
Combinatorics, Probability and Computing (1998) 7, 307–321. Printed in the United Kingdom
c© 1998 Cambridge University Press

Evaluating the Tutte Polynomial for Graphs of

Bounded Tree-Width

S. D. N O B L E†
Mathematical Institute, 24–29 St. Giles, Oxford OX1 3LB, England

(e-mail: noble@maths.ox.ac.uk)

Received 27 September 1996; revised 21 May 1997

It is known that evaluating the Tutte polynomial, T (G; x, y), of a graph, G, is #P-hard at

all but eight specific points and one specific curve of the (x, y)-plane. In contrast we show

that if k is a fixed constant then for graphs of tree-width at most k there is an algorithm

that will evaluate the polynomial at any point using only a linear number of multiplications

and additions.

1. Introduction and notation

Our notation is fairly standard except that our graphs are allowed to have loops and

parallel edges. V (G) and E(G), or just V and E, are used to denote the vertex set and

edge set of a graph. We assume that V and E are both finite and let n = |V | and m = |E|.
If A ⊆ E then G|A is the restriction of G to A formed by deleting all edges except those

contained in A. For any W ⊆ V , G : W is used to denote the graph with vertex set W

and edge set consisting of all edges in E that have both end-points in W . If e is an edge

of G then G \ e is formed from G by deleting e, G/e is formed from G by contracting e,

that is, deleting e and identifying its end-points. The number of connected components of

G is denoted by k(G). The rank of a set, A, of edges is denoted by r(A) and is given by

r(A) = |V (G)| − k(G|A).

We denote the set of partitions of X by Π (X) and let #π be the size of a partition, that

is, the number of nonempty blocks that make up π. Throughout this paper, the partitions

to which we refer are partitions of the vertex set of a graph and so, if π is a partition

of X, we say that X is the vertex set of π and refer to elements of X as the vertices of

π. We use IX to denote the partition with vertex set X consisting entirely of singleton

blocks. If V is the vertex set of π, then for W ⊆ V the restriction to W , π|W , is formed

† Supported by EPSRC grant and by RAND-ESPRIT. Results first presented at the 15th British Combinatorial

Conference, Stirling, July 3–7 1995.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/333551?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

308 S. D. Noble

by deleting all elements in the partition not contained in W and then deleting any empty

blocks that are formed. If π1 and π2 have the same vertex set, X, then we define their

join π1 ∨ π2 to be the partition of X whose blocks are minimal sets such that, if u and v

are in different blocks of π1 ∨ π2, then u and v are in different blocks of π1 and π2. In

other words, the operation ∨ corresponds to join in the partition lattice. More generally,

if π1 and π2 have vertex sets X1 and X2, respectively, we form their join by first adding

the vertices of X2 \ X1 to π1 as singleton blocks, giving π′1, and similarly forming π′2 by

adding the vertices of X1 \X2 to π2 as singleton blocks, and finally computing π′1 ∨ π′2. If

A ⊆ E and X ⊆ V , then ΠX(A) denotes the restriction to X of the partition π of V , in

which the blocks of π correspond to connected components of G|A.

A tree-decomposition of a graph G = (V , E) is a pair ({Xi|i ∈ I}, T = (I, F)), where

{Xi|i ∈ I} is a family of subsets of V , one for each vertex of T , and T is a tree such that

• ⋃
i∈I Xi = V ,

• for all edges (v, w) ∈ E, there exists i ∈ I such that v ∈ Xi and w ∈ Xi,

• for all i, j, k ∈ I , if j is on the path from i to k in T , then Xi ∩Xk ⊆ Xj .

The tree-width of a tree-decomposition is maxi∈I |Xi| − 1. The tree-width of a graph G

is the minimum tree-width over all possible tree-decompositions of G. If we give T a root

then we can define Yi = {v ∈ Xj |j = i or j is a descendant of i}.
Many well-studied classes of graphs have bounded tree-width: for instance, series-

parallel networks are the graphs with tree-width at most two. A large class of graph

problems that are thought to be intractable can be solved when the input is restricted

to graphs with tree-width at most a fixed constant k. For example, the NP-complete

problems, 3-Colouring and Hamiltonian Circuit can be solved in linear time for graphs

of bounded tree-width. See [4] for more information on tree-width.

In our algorithm we assume that for some fixed k we are given a graph, G, of tree-width

6 k. We first have to compute a tree-decomposition of width 6 k such that |I | 6 2n

and T is a binary tree. Let f(k) = k5 · (2k + 1)(2k+1)−2 · ((2(2k + 1) + 3)2(2k+1)+3 · (8
3
·

22k+2)2(2k+1)+3)2(2k+1)−1. The algorithm given in [3] will, in time O(f(k) · n), produce a

tree-decomposition ({Xi|i ∈ I ′}, T ′ = (I ′, F ′)) with |I ′| 6 n, and from this it is easy to

construct, in time O(kn), a tree-decomposition with |I | 6 2n and T a rooted binary tree.

The Tutte polynomial of a graph G is given by

T (G; x, y) =
∑
A⊆E

(x− 1)r(E)−r(A)(y − 1)|A|−r(A),

and contains a great deal of information about a graph. Here are some examples.

• At (1, 1), T counts the number of maximal forests of G, or spanning trees if G is

connected.

• At (2, 1), T counts the number of forests of G.

• T is said to contain the chromatic polynomial, P (G; λ), in that

P (G; λ) = λk(G)(−1)r(E)T (G; 1− λ, 0).

• If G is connected then the all-terminal reliability R(G; p) is given by

R(G; p) = (1− p)m−r(E)pr(E)T

(
G; 1,

1

1− p
)
.

Evaluating the Tutte Polynomial 309

The family of hyperbolae Hα defined by

Hα = {(x, y) : (x− 1)(y − 1) = α}
seems to play a special role in the theory: for instance, the partition function of the Ising

model is an evaluation along H2, and along Hq , for any positive integer q, T specializes

to the partition function of the q-state Potts model. A whole host of other specializations

of T is contained in [5]. We are ready to state the main result of the paper.

Theorem 1.1. For any fixed k, there exists an algorithm A that will input any graph G, with

tree-width at most k, and rational numbers x = px/qx and y = py/qy , where both px and

qx, and py and qy are coprime, and evaluate the Tutte polynomial, T (G; x, y), using at most

O(f(k) · (n + M) · (n + m) · log(n + m) · log log(n + m) · l log l · log log l) operations, where

l = log(|px|+ |qx|+ |py|+ |qy|) and M is the largest size of a parallel class of edges.

Our result extends the work of Arnborg and Proskurowski [2], who gave a linear time

algorithm to calculate the reliability of a graph, and also that of Oxley and Welsh [7],

who gave a polynomial time algorithm for evaluating the Tutte polynomial for graphs of

restricted width, a class that includes series-parallel networks, that is, those graphs with

tree-width at most two. This contrasts with the situation for general graphs, where Jaeger,

Vertigan and Welsh [6] have shown that the Tutte polynomial is #P -hard to evaluate

except at a few special points and along one special curve, a result that can be extended

to bipartite planar graphs [9].

Suppose we write T (G; x, y) =
∑

i,j tijx
iyj . A problem motivated by our result is to find

an algorithm that will input any graph with tree-width at most k and output a list of the

coefficients tij . We show that an algorithm that does this must have running time ω(n3).

2. The algorithm

From here until the end of Section 2.3 we will assume that we are evaluating T at a

point (x, y) with x 6= 1. Later we show how to compute T along the line x = 1; the

method we give here does not work if x = 1 because it involves dividing by x−1. We first

give an informal illustration of the idea behind the algorithm. Suppose we have a graph

G = (V1 ∪ V2, E1 ∪ E2) with V1 ∩ V2 = X, E1 ∩ E2 = ∅, and such that any edge in Ei has

both end-points in Vi. We refer to a set X that occurs in this way as an intersecting set.

Now suppose that, for any partition, π, of X and any i and j, we know the number of

subsets A of E1 (E2) with rank i and cardinality j and satisfying ΠX(A) = π. We denote

this number by N1(π, i, j) (N2(π, i, j)). Using this information we can calculate N(π, i, j),

the number of subsets A of E1 ∪ E2 with rank i, cardinality j and satisfying ΠX(A) = π.

This is true because, if A = A1 ∪ A2 where A1 ⊆ E1 and A2 ⊆ E2, the rank of A depends

only on the rank of A1 and A2, and on ΠX(A1) and ΠX(A2) but not on the actual edges

of A1 and A2. More precisely,

r(A) = r(A1) + r(A2)− |X| − #ΠX(A) + #ΠX(A1) + #ΠX(A2).

310 S. D. Noble

This means that if π1 ∨ π2 = π then the number of sets A contributing to N(π, i, j) and

satisfying ΠX(A ∩ E1) = π1 and ΠX(A ∩ E2) = π2 is

i+I∑
i1=0

j∑
j1=0

N1(π1, i1, j1)N2(π2, i+ I − i1, j − j1),

where I = |X|+ #π − #π1 − #π2, and so

N(π, i, j) =
∑
(π1 ,π2)

:π1∨π2=π

i+I∑
i1=0

j∑
j1=0

N1(π1, i1, j1)N2(π2, i+ I − i1, j − j1),

where again I = |X|+ #π − #π1 − #π2.

Let x and y be fixed with x 6= 1, and suppose that, rather than knowing N1(π, i, j)

and N2(π, i, j) explicitly, we know the evaluation at the point (x, y) of certain polynomials

similar to the Tutte polynomial; that is, we are given

t1(π) =
∑

A⊆E1:ΠX (A)=π

(x− 1)−r(A)(y − 1)|A|−r(A)

=
∑
i,j

N1(π, i, j)(x− 1)−i(y − 1)j−i

and

t2(π) =
∑

A⊆E2:ΠX (A)=π

(x− 1)−r(A)(y − 1)|A|−r(A)

=
∑
i,j

N2(π, i, j)(x− 1)−i(y − 1)j−i,

and we wish to compute for each π ∈ Π(X)

t(π) =
∑

A⊆E1∪E2:ΠX (A)=π

(x− 1)−r(A)(y − 1)|A|−r(A).

Now, setting I = I(π1, π2) = |X|+ #π − #π1 − #π2, we have

t(π) =
∑
i,j

N(π, i, j)(x− 1)−i(y − 1)j−i

=
∑
i,j

N(π, i, j)
(
(x− 1)(y − 1)

)−i
(y − 1)j

=
∑
i,j

∑
(π1 ,π2)

:π1∨π2=π

∑
i1 ,j1

[
N1(π1, i1, j1)N2(π2, i+ I − i1, j − j1)

·((x− 1)(y − 1)
)−i

(y − 1)j
]

=
∑
(π1 ,π2)

:π1∨π2=π

∑
i,j,i1 ,j1

[
N1(π1, i1, j1)

(
(x− 1)(y − 1)

)−i1 (y − 1)j1

·N2(π2, i+ I − i1, j − j1)
(
(x− 1)(y − 1)

)(−i−I+i1)
(y − 1)j−j1

·((x− 1)(y − 1)
)I]

Evaluating the Tutte Polynomial 311

=
∑
(π1 ,π2)

:π1∨π2=π

∑
i1 ,j1 ,i2 ,j2

[
N1(π1, i1, j1)

(
(x− 1)(y − 1)

)−i1 (y − 1)j1

·N2(π2, i2, j2)
(
(x− 1)(y − 1)

)−i2 (y − 1)j2

·((x− 1)(y − 1)
)I]

=
∑
(π1 ,π2)

:π1∨π2=π

t1(π1)t2(π2)
(
(x− 1)(y − 1)

)(|X|+#π−#π1−#π2)
. (2.1)

What this rather messy calculation means is that we can calculate t from t1 and t2.

2.1. Graphs without parallel edges

We now show how the algorithm works for graphs without parallel edges, although we

allow up to one loop at each vertex.

Suppose that we are given G and a tree-decomposition ({Xi|i ∈ I}, T = (I, F)) of width

k such that T is a binary tree with root r and |I | 6 2n. We need to associate each edge of

G with a particular node of T . To do this we construct for each i ∈ I a set of edges Di such

that the sets Di are pairwise disjoint,
⋃
i∈I Di = E and {u, v} ∈ Di ⇒ {u, v} ⊆ Xi. We say

that Di is the set of edges inside Xi; in fact Di will be some subset of the edges induced by

Xi. There are many ways of constructing the Di and any of them will do. For any graph of

tree-width at most k, we can obtain one such construction in time O(m+n) just by assigning

edges greedily. For each i ∈ I we define Ei = {e ∈ Dj |j = i or j is a descendant of i} and

say that Ei is the set of edges inside Yi.

For each i ∈ I and each π ∈ Π(Xi), we define Ti(π) by

Ti(π) =
∑

(x− 1)−r(A)(y − 1)|A|−r(A),

where the sum is over all sets A satisfying A ⊆ Ei and ΠXi (A) = π, that is, all sets that

consist of edges inside Yi and that partition Xi into connected components given by π.

The algorithm computes all the set of values {Ti(π) : π ∈ Π(Xi)} for each i ∈ I working

upwards from the leaves of T to the root, r. For each i the values {Ti(π) : π ∈ Π(Xi)}
are calculated from the values for the children of i using exactly the type of calculation

outlined above.

Suppose that we want to calculate Ti where i is a node with two children j and k (this

is the harder case). At this stage we will know Tj(π) for all π ∈ Π(Xj) and Tk(π) for all

π ∈ Π(Xk). We now calculate, for each π ∈ Π(Xi), liftj(π) and liftk(π), where these are

given by

liftj(π) =
∑
A⊆Ej

:ΠXi
(A)=π

(x− 1)−r(A)(y − 1)|A|−r(A),

liftk(π) =
∑
A⊆Ek

:ΠXi
(A)=π

(x− 1)−r(A)(y − 1)|A|−r(A).

This is easy because liftj(π) will be zero if the vertices of Xi \ Xj are not present as

singleton blocks in π (there are no edges between vertices of Xi \Xj contained in Ej), and

312 S. D. Noble

otherwise

liftj(π) =
∑
πj

Tj(πj),

where the summation is over all partitions of Xj satisfying πj |(Xj ∩Xi) = π|(Xj ∩Xi).

We now calculate, for each π ∈ Π(Xi),

mixi(π) =
∑

A⊆Ej∪Ek
:ΠXi

(A)=π

(x− 1)−r(A)(y − 1)|A|−r(A).

This is done using the procedure outlined above and equation (2.1) using the functions

liftj and liftk in the roles of t1 and t2 and Xi as the intersecting set, so that

mixi(π) =
∑

(πj ,πk)

liftj(πj) liftk(πk)
(
(x− 1)(y − 1)

)(|Xi|+#πi−#πj−#πk)
, (2.2)

where the summation is over all pairs (πj, πk) such that πj, πk ∈ Π(Xi) and πj ∨ πk = π.

To compute Ti(π) we now just need to take account of the contribution from edges in Di,

that is, the edges inside Xi, so we set

coni(π) =
∑
A⊆Di

:ΠXi
(A)=π

(x− 1)−r(A)(y − 1)|A|−r(A). (2.3)

Finally, we compute Ti(π) for each partition π of Xi, using the same procedure as before

but with Xi as our intersecting set and coni and mixi in place of t1 and t2, so that

Ti(π) =
∑

(π′ ,π′′)
coni(π

′) mixi(π
′′)
(
(x− 1)(y − 1)

)(|X|+#π−#π′−#π′′)
, (2.4)

where the summation is over all pairs (π′, π′′) such that π′, π′′ ∈ Π(Xi) and π′ ∨ π′′ = π.

We now present the algorithm that carries out the calculations discussed above.

EVAL-TUTTE

input G, where G has tree-width 6 k, rational numbers x and y with x 6= 1, a tree-

decomposition {{Xi|i ∈ I}, T = (I, F)} of G with width k, and such that T is a binary tree

with specified root r, and also the partition {Di|i ∈ I}
let T ∗ = T

while T ∗ 6= ∅ do

let i be a leaf of T ∗
if i is a leaf of T

then call LEAF(i)

else if i has one child in T

then call ONE-CHILD(i)

else call TWO-CHILDREN(i)

Delete i from T ∗
let T (G; x, y) = (x− 1)r(E)

∑
π∈Π(Xr)

Tr(π)

Evaluating the Tutte Polynomial 313

proc LEAF(i)

while πi ∈ Π(Xi) do

let Ti(πi) =
∑

A(x− 1)−r(A)(y − 1)|A|−r(A)

where the summation is over all sets, A, of edges contained in Di
and satisfying ΠXi (A) = πi

proc ONE-CHILD(i)

let j be the child of i in T

while πi ∈ Π(Xi) do

if #πi 6= #(πi|(Xi ∩Xj)) + |Xi \Xj |
then let liftj(πi) = 0

else let liftj(πi) =
∑

πj
Tj(πj)

where the summation is over all partitions πj of Xj such that

πj |(Xi ∩Xj) = πi|(Xi ∩Xj)

while πi ∈ Π(Xi) do

let coni(πi) =
∑

A(x− 1)−r(A)(y − 1)|A|−r(A)

where the summation is over all sets of edges, A, that are subsets of

Di and satisfy ΠXi (A) = πi
while πi ∈ Π(Xi) do

let Ti(πi) =
∑

(π′ ,π′′) coni(π
′) liftj(π

′′)
(
(x− 1)(y − 1)

)(|X|+#πi−#π′−#π′′)

where the summation is over all pairs (π′, π′′) such that π′, π′′ ∈ Π(Xi)

and π′ ∨ π′′ = πi

proc TWO-CHILDREN(i)

let j and k be the children of i in T

while πi ∈ Π(Xi) do

while l ∈ {j, k} do

if #πi 6= #(πi|(Xi ∩Xl)) + |Xi \Xl |
then let liftl(πi) = 0

else let liftl(πi) =
∑

πl
Tl(πl)

where the summation is over all partitions πl of Xl such that

πl |(Xi ∩Xl) = πi|(Xi ∩Xl)

while πi ∈ Π(Xi) do

let mixi(πi) =
∑

(πj ,πk)
liftj(πj) liftk(πk)(

(x− 1)(y − 1)
)(|Xi|+#πi−#πj−#πk)

where the summation is over all pairs (πj, πk) such that πj, πk ∈ Π(Xi)

and πj ∨ πk = πi
while πi ∈ Π(Xi) do

let coni(πi) =
∑

A(x− 1)−r(A)(y − 1)|A|−r(A)

where the summation is over all sets of edges, A, that are subsets of

Di and satisfy ΠXi (A) = πi
while πi ∈ Π(Xi) do

314 S. D. Noble

let Ti(πi) =
∑

(π′ ,π′′) coni(π
′) mixi(π

′′)
(
(x− 1)(y − 1)

)(|X|+#πi−#π′−#π′′)

where the summation is over all pairs (π′, π′′) such that π′, π′′ ∈ Π(Xi)

and π′ ∨ π′′ = πi

We prove that the algorithm is correct by showing that for each i it calculates Ti
correctly: we do this by induction on the height of i in the tree T . If i is a leaf then it

is clear that the procedure LEAF sets Ti(π) to the correct value. Otherwise, equations

(2.2)–(2.4) in the discussion preceding the statement of the algorithm show that the

procedure TWO-CHILDREN computes Ti(π) correctly given Tj and Tk , where j and k

are the two children of i. Given that TWO-CHILDREN is correct, it is easy to see that

ONE-CHILD is correct because it is just the same as TWO-CHILDREN but omitting

the calculation of mix. Once we know Tr , the algorithm correctly computes the answer

by setting T (G; x, y) =
∑

π∈Π(Xr)
(x− 1)r(E)Tr(π).

2.2. Parallel edges

The algorithm given above will return the correct answer for graphs with parallel edges

but may not be efficient. With the definition as above it is possible that, for some i, |Di|
could be very large and not bounded by a function of k, and so the number of operations

needed to compute a sum over all subsets of Di may no longer be polynomially bounded

in the size of the input graph. We extend the construction of the sets Di to graphs

with parallel edges by stipulating that
⋃
i∈I Di contains precisely one edge from each

parallel class, that is, a maximal set of edges all of which are in parallel with each other.

The other conditions, namely that the sets Di are pairwise disjoint and for all u and v

{u, v} ∈ Di ⇒ {u, v} ⊆ Xi, remain the same. We say a set A is represented in Di if for each

e ∈ A, either e ∈ Di or Di contains an edge in parallel with e and denote this by A � Di.
We let m(e) be the size of the parallel class containing e.

The only problem comes when we compute con and leaf. Computing these two functions

involves exactly the same calculation, so we only show how to modify con. Now,

coni(π) =
∑
A�Di

:ΠXi
(A)=π

(x− 1)−r(A)(y − 1)|A|−r(A)

but, as we noted, this summation may be too large to compute efficiently. However,

coni(π) =
∑
A⊆Di

:ΠXi
(A)=π

∑
(B1 ,...,B|A|)

(x− 1)−r(A)(y − 1)|B1|+···+|B|A| |−r(A),

where if A = {e1, . . . el} then the inner summation is over all l-tuples (B1, . . . Bl) such that,

for all j, Bj is nonempty and contained in the parallel class containing ej . If y 6= 1 then

coni(π) =
∑
A⊆Di

:ΠXi
(A)=π

(
(x− 1)(y − 1)

)−r(A)
∏
e∈A

(ym(e) − 1),

and if y = 1 then

coni(π) =
∑
A⊆Di

:ΠXi
(A)=π,|A|=r(A)

(x− 1)−r(A)
∏
e∈A

m(e).

Evaluating the Tutte Polynomial 315

To avoid having to calculate yj repeatedly for the same value of j, we can compute the

set {y, y2, . . . , yM}, where M = maxe∈E m(e), before running the algorithm.

2.3. Complexity

Here we calculate an upper bound on the running time of our algorithm. We denote by

t(n, m, k, x, y,M) the maximum number of operations needed to evaluate T (G; x, y) when

G is a graph with n vertices, tree-width at most k, m edges and such that the maximum

size of any parallel class is M. We let α(n, m, k, x, y,M) be the maximum time needed for

one multiplication or addition during the evaluation of T (G, x, y). There are four stages

of preprocessing.

(1) Finding a tree-decomposition of width at most k which can be done in time O(f(k) ·n)
using the algorithm given in [3].

(2) Constructing a tree-decomposition where T is a binary tree that requires time O(nk).

(3) Computing the partition {Di : i ∈ I} that requires time O(m+ n).

(4) Computing the numbers {y, y2, . . . , yM}. The number of operations required for this

stage is O(Mα(n, m, k, x, y,M)).

If π1 is a partition of X1 and π2 is a partition of X2 where max{|X1|, |X2|} = l, then

deciding whether π1 = π2 and computing π1∨π2 both require O(l2) operations. Computing

ΠX(A) where A is a set consisting of edges with both end-points in X and at most one

member from each parallel class takes time O(|X|3). Recall that B(k) denotes the kth Bell

number, that is, the number of distinct partitions of a set of size k.

Because |I | 6 2n, the number of operations needed for the main part of the algorithm,

that is, omitting the preprocessing, is O(nt′(n, m,N, k, x, y)), where t′ is the maximum time

required for one call to the procedure TWO-CHILDREN.

The procedure TWO-CHILDREN consists of the following four stages.

(1) Calculation of liftj and liftk , for which we need time O
(
(B(k + 1))2(k2 + α)

)
.

(2) Evaluating mix takes time O
(
(B(k + 1))3(k2 + kα)

)
.

(3) The computation of con needs O
(
B(k + 1)2(k+1)2

(k3 + k2α)
)
.

(4) The final stage requires O
(
(B(k + 1))3(k2 + kα)

)
.

This gives a total time for a call to TWO-CHILDREN of O
(
(B(k + 1))3 · 2(k+1)2 · α).

Finally, we need to compute the maximum time for one arithmetical operation. To

add, subtract, multiply or divide two l-bit integers takes O(l log l log log l) operations [1].

lift, con, mix, Ti are of the form
∑

A∈A(x− 1)−r(A)(y − 1)(|A|−r(A)), where A is a subset of

power-set of E and so the numbers involved in the calculations are either of this form or(
(x− 1)(y − 1)

)j
, where 0 6 j 6 2k + 2, or yj , where 0 6 j 6M. Now suppose x = px/qx

and y = py/qy , where px, qx, py and qy are integers such that px and qx are coprime, and

py and qy are coprime. Note that px 6= qx since x 6= 1. Now,∑
A∈A

(x− 1)−r(A)(y − 1)(|A|−r(A))

=
∑
A∈A

(
px − qx
qx

)−r(A)(
py − qy
qy

)(|A|−r(A))

316 S. D. Noble

=
∑
A∈A

(

(px−qx)
qx

)(r(E)−r(A)) (
(py−qy)
qy

)(|A|−r(A))

(
(px−qx)
qx

)r(E)

=

∑
A∈A

(
(px − qx)r(E)−r(A)qr(A)

x (py − qy)(|A|−r(A))q
(m−|A|+r(A))
y

(px − qx)r(E)qmy

)
.

Considering the denominator, we have (px − qx)r(E)qmy 6 (|px| + |qx|)n|qy|m, and for the

numerator, we have∑
A∈A

(px − qx)r(E)−r(A) · qr(A)
x · (py − qy)(|A|−r(A)) · q(m−|A|+r(A))

y

6
∑
A⊆E
|px − qx|r(E)−r(A) · |qx|r(A) · |py − qy|(|A|−r(A)) · |qy|m

6 T (G; |px − qx|+ 1, |py − qy|+ 1) · |qx|r(E) · |qy|m
6 (|px|+ |qx|+ |py|+ |qy|+ 2)m · |qx|n · |qy|m.

The penultimate inequality follows because T (G) =
∑

A⊆E(x−1)r(E)−r(A)(y−1)|A|−r(A), and

the final one is obtained using equations (4.1)–(4.3) and induction on the number of edges

of the graph. This means that an upper bound on the modulus of any of the numbers

occurring in the denominator or numerator of numbers used in the calculations is

(|px|+ |qx|+ |py|+ |qy|+ 2)(n+2m+2k+2).

The calculations within the main part of the algorithm all give quantities of the form∑
A∈A(x − 1)−r(A)(y − 1)|A|−r(A), where A is a subset of the power-set of E, and so

we can avoid problems arising due to the numerator and denominator having a large

common factor and thus becoming large themselves, because we can reduce the fraction

with 2 integer divisions so that the denominator is |px − qx|r(E)|qy|m. We have shown that

α(n, m, k, x, y,M) 6 s log s log log s, where s = (n+2m+2k+2) log(|px|+ |qx|+ |py|+ |qy|+2),

and so the running time for the main part of the algorithm is O
(
n(B(k+ 1))3 · 2(k+1)2 · (n+

m + k) · log(|px| + |qx| + |py| + |qy|) · log s · log log s
)
, and the running time for the whole

algorithm is

O (f(k) · (n+M) · (n+ m) · log(n+ m) · log log(n+ m) · l log l · log log l) ,

where l = log(|px|+ |qx|+ |py|+ |qy|).
Suppose the input graph has no parallel edges and G has tree-width k. By increasing

the size of some of the Xi if necessary, it is possible to show that there exists a tree-

decomposition for G such that, for each i, |Xi| = k + 1. By adding extra vertices to T we

can construct a tree-decomposition ({Xi|i ∈ I}, T = (I, F)) for G such that T is rooted,

for all i ∈ I , |Xi| = k and, for any edge {i, j} of T , |Xi∩Xj | = k. If our tree-decomposition

satisfies both these conditions and G has n vertices, then I = n − k. There are at most

k(k + 1)/2 + (k + 1) edges between vertices in the root of T and for any other node i of

T there is precisely one vertex that does not appear in any ancestor of i in T , and hence

between the vertices of Xi there are at most k + 1 edges that have not been previously

Evaluating the Tutte Polynomial 317

counted for an ancestor of Xi. Therefore, the total number of edges is at most

(|I | − 1)(k + 1) + k(k + 1)/2 + (k + 1) =
(k + 1)(2n− k)

2
,

so if the input graph has no parallel edges the total running time is at most

O
(
f(k) · n2k · log(nk) · log log(nk) · l log l · log log l

)
.

3. Case x = 1

The algorithm given above will not work when x = 1 because it will try to divide by 0.

To avoid this problem, we use much the same notation as before but assume without loss

of generality that our input graph is connected and for the moment has no parallel edges,

although as before we allow up to one loop at each vertex. We define T ′i (π) by

T ′i (π) =
∑
A

(y − 1)|A|−r(A),

where the summation is over sets A of edges contained in Ei, and such that each vertex

of Yi is connected to a vertex of Xi in the graph G|A. We note that an isolated vertex in

Xi is connected to a vertex in Xi since it is connected to itself. The modified algorithm

calculates T ′i (π) for all π and for each i working upwards from the leaves to the root.

We first give the algorithm and then show that it is correct.

EVAL-TUTTE′

input G where G is connected and has tree-width 6 k, a rational number y and a tree-

decomposition {{Xi|i ∈ I}, T = (I, F)} of G with width k, and such that T is a binary tree

with specified root r, and also the partition {Di|i ∈ I}
let T ∗ = T

while T ∗ 6= ∅ do

let i be a leaf of T ∗
if i is a leaf of T

then call LEAF′(i)
else if i has one child in T

then call ONE-CHILD′(i)
else call TWO-CHILDREN′(i)

Delete i from T ∗
let T (G; 1, y) = Tr(π) where π ∈ Π(Xr) and #π = 1

proc LEAF′(i)
while πi ∈ Π(Xi) do

let Ti(πi) =
∑

A(y − 1)|A|−r(A)

where the summation is over all sets, A, of edges contained in Di and

satisfying ΠXi (A) = πi

318 S. D. Noble

proc ONE-CHILD′(i)
let j be the child of i in T

while πi ∈ Π(Xi) do

if #πi 6= #(πi|(Xi ∩Xj)) + |Xi \Xj |
then let lift′j(πi) = 0

else let lift′j(πi) =
∑

πj
T ′i (πj)

where the summation is over all partitions πj of Xj such that

πj |(Xi ∩Xj) = πi|(Xi ∩Xj) and every block of πj contains at

least one vertex of Xi

while πi ∈ Π(Xi) do

let con′i(πi) =
∑

A(y − 1)|A|−r(A)

where the summation is over all sets of edges, A, that are subsets of

Di and satisfy ΠXi (A) = πi
while πi ∈ Π(Xi) do

let T ′i (πi) =
∑

(π′ ,π′′) con′i(π′) lift′j(π′′)(y − 1)(|X|+#πi−#π′−#π′′)

where the summation is over all pairs (π′, π′′) such that π′, π′′ ∈ Π(Xi)

and π′ ∨ π′′ = πi

proc TWO-CHILDREN′(i)
let j and k be the children of i in T

while πi ∈ Π(Xi) do

while l ∈ {j, k} do

if #πi 6= #(πi|(Xi ∩Xl)) + |Xi \Xl |
then let lift′l(πi) = 0

else let lift′l(πi) =
∑

πl
T ′i (πl)

where the summation is over all partitions of Xl such that

πl |(Xi ∩Xl) = πi|(Xi ∩Xl) and each block of πl contains at

least one vertex of Xi

while πi ∈ Π(Xi) do

let mix′i(πi) =
∑

(πj ,πk)
lift′j(πj) lift′k(πk)(y − 1)(|Xi|+#πi−#πj−#πk)

where the summation is over all pairs (πj, πk) such that πj, πk ∈ Π(Xi)

and πj ∨ πk = πi
while πi ∈ Π(Xi) do

let con′i(πi) =
∑

A(y − 1)|A|−r(A)

where the summation is over all sets of edges, A, that are subsets of

Di and satisfy ΠXi (A) = πi
while πi ∈ Π(Xi) do

let T ′i (πi) =
∑

(π′ ,π′′) con′i(π′) mix′i(π′′)(y − 1)(|X|+#πi−#π′−#π′′)

where the summation is over all pairs (π′, π′′) such that π′, π′′ ∈ Π(Xi)

and π′ ∨ π′′ = πi

We consider the operation of the procedure TWO-CHILDREN′. Suppose we want to

compute T ′i (π), where i is a node with two children j and k, and we know T ′j and T ′k . We

Evaluating the Tutte Polynomial 319

first compute for all π ∈ Π(Xi), lift′j(π) and lift′k(π), where lift′j is given by

lift′j(π) =
∑
A

(y − 1)|A|−r(A),

where the summation is over all those sets A contained in Ej such that ΠX(A) = π, and

each vertex of Yj is connected to a vertex of Xi in G|A; lift′k is defined analogously. If the

vertices of Xi \ Xj are not present as singleton blocks in π, then lift′j(π) will be zero and

otherwise

lift′j(π) =
∑
πj

T ′j (πj),

where the summation is over those partitions of Xj satisfying πj |(Xi∩Xj) = π|(Xi∩Xj) and

such that each block of πj contains a vertex of Xi. This last restriction is needed to ensure

that lift′j is a sum over subsets, A, of Ej such that every vertex of Yj is connected in G|A
to a vertex of Xi rather than just to a vertex of Xj . The procedure TWO-CHILDREN′

next calculates mix′i, which is given by

mix′i(π) =
∑
A

(y − 1)|A|−r(A),

where the summation is over all subsets, A, of Ej ∪ Ek such that ΠXi (A) = π, and every

vertex of Yj ∪ Yk is connected to a vertex of Xi. To find an expression for mix′ in terms

of lift′ we have to modify equation (2.1).

Suppose we have a graph G = (V1 ∪ V2, E1 ∪ E2) with V1 ∩ V2 = X, E1 ∩ E2 = ∅, and

such that any edge in Ei has both end-points in Vi. For each π ∈ Π(X) and for each

i ∈ {1, 2}, we define

ti(π) =
∑
A

(y − 1)|A|−r(A),

where the summation is over subsets A of Ei satisfying ΠX(A) = π, and such that every

vertex of Vi is connected to a vertex of X. Now let t(π) be given by

t(π) =
∑
A

(y − 1)|A|−r(A),

where the summation is over all subsets A of E1 ∪ E2 that satisfy ΠX(A) = π, and such

that every vertex of V1 ∪ V2 is connected to a vertex of X. By modifying the argument

preceding equation (2.1) it is possible to show that

t(π) =
∑
(π1 ,π2)

:π1∨π2=π

t1(π1)t2(π2)(y − 1)(|X|+#π−#π1−#π2).

This means that we can calculate mix′i and T ′i from lift′j and lift′k using this equation,

just as in the main algorithm we could calculate mixi and Ti using equation (2.1).

The procedure LEAF′ is the same as LEAF and the procedure ONE-CHILD′ is

the same as TWO-CHILDREN′ omitting the calculation of mix′ just as in the main

algorithm. The final stage of the algorithm sets T (G; 1, y) = Tr(π), where π is the

partition of Xr containing all the vertices of Xr in one block. This is correct since

T (G; 1, y) =
∑

A(y − 1)|A|−r(A), where the summation is over all those subsets A of E such

that G|A is connected, and we assumed initially that G was connected.

320 S. D. Noble

Exactly the same modification as that for the main algorithm must be made to cope

with non-simple graphs. The running time for this algorithm satisfies the bound given for

the main algorithm.

4. Computing T

We can write the Tutte polynomial in the form

T (G; x, y) =
∑
i,j

tijx
iyj .

A natural problem to consider is that where we input a graph of tree-width at most k

and output the list of coefficients tij . In contrast with the problem of evaluating T , this

problem has complexity ω(n3).

It is easy to construct a family of graphs {Gr} with tree-width k such that there are

ω(n2) coefficients exceeding 2ω(n), and hence ω(n3) time is required to list the coefficients.

One way to do this is to take a complete graph on k vertices v1, . . . , vk and add vertices

vk+1, . . . , vk+r so that each one is connected by a single edge to each of v1, . . . , vk and now

add vertices vk+r+1, . . . , vk+2r so that, for each s with k+ r+ 1 6 s 6 k+ 2r, vs is connected

to v2, . . . , vk and vs−r by a single edge. T can be calculated using the following well-known

recurrence relations. If e is an isthmus of G then

T (G; x, y) = xT (G/e; x, y), (4.1)

if e is a loop then

T (G; x, y) = yT (G \ e; x, y), (4.2)

and if e is neither a loop nor an isthmus then

T (G; x, y) = T (G \ e; x, y) + T (G/e; x, y). (4.3)

We can examine the size of the coefficients of T (G) by ordering the edges and considering

the binary tree where each node is labelled with a graph obtained when (4.1)–(4.3)

are applied recursively. The root is labelled with G, and if a node is labelled with H

then, providing H has at least one edge, the children of H correspond to the graphs

obtained from H by deleting and contracting the lexicographically first edge, e, remaining,

providing e is neither a loop nor an isthmus. If e is a loop (isthmus) then H has one

child corresponding to deleting (contracting) e. The leaves correspond to graphs with

k(G) vertices and no edges, and each leaf also corresponds to a term in the expansion of

T (G). If in obtaining a leaf L from G we contract i isthmuses and delete j loops, then L

corresponds to a term xiyj .

Now consider Gr . We order the edges so that if i < j those edges adjacent to vi+k and

vi+k+r come before those adjacent to vj+k and vj+k+r , and the edges of the Kk come last.

The edges adjacent to vi+k and vi+k+r are ordered so that

{vi+k, vi+k+r} ≺ {vk, vi+k+r} ≺ · · · ≺ {v2, vi+k+r} ≺ {vk, vi+k} ≺ · · · ≺ {v1, vi+k},
where e ≺ f means that edge e precedes f. It is easy to see there are ways of deleting

or contracting the edges adjacent to vk+1 and vk+r+1 in order that the rest of the graph

Evaluating the Tutte Polynomial 321

is unchanged, and we have either deleted one loop, contracted one isthmus or neither. In

other words there are nodes at depth 2k in the binary tree defined above which correspond

to G : (V (G)\{vr+k, v2r+k}) and are reached by deleting one loop or contracting one isthmus

or neither. Similarly, for any i we can delete and contract the edges adjacent to vk+i and

vk+r+i so that we delete one loop, contract one isthmus or neither and leave the Kk

intact. We can delete and contract the Kk so that we contract one isthmus and delete no

loops. This means that the coefficient of xi+1yj is at least r!/(i!j!(r − i − j)!) and so, if

br/4c 6 i, j 6 br/2c, this coefficient is at least 4br/4c.
This means that the running time of an algorithm to list all the coefficients of T must

be ω(n3) because it takes this long to write them out, and hence, even when we restrict our

input graphs to have tree-width at most k, more time is needed to list the coefficients of

T than to evaluate it at a point. One approach to this problem is to evaluate T at several

points using our algorithm and then use Lagrangian interpolation to find the coefficients.

5. Conclusion

As we mentioned in the introduction, evaluations of the Tutte polynomial correspond to

a wide variety of counting problems. In the case where the input graph has tree-width

at most k, algorithms for some of these problems already exist: see, for example, [2]. We

have shown that, for any of these problems, if we restrict the input to graphs of tree-width

at most k, for any fixed k, then there is a polynomial time algorithm. The methods we use

can be extended to the Tutte polynomial on signed graphs and the polymatroid (E, f),

where E is the edge set of a graph G, and for any subset A of E, f(A) is the number of

vertices incident with an edge from A. This polymatroid is described in [8].

References

[1] Aho, A. V., Hopcroft, J. and Ullman, J. D. (1974) The Design and Analysis of Computer

Algorithms. Addison Wesley, Reading, MA, USA.

[2] Arnborg, S. and Proskurowski, A. (1989) Linear time algorithms for NP-hard problems re-

stricted to partial k-trees. Discrete Appl. Math. 23 11–24.

[3] Bodlaender, H. L. (1993) A linear time algorithm for finding tree-decompositions of small

treewidth. In Proc. 25th Annual ACM Symposium on the Theory of Computing. ACM Press, pp.

226–234.

[4] Bodlaender, H. L. (1993) A tourist guide through treewidth. Acta Cybernet. 11 1–21.

[5] Brylawski, T. H. and Oxley, J. G. (1992) The Tutte polynomial and its applications. In Matroid

Applications (N. White, ed.), Cambridge University Press, Cambridge, pp. 123–225.

[6] Jaeger, F., Vertigan, D. and Welsh, D. (1990) On the computational complexity of the Jones

and Tutte polynomials. Math. Proc. Cam. Phil. Soc. 108 35–53.

[7] Oxley, J. G. and Welsh, D. J. A. (1992) Tutte polynomials computable in polynomial time.

Discrete Math. 109 185–192.

[8] Oxley, J. G. and Whittle, G. P. (1993) Tutte invariants for 2-polymatroids. In Graph Structure

Theory (N. Robertson and P. D. Seymour, eds), AMS, in Contemporary Mathematics 147 pp.

9–19.

[9] Vertigan, D. and Welsh, D. J. A. (1992) The computational complexity of the Tutte plane: the

bipartite case. Comb. Prob. Comp. 1 181–187.

