 . . . wia of length at most
(|S| − |A|)(n− |A|) + 1. J

We state a quadratic upper bound on the length of the shortest avoiding words:

I Corollary 5. For n ≥ 2, in an n-state automaton A (Q,Σ, δ), for every non-empty proper
subset A ⊂ Q containing an avoidable state, there exists a word avoiding a state from A of
length at most

(n− 1− |A|)(n− |A|) + 2.

Proof. Since there exists an avoidable state in A, there is a letter a ∈ Σ such that |Q ·a| < n.
If A * Q · a then we are done with a word of length 1. Otherwise A ⊆ Q · a, so we use

Lemma 4 with subset A and subset S = Q·a. Since there exists a word avoiding a state from A,
the lemma yields a word w of length at most (|S|−|A|)(n−|A|)+1 ≤ (n−1−|A|)(n−|A|)+1.
Thus, aw avoids a state from A and has length at most (n− 1− |A|)(n− |A|) + 2. J

In particular, we obtain the upper bound (n− 2)(n− 1) + 2 on the length of the shortest
avoiding words for any state (|A| = 1).

I Theorem 6. The words from Lemma 2, Lemma 3, Lemma 4, and Corollary 5 can be found
in polynomial time.

Proof. We use the reduction procedure from [4], which in polynomial time replaces each set
Σ≤i in the proof of Lemma 2 with a set Wi containing at most i+ 1 words such that Li has
the same dimension.

The procedure starts for i = 0 with {ε} (the set with the empty word) and inductively
constructs a set Wi assuming we have found Wi−1. This is done by considering all words
wa for w ∈Wi−1 and a ∈ Σ and setting Wi = Wi−1 ∪ {wa} for which the dimension of the
corresponding subspace grows. There always exists such a word wa, which is argued by the
ascending chain condition.

Then, the set Wm is used to span the first linear subspace with the maximal dimension
(Lm), so we can find a word satisfying Case (1) or Case (2) of Lemma 2 in Wm. It is obvious
that the corresponding words from the other proofs are constructible in polynomial time. J

3 Improved bound on reset threshold

In this section, we consider a synchronizing n-state automaton A (Q,Σ, δ). Obviously, in
such an automaton, every state is avoidable unless there is a sink state (a state q such that
q · a = q for all a ∈ Σ), which cannot be avoided. For synchronizing automata with a sink
state the tight upper bound is n(n− 1)/2 (see, e.g., [22]). Thus we can assume that A does
not have a sink state, and so Lemma 2 and Lemma 3 can be applied for every non-empty
subset A.
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I Lemma 7. Let w ∈ Σ∗ and let g = min{|q · w−1| | q ∈ Q · w}. There are at least
(g + 1)|Q · w| − n states q ∈ Q · w such that |q · w−1| = g.

Proof. Let d be the number of states q ∈ Q ·w whose preimages under w−1 have size equal to
g. So |Q ·w| − d states have the preimages of size at least g+ 1. Note that (Q ·w) ·w−1 = Q,
and that the sets q ·w−1 and p ·w−1 are disjoint for all pairs of states q 6= p. So Q ·w−1 has
cardinality at least dg + (g + 1)(|Q ·w| − d) = (g + 1)|Q ·w| − d. Since this cannot be larger
than n = |Q|, we get d ≥ (g + 1)|Q · w| − n. J

From Lemma 7, in particular, we get that there are at least 2|Q · w| − n states in the image
Q · w with a unique state in the preimage.

The following lemma is based on [27, Lemma 4], but with a more general bound:

I Lemma 8. Let w ∈ Σ∗ be a word of rank r ≥ b(n+ 1)/2c. Suppose that for some integer
k ≥ 1, for every A ⊂ Q of size 1 ≤ |A| ≤ n− 1, there is a word vA ∈ Σ≤k(n−|A|) such that
A * Q · vA. Then there is a word of rank at most n/2 and length at most

|w|+ k
n2 − (2n− 2r − 1)2

4 .

Proof. For i = r, r− 1, . . . , bn/2c, we inductively construct words wi of length ≤ |w|+ k(r−
i)(2n− r − i− 1) of rank at most i. First, let wr = w.

Let i < r and suppose that we have already found wi+1. If already |Q ·wi+1| ≤ i then we
just set wi = wi+1. Otherwise, we have |Q · wi+1| = i+ 1.

Because i + 1 ≥ (n + 1)/2, there exists a non-empty subset of Q · wi+1 of states with
a unique state in the unique preimage. By Lemma 7, we let X ⊆ Q · wi+1 to be a subset
of size 2|Q · wi+1| − n = 2i + 2 − n of states q ∈ Q · wi+1 such that |q · w−1

i+1| = 1. We set
wi = vXwi+1, where vX is the avoiding word from the assumption of the lemma for set X.
We have p /∈ Q · vX for some p ∈ X.

State p is the only state mapped by the transformation of wi+1 to some state q = p ·wi+1,
i.e. there is no other state p′ such that p′·wi+1 = q. Hence we know that q /∈ Q·wi = Q·vXwi+1.
Since Q · wi ⊆ Q · wi+1, q /∈ Q · wi but q ∈ Q · wi+1, we have Q · wi ( Q · wi+1. Therefore,
we have rank

|Q · wi| ≤ |Q · wi+1| − 1 ≤ i+ 1− 1 = i,

and length

|wi| ≤ k(n− |A|) + |wi+1|
≤ 2k(n− i− 1) + k(r − (i+ 1))(2n− r − (i+ 1)− 1) + |w|
= k(r − i)(2n− r − i− 1) + |w|.

Finally, for i = bn/2c we obtain:

|w|+ k(r − bn/2c)(2n− r − bn/2c − 1)
≤ |w|+ k(r − (n− 1)/2)(2n− r − (n− 1)/2− 1)
= |w|+ k(n2 − (2n− 2r − 1)2)/4. J

Note that Lemma 4 also provides an upper bound on the length of the shortest avoiding
words, but it is larger than that the corresponding bound from Theorem 1, and so would not
yield an improvement when used as in Lemma 8. Therefore, we use there an assumption
about the length of the shortest avoiding words.

STACS 2018



56:8 Improving the Upper Bound on the Length of the Shortest Reset Words

We observe that it is profitable to use Theorem 1 to find the starting word w, as long as
C(i+ 1, i) is smaller than k(n− |A|). An approximate solution is to find the starting word w
of rank at most n− 4k. The following lemma utilizes this idea.

I Lemma 9. Suppose that for some integer k, 1 ≤ k ≤ n/8, for every A ⊂ Q of size
1 ≤ |A| ≤ n− 1, there is a word vA ∈ Σ≤k(n−|A|) such that A * Q · vA. Then there is a word
of rank at most n/2 and length at most

k
3n2 − 64k2 + 144k + 13

12 .

Proof. From Theorem 1, let w be a word of rank at most n− 4k and length at most

C(n, n− 4k) = 4k(8k2 + 6k + 1)/3.

If w has rank ≥ b(n+ 1)/2c, then we apply Lemma 8 and obtain a word of rank at most
n/2 and length at most

4k(8k2 + 6k + 1)
3 + k(n2 − (2n− 2(n− 4k)− 1)2)

4

= k(3n2 − 64k2 + 144k + 13)
12 .

Otherwise, w has rank < n/2, and because

k(n2 − (2n− 2(n− 4k)− 1)2)/4 = k(n2 − (8k − 1)2)/4

is positive for 1 ≤ k ≤ n/8 (and n ≥ 8), the upper bound is also valid. Thus, w has the
desired length. J

We prove a parametrized upper bound on the reset threshold, depending on whether the
assumption in Lemma 9 holds. When the assumption holds, the lemma provides an upper
bound using avoiding words; otherwise, we have a quadratic word of a particular rank that
yields an improvement.

I Lemma 10. For every integer 1 ≤ k ≤ n/8, there exists a reset word of length at most

max
{
k

3n2 − 64k2 + 144k + 13
12 , k(n− 1) + C(n− k, bn/2c)

}
+ C(bn/2c, 1).

Proof. We use Lemma 3 with the given k and subset S = Q.
Suppose that Case (1) from Lemma 3 holds for every A ⊂ Q with 1 ≤ |A| ≤ n− 1. Then

by Lemma 9 we obtain a word w of rank ≤ n/2 and length ≤ k(3n2 − 64k2 + 144k + 13)/12.
Suppose that Case (2) from Lemma 3 holds for some A ⊂ Q with 1 ≤ |A| ≤ n− 1. Then

we have a word w of rank ≤ n− k and length ≤ k(n− 1). By Theorem 1, we construct a
word compressing Q · w to a subset of size ≤ n/2. Then k(n − 1) + C(n − k, bn/2c) is an
upper bound for the length of the found word of rank ≤ n/2.

Finally, we need to take the maximum from both cases, and add C(bn/2c, 1) to bound
the length of a word compressing a subset of size bn/2c to a singleton. J

Now, by finding a suitable k, we state the new general upper bound on the reset threshold:

I Theorem 11.

rt(A ) ≤ (85059n3 + 90024n2 + 196504n− 10648)/511104.
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Proof. We use Lemma 10 with a suitable k that minimizes the maximum for large enough n.
First, we bound C(n− k, bn/2c) in the second argument in the maximum. If n is even

then

C(n− k, bn/2c) = C(n− k, n/2)

=
n−k∑

s=n/2+1

(n− s+ 2)(n− s+ 1)
2

= n3 + 6n2 + 8n− 8k3 − 24k2 − 16k
48 .

If n is odd then

C(n− k, bn/2c) = C(n− k, (n− 1)/2)

=
n−k∑

s=(n−1)/2+1

(n− s+ 2)(n− s+ 1)
2

= n3 + 9n2 + 23n− 8k3 − 24k2 − 16k + 15
48 ,

which is larger than the previous one.
Now we discuss our choice of k; any value of k gives a bound but we try to get it minimal.

Assume that n is large enough. Note that for the largest possible value k = n/8 the first
function in the maximum from Lemma 10 yields the coefficient of n3 equal to 1/48 (the same
as by C(n, bn/2c)), hence does not give an improvement. For a similar reason, we reject
small values k ∈ o(n). Within linear values k of n, the first function decreases and the second
function increases with k. Since they are continuous, it is enough to consider the values of
k such that both functions are equal. The approximate solution is k ' 0.11375462n. For
simplicity of the calculations and the final formula, we use the approximation k = b5/44nc.
Note that any value of k within the valid range will lead to a correct bound, and we use
5/44 since it is the best approximation by a rational number using integers with at most two
digits.

We assume n ≥ 9; for the smaller values of n the bound is a valid upper bound since it
gives larger values than the bound from Theorem 1.

In the following calculations, we use the fact that 5/44n− 1 < b5/44nc and 5/44n− 1 is
non-negative. By substitution, for the first function in the maximum we have

k
3n2 − 64k2 + 144k + 13

12

< (5/44n)3n2 − 64(5/44n− 1)2 + 144(5/44n) + 13
12

= (5n(263n2 + 3740n− 6171))/63888, (1)

and for the second function we have

k(n− 1) + n3 + 9n2 + 23n− 8k3 − 24k2 − 16k + 15
48

< (5/44n)(n− 1) +
(
n3 + 9n2 + 23n− 8(5/44n− 1)3

− 24(5/44n− 1)2 − 16(5/44n− 1) + 15
)
/48

= (10523n3 + 153912n2 + 196504n+ 159720)/511104. (2)

Note that (2) is larger than (1) for all n.
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Now we have to bound C(bn/2c, 1). If n is even then

C(bn/2c, 1) = C(n/2, 1) = (7n3 − 6n2 − 16)/48.

If n is odd then

C(bn/2c, 1) = C((n− 1)/2, 1) = (7n3 − 9n2 − 31n− 15)/48,

which is smaller than the previous one for n ≥ 2.
Finally, we obtain

10523n3 + 152262n2 + 189244n+ 191664
511104 + 7n3 − 6n2 − 16

48

= 85059n3 + 90024n2 + 196504n− 10648
511104 . J

The theorem improves the old well known bound (n3 − n)/6− 1 by the factor 85059/85184,
or by the coefficient 125/511104 of n3. This is slightly better than the simpler formula
114n3/685 +O(n2).

The bound does not necessarily apply for the words obtained by a greedy compression
algorithm for synchronization ([1, 11]), because the words in the proof of Lemma 8 are
constructed by appending avoiding words at the beginning. However, we can show that there
exists a polynomial algorithm finding words of lengths within the bound.

I Proposition 12. A reset word of length within the bound from Theorem 11 can be computed
in polynomial time.

Proof. We use k from the proof of Theorem 11. We follow the construction from the proof
of Lemma 8. By Theorem 6, we can compute a word from Lemma 2 for a subset A. If (1)
holds every time, then we use the obtained word from Lemma 8. Otherwise, we use the
word from Lemma 2 for which (2) holds. Finally, the words of lengths at most C(j, i) are
computed using a greedy compression algorithm ([1]). J

4 Further remarks

Although the improvement in terms of the cubic coefficient is small, it breaks longstanding
persistence of the old bound from [21], and possibly opens the area for further progress.

Tiny improvements of the bound from Theorem 11 are possible with more effort yielding
better calculations, for example by tuning the value of k in Theorem 11, better rounding,
using better bounds at the beginning (note that one can find a shorter word than the word
of rank k when Case (2) holds in Lemma 3 by combining with Theorem 1). These however
do not add new ideas.

Avoiding a state

The first natural possibility for improving the bound is to show a better bound on the length
of the shortest avoiding words. For strongly connected synchronizing automata, currently
the best known lower bound is 2n− 3 by Vojtěch Vorel1 (binary series), whereas 2n− 2 is
conjectured to be a tight upper bound based on experiments [16].

I Open Problem 1. Is 2n− 2 the tight upper bound on the length of the shortest avoiding
words?

1 personal communication, unpublished, 2016
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Avoiding a subset

The technique from Lemma 8 can be applied only for compressing Q to a subset of size at
most n/2, because at this point there can be no states with a unique state in the preimage.
To bypass this obstacle, we can generalize the concept of avoiding to subsets, and say that
a word w avoids a subset D ⊆ Q if D ∩ (Q · w) = ∅. Having a good upper bound on the
length of the shortest words avoiding D, we could continue using avoiding words for subsets
smaller than n/2, since for a word s there are at least |D| · |Q · s| − n states such that
1 ≤ |q · s−1| ≤ |D| (see Lemma 7).

I Open Problem 2. Find a good upper bound (in terms of |D| and n) on the length ` such
that in every n-state automaton, for every subset D ⊂ Q there is a word avoiding D of length
at most `, unless D is not avoidable.

In fact, we can prove an upper bound in the spirit of Lemma 2, provided that we have
avoiding words for smaller subsets than D.

I Lemma 13. For n ≥ 2, let A (Q,Σ, δ) be an n-state strongly connected synchronizing
automaton. Consider non-empty subsets S,D ⊆ Q such that |S| ≥ 1 and |D| ≥ 2. Suppose
that there is a state p ∈ D such that for D′ = D \ {p} there exists a word wD′ ∈ Σ` that
avoids D′. Then there exists a word w ∈ Σn−1+` such that either:
1. (S · w) ∩D = ∅, or
2. |S · w| < |S|.

Proof. Let Li = span({[S][w] | w ∈ Σ≤i}). We consider the following sequence of linear
subspaces:

L0 ⊆ L1 ⊆ L2 ⊆ . . . ,

and use the ascending chain condition as in the proof of Lemma 2. Since the automaton is
synchronizing, there is a reset word u so [S][u] = n[q] for some state q. Since the automaton
is strongly connected, for every state p we have a word v such that q · v = p, and so
[S][uv] = n[p]. These vectors generate the whole space Rn, and so the maximal dimension of
the linear subspaces from the sequence is n; in particular, dim(Ln−1) = n.

Let P = p · (wD′)−1. Suppose for a contradiction that for every word w of length ≤ n− 1,
subset S is not compressed by w and |(S · w) ∩ P | = 1. Then [S][w] contains exactly one 1
and |P | − 1 0s at the positions corresponding to the states from P . Therefore, all vectors v
generated by the vectors with this property satisfy:

(|S| − 1)
∑
i∈P

v(i) =
∑
i∈Q\P

v(i).

This means that the dimension of Ln−1 is at most n− 1, since in Rn there are vectors that
broke this equality. Hence, we have a contradiction.

Hence, there must be a word w that either compresses S or is such that |(S ·w) ∩ P | 6= 1.
In the latter case, if (S · w) ∩ P = ∅ then we obtain (S · wwD′) ∩D = ∅. If (S · w) ∩ P ≥ 2
then wD′ maps at least two states from (S · w) ∩ P to p, thus wwD′ compresses S. J

By an iterative application of the above lemma, we can obtain the upper bound k(n−1+kn)
on the length of a word that either avoids two states from the given subset or compresses
the subset. This bound is too large to provide a further improvement (at least within the
cubic coefficient) for the upper bound on the length of the shortest reset words. However,
if the shortest words avoiding a single state are indeed of linear length, then we obtain a
quadratic upper bound on the length of the shortest words avoiding two states.
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