6 research outputs found

    Ein Branch&Bound-Ansatz zur Verdrahtung von Field Programmable Gate-Arrays

    Get PDF
    Zur Verdrahtung der meisten FPGA-Architekturen können die aus dem ASIC-Entwurf stammenden Werkzeuge wie z.B. Kanalverdrahter nicht eingesetzt werden. Eine vollautomatische Verdrahtung mit optimalen Signallaufzeiten kann nur dann erreicht werden, wenn bei gegebener Plazierung die Leitungführung den technologischen Gegebenheiten angepaßt wird. Diese unterscheiden sich deutlich von denen in ASICs. Im Rahmen des von der Deutschen Forschungsgemeinschaft (DFG) geförderten Gemeinschafts-Projekts „FPGA Entwurfssystem“, an dem die Universität Leipzig, die Universität Tübingen und die Technischen Universität München beteiligt sind, wurden am Lehrstuhl für Computersysteme (Prof. W.G. Spruth) des Instituts für Informatik der Universität Leipzig Verfahren zur effizienten und qualitativ hochwertigen Verdrahtung von FPGA-Bausteinen entwickelt. Es wird eine Beschreibung des Verdrahtungsproblems für FPGAs gegeben und ein Lösungsansatz mit Hilfe des Branch&Bound – Verfahrens vorgestellt. Die Ergebnisse in Form von Programmlaufzeiten, Länge des kritischen Pfades und Anzahl der betrachteten Suchknoten in Abhängigkeit von einer Vielzahl von Schaltungsvarianten sind tabellarisch dargestellt und dokumentieren eine deutliche Verkürzung der längsten Pfade gegenüber dem Plazier- und Verdrahtungswerkzeug von Xilinx. Abschließend werden Probleme und weiterführende Arbeiten diskutiert

    Methoden und Beschreibungssprachen zur Modellierung und Verifikation vonSchaltungen und Systemen: MBMV 2015 - Tagungsband, Chemnitz, 03. - 04. März 2015

    Get PDF
    Der Workshop Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen (MBMV 2015) findet nun schon zum 18. mal statt. Ausrichter sind in diesem Jahr die Professur Schaltkreis- und Systementwurf der Technischen Universität Chemnitz und das Steinbeis-Forschungszentrum Systementwurf und Test. Der Workshop hat es sich zum Ziel gesetzt, neueste Trends, Ergebnisse und aktuelle Probleme auf dem Gebiet der Methoden zur Modellierung und Verifikation sowie der Beschreibungssprachen digitaler, analoger und Mixed-Signal-Schaltungen zu diskutieren. Er soll somit ein Forum zum Ideenaustausch sein. Weiterhin bietet der Workshop eine Plattform für den Austausch zwischen Forschung und Industrie sowie zur Pflege bestehender und zur Knüpfung neuer Kontakte. Jungen Wissenschaftlern erlaubt er, ihre Ideen und Ansätze einem breiten Publikum aus Wissenschaft und Wirtschaft zu präsentieren und im Rahmen der Veranstaltung auch fundiert zu diskutieren. Sein langjähriges Bestehen hat ihn zu einer festen Größe in vielen Veranstaltungskalendern gemacht. Traditionell sind auch die Treffen der ITGFachgruppen an den Workshop angegliedert. In diesem Jahr nutzen zwei im Rahmen der InnoProfile-Transfer-Initiative durch das Bundesministerium für Bildung und Forschung geförderte Projekte den Workshop, um in zwei eigenen Tracks ihre Forschungsergebnisse einem breiten Publikum zu präsentieren. Vertreter der Projekte Generische Plattform für Systemzuverlässigkeit und Verifikation (GPZV) und GINKO - Generische Infrastruktur zur nahtlosen energetischen Kopplung von Elektrofahrzeugen stellen Teile ihrer gegenwärtigen Arbeiten vor. Dies bereichert denWorkshop durch zusätzliche Themenschwerpunkte und bietet eine wertvolle Ergänzung zu den Beiträgen der Autoren. [... aus dem Vorwort

    Ein Branch&Bound-Ansatz zur Verdrahtung von Field Programmable Gate-Arrays

    No full text
    Zur Verdrahtung der meisten FPGA-Architekturen können die aus dem ASIC-Entwurf stammenden Werkzeuge wie z.B. Kanalverdrahter nicht eingesetzt werden. Eine vollautomatische Verdrahtung mit optimalen Signallaufzeiten kann nur dann erreicht werden, wenn bei gegebener Plazierung die Leitungführung den technologischen Gegebenheiten angepaßt wird. Diese unterscheiden sich deutlich von denen in ASICs. Im Rahmen des von der Deutschen Forschungsgemeinschaft (DFG) geförderten Gemeinschafts-Projekts „FPGA Entwurfssystem“, an dem die Universität Leipzig, die Universität Tübingen und die Technischen Universität München beteiligt sind, wurden am Lehrstuhl für Computersysteme (Prof. W.G. Spruth) des Instituts für Informatik der Universität Leipzig Verfahren zur effizienten und qualitativ hochwertigen Verdrahtung von FPGA-Bausteinen entwickelt. Es wird eine Beschreibung des Verdrahtungsproblems für FPGAs gegeben und ein Lösungsansatz mit Hilfe des Branch&Bound – Verfahrens vorgestellt. Die Ergebnisse in Form von Programmlaufzeiten, Länge des kritischen Pfades und Anzahl der betrachteten Suchknoten in Abhängigkeit von einer Vielzahl von Schaltungsvarianten sind tabellarisch dargestellt und dokumentieren eine deutliche Verkürzung der längsten Pfade gegenüber dem Plazier- und Verdrahtungswerkzeug von Xilinx. Abschließend werden Probleme und weiterführende Arbeiten diskutiert

    Ein Branch&Bound-Ansatz zur Verdrahtung von Field Programmable Gate-Arrays

    No full text
    Zur Verdrahtung der meisten FPGA-Architekturen können die aus dem ASIC-Entwurf stammenden Werkzeuge wie z.B. Kanalverdrahter nicht eingesetzt werden. Eine vollautomatische Verdrahtung mit optimalen Signallaufzeiten kann nur dann erreicht werden, wenn bei gegebener Plazierung die Leitungführung den technologischen Gegebenheiten angepaßt wird. Diese unterscheiden sich deutlich von denen in ASICs. Im Rahmen des von der Deutschen Forschungsgemeinschaft (DFG) geförderten Gemeinschafts-Projekts „FPGA Entwurfssystem“, an dem die Universität Leipzig, die Universität Tübingen und die Technischen Universität München beteiligt sind, wurden am Lehrstuhl für Computersysteme (Prof. W.G. Spruth) des Instituts für Informatik der Universität Leipzig Verfahren zur effizienten und qualitativ hochwertigen Verdrahtung von FPGA-Bausteinen entwickelt. Es wird eine Beschreibung des Verdrahtungsproblems für FPGAs gegeben und ein Lösungsansatz mit Hilfe des Branch&Bound – Verfahrens vorgestellt. Die Ergebnisse in Form von Programmlaufzeiten, Länge des kritischen Pfades und Anzahl der betrachteten Suchknoten in Abhängigkeit von einer Vielzahl von Schaltungsvarianten sind tabellarisch dargestellt und dokumentieren eine deutliche Verkürzung der längsten Pfade gegenüber dem Plazier- und Verdrahtungswerkzeug von Xilinx. Abschließend werden Probleme und weiterführende Arbeiten diskutiert

    Ein Branch & Bound-Ansatz zur Verdrahtung von Field Programmable Gate-Arrays

    No full text
    corecore