449,026 research outputs found

    Revisiting Hartley's normalized eight-point algorithm

    Get PDF
    Copyright © 2003 IEEEHartley's eight-point algorithm has maintained an important place in computer vision, notably as a means of providing an initial value of the fundamental matrix for use in iterative estimation methods. In this paper, a novel explanation is given for the improvement in performance of the eight-point algorithm that results from using normalized data. It is first established that the normalized algorithm acts to minimize a specific cost function. It is then shown that this cost function I!; statistically better founded than the cost function associated with the nonnormalized algorithm. This augments the original argument that improved performance is due to the better conditioning of a pivotal matrix. Experimental results are given that support the adopted approach. This work continues a wider effort to place a variety of estimation techniques within a coherent framework.Wojciech Chojnacki, Michael J. Brooks, Anton van den Hengel and Darren Gawle

    In Defense of the Eight-Point Algorithm

    Get PDF
    Abstract—The fundamental matrix is a basic tool in the analysis of scenes taken with two uncalibrated cameras, and the eight-point algorithm is a frequently cited method for computing the fundamental matrix from a set of eight or more point matches. It has the advantage of simplicity of implementation. The prevailing view is, however, that it is extremely susceptible to noise and hence virtually useless for most purposes. This paper challenges that view, by showing that by preceding the algorithm with a very simple normalization (translation and scaling) of the coordinates of the matched points, results are obtained comparable with the best iterative algorithms. This improved performance is justified by theory and verified by extensive experiments on real images. Index Terms—Fundamental matrix, eight-point algorithm, condition number, epipolar structure, stereo vision

    A statistical rationalisation of Hartley's normalised eight-point algorithm

    Get PDF
    ©2003 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.The eight-point algorithm of Hartley occupies an important place in computer vision, notably as a means of providing an initial value of the fundamental matrix for use in iterative estimation methods. In this paper, a novel explanation is given for the improvement in performance of the eight-point algorithm that results from using normalised data. A first step is singling out a cost function that the normalised algorithm acts to minimise. The cost function is then shown to be statistically better founded than the cost function associated with the non-normalised algorithm. This augments the original argument that improved performance is due to the better conditioning of a pivotal matrix. Experimental results are given that support the adopted approach. This work continues a wider effort to place a variety of estimation techniques within a coherent framework.Wojciech Chojnacki, Michael J. Brooks, Anton van den Hengel, Darren Gawle

    A general digital linearising method for transducers

    Get PDF
    A practical three-point interpolation algorithm is presented which corrects for manufacturing tolerances, zero offset, scaling errors and nonlinearity of transducers and signal conditioners. The algorithm is applicable to data-acquisition systems which make use of a microprocessor. Each measuring channel requires three parameters. One simple universal routine using these parameters calculates the value of each measurand. Results are given for eight temperature transducers

    Improved sign-based learning algorithm derived by the composite nonlinear Jacobi process

    Get PDF
    In this paper a globally convergent first-order training algorithm is proposed that uses sign-based information of the batch error measure in the framework of the nonlinear Jacobi process. This approach allows us to equip the recently proposed Jacobi–Rprop method with the global convergence property, i.e. convergence to a local minimizer from any initial starting point. We also propose a strategy that ensures the search direction of the globally convergent Jacobi–Rprop is a descent one. The behaviour of the algorithm is empirically investigated in eight benchmark problems. Simulation results verify that there are indeed improvements on the convergence success of the algorithm

    Evaluating the Tutte Polynomial for Graphs of Bounded Tree-Width

    Get PDF
    It is known that evaluating the Tutte polynomial, T(G;x,y)T(G; x, y), of a graph, GG, is #\#P-hard at all but eight specific points and one specific curve of the (x,y)(x, y)-plane. In contrast we show that if kk is a fixed constant then for graphs of tree-width at most kk there is an algorithm that will evaluate the polynomial at any point using only a linear number of multiplications and additions

    Light in Power: A General and Parameter-free Algorithm for Caustic Design

    Get PDF
    We present in this paper a generic and parameter-free algorithm to efficiently build a wide variety of optical components, such as mirrors or lenses, that satisfy some light energy constraints. In all of our problems, one is given a collimated or point light source and a desired illumination after reflection or refraction and the goal is to design the geometry of a mirror or lens which transports exactly the light emitted by the source onto the target. We first propose a general framework and show that eight different optical component design problems amount to solving a light energy conservation equation that involves the computation of visibility diagrams. We then show that these diagrams all have the same structure and can be obtained by intersecting a 3D Power diagram with a planar or spherical domain. This allows us to propose an efficient and fully generic algorithm capable to solve these eight optical component design problems. The support of the prescribed target illumination can be a set of directions or a set of points located at a finite distance. Our solutions satisfy design constraints such as convexity or concavity. We show the effectiveness of our algorithm on simulated and fabricated examples
    corecore