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Abstract

In this paper a globally convergent first—order training algorithm is proposed that
uses sign—based information of the batch error measure in the framework of the
nonlinear Jacobi process. This approach allows us to equip the recently proposed
Jacobi-Rprop method with the global convergence property, i.e. convergence to a
local minimiser from any initial starting point. We also propose a strategy that
ensures the search direction of the globally convergent Jacobi—Rprop is a descent
one. The behaviour of the algorithm is empirically investigated in eight benchmark
problems. Simulation results verify that there are indeed improvements on the con-
vergence success of the algorithm.
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1 Introduction

Nowadays, artificial neural networks are vital components of many systems
and are considered powerful tool for pattern classification [5,11]. The vast ma-
jority of artificial neural network solutions have been trained with supervision.

In this context, the training phase is one of the most important stages for
the neural network to function properly and achieve good performance. In
supervised learning the desired outputs are supplied by a “teacher” and the
network is being forced into producing the correct outputs by adjusting the
weights iteratively, in order to globally minimize a measure of the difference
between its actual output and the desired output for all examples in a training
set [10]. Finding the global minimum is a difficult task in neural networks due
to their complex objective functions, the so—called error function [10,27].

Back-Propagation (BP) [27] is a popular training algorithm, which minimizes
the error function by updating the weights w using the steepest descent
method [4]:

Wt = wh —VEW"), k=0,1,2,... (1)

where F is the batch error measure defined as the Sum—of-Squared—differences
Error function (SSE) over the entire training set, while VE denotes the gra-
dient of E. The parameter 7 is a heuristic, called step-size.

Choosing the right value for the step—size is very important as it has an impact
on the training speed, the success of the learning process and the quality of
the results produced by the network. First—order algorithms with individual
adaptive step—sizes provide dynamic tuning of the step—size using adaptation
techniques that are able to handle the trade off between maximising the length
of the step—size and reducing oscillations [16,17]. A variety of approaches that
use second derivative related information to accelerate the learning process
have been proposed for small to medium size networks [4,15,18,33].

An inherent difficulty with first—order and second—order learning schemes is
convergence to local minima. While some local minima can provide acceptable
solutions, they often result in poor network performance. This problem can be
overcome through the use of global optimization at the expense of an increase
in the computational cost, particularly for large networks [7,21,22,30].

In this paper we focus on sign-based training schemes. Among these the Re-
silient propagation (Rprop) algorithm proposed by Riedmiller and Braun [24—
26] is widely used and performs very well in pattern classification tasks. Rprop



takes into account only the sign of the derivative to indicate the direction of
the weight update. The effectiveness of Rprop in practical applications has
motivated the development of several variants with the aim to improve the
convergence behavior and effectiveness of the original method. Recently a mod-
ification of the Rprop, the so—called Jacobi-Rprop (JRprop) method has been
proposed [2,3]. Empirical evaluations of JRprop gave good results, showing
that JRprop outperforms in several cases the Rprop and Conjugate Gradi-
ent algorithms [3]. This paper proposes a globally convergent JRprop-based
learning scheme and derives a theoretical justification for its development.

This paper is organized as follows. First, we give a brief outline of the theoret-
ical background behind the Jacobi-Rprop algorithm. Next, the new globally
convergent algorithms is presented and a theoretical result that justifies its
convergence is derived. Then we conduct an empirical evaluation of the new
algorithm by comparing it with the classic Rprop, and the recently proposed
JRprop [2,3]. Finally our results are discussed and conclusions are drawn.

2 The Composite Jacobi—Bisection Algorithm

In order to provide a complete view of the proposed approach we briefly de-
scribe in this section the composite Jacobi-Bisection method [2,3] that pro-
vides the basis for the development of the globally convergent JRprop. The
idea is to combine “individual” information about the error surface, described
by the sign of the partial derivative of the error function with respect to a
weight, with more “global” information from the magnitude of the network
learning error, in order to decide for each weight individually whether or not
to reduce, or even revert, a step.

Following the nonlinear Jacobi prescription, one-dimensional subminimization
is applied along each weight direction in order to compute a minimizer of an
objective function f : D C R™ — R [32]. More specifically, starting from an
arbitrary initial vector 2° € D, one can subminimize at the kth iteration the
function f(zf,... ,aF |, z;, 2%, ..., zF), along the ith direction and obtain
the corresponding subminimizer z;. Obviously for the subminimizer z; holds
that:

8¢f(:clf,... ,xfﬁl,j:i,xfﬂ,... ,a:k):(), (2)

where 0, f(z1,...,2;, ... ,2,) denotes the partial derivative of f with respect
to the ith coordinate. This is a one-dimensional subminimization because all
the components of the vector z*, except from the ith component, are kept



constant. Then the ith component is updated according to:
o™ = i + (@i - ), (3)

for some relaxation factor 7. The objective function f is subminimized in
parallel for all .

In neural network training we have to minimize the batch error function F
with respect to each one of the weights w;;. Let us assume that along a weight’s
direction an interval is known which brackets a local minimum w;;. When the
gradient of the error function is available at the endpoints of the interval
of uncertainty along this weight direction, it is necessary to evaluate function
information at an interior point in order to reduce this interval. This is because
it is possible to decide if between two successive iterations (k) and (k — 1)
the corresponding interval brackets a local minimum simply by looking the
function values E(k—1), E(k) and gradient values 0E(k—1)/0w;;, OE(k)/0w;;
at the endpoints of the considered interval (see [28] for a general discussion
on the problem). The conditions that have to be satisfied are [28, pp.34-35]:

OE(S)) <0 and OE(S:) > 0,

8wij 8?1)@‘

OE(S) ) and B(S) < E(Sy). (4)
8’11)7;]'

IE(S1) OE(S,)

Jw, > (0 and P, > 0 and E(S;) > E(S),

where & and Sy determine the sets of weights for which the coordinate that
corresponds to the weight w;; is replaced by a; = min{w;;(k — 1), w;;(k)}, and
b; = max{w;;(k — 1), w;;(k)} correspondingly. Notice that, at this instance,
between two successive iterations (k — 1) and (k) all the other coordinate
values remain the same. The above three conditions lead to the conclusion
that the interval [a;, b;] includes a local subminimizer along the direction of
weight w;;. A robust method of interval reduction called bisection can now be
used. We will consider here the bisection method which has been modified to
the following version described in [31]:

warl = w? + h; Sigﬂ(@iE<wp)) /2p+1’ (5)

where p = 0,1, ... is the number of subminimization steps, 0;F denotes the
partial derivative of E with respect to the ith coordinate and w) = a;; h; =
sign (0;E(w?)) (b; — a;); w? determines the weight at the (k — 1) iteration
while w? is obtained by replacing the coordinate of w® that corresponds to the
weight w;; by w! and sign defines the well known triple valued sign function. Of
course, the iterations (5) converge to w; € (a;, b;) if for some w?, p=1,2,...,



the first one of the conditions (4) holds. In this case, the bisection method
always converges with certainty within the given interval (a;, b;).

The reason for choosing the bisection method is that it always converges within
the given interval (a;, b;), as mentioned above, and it is a globally convergent
method. Also, the number of steps of the bisection method that are required for
the attainment of an approximate minimizer w; of Eq. (2) within the interval
(a;, b;) to a predetermined accuracy ¢ is known beforehand and is given by

v = [log,[(bi — a;) 7] . (6)

Moreover it has a great advantage since it is worst-case optimal, i.e. it possesses
asymptotically the best possible rate of convergence in the worst-case [29].
This means that it is guaranteed to converge within the predefined number
of iterations and moreover, no other method has this property. Therefore,
using the value of v of Relation (6) it is easy to know in advance the number
of iterations necessary to approximate a minimizer w; to a specified degree
of accuracy. Finally, it requires only the algebraic signs of the values of the
gradient to be computed.

A theoretical result that ensures local convergence of the Jacobi-Bisection
algorithm is presented in [3]. Below, we will focus on an composite one—step
Jacobi-Bisection method which exhibited very good performance in our tests
reported in [3].

3 The Globally Convergent JRprop

The term global convergence is used in our context in a similar way as in
Dennis and Schnabel [8, p.5] “to denote a method that is designed to con-
verge to a local minimizer of a nonlinear function, from almost any starting
point”. Dennis and Schnabel also note that “it might be appropriate to call
such methods local or locally convergent, but these descriptions are already re-
served by tradition for another usage”. Moreover, Nocedal, [20, p.200], defines
a globally convergent algorithm as an algorithm with iterates that converge
from a remote starting point. Thus, the notion of global convergence is totally
different from global optimisation [30]. To this end, equipping JRprop with the
global convergence property will ensure the algorithm will globally converge
to a local minimum starting from any initial condition.

First let us recall some concepts from the theory of unconstrained minimiza-
tion. Suppose that (i) f: D C R® — R is the function to be minimized and f
is bounded below in R™; (ii) f is continuously differentiable in a neighborhood
N of the level set £ = {z : f(x) < f(2°)}, and (iii) the gradient of f, Vf



is Lipschitz continuous on R™ that is there exists a Lipschitz constant L > 0
such that [|[Vf(z) — Vf(y)|| < L||lz — yl|, Vz,y,€ N, and z° is the starting
point of the following iterative scheme

aft = oF 4 7Rk, (7)

where d* is the search direction and 7% > 0 is a step-length obtained by means
of a one-dimensional search.

Convergence of the general iterative scheme (7) requires that the search direc-
tion d* satisfies the condition V f(w”)"d* < 0, which guarantees that d* is a
descent direction of f(x) at z*. The step-length 7% in (7) can be determined
by means of a number of rules, such as the Armijo’s rule [8], the Goldstein’s
rule [8], or the Wolfe’s rule [34], and guarantees the convergence in certain
cases. For example, when the step—length is obtained through Wolfe’s rule [34]

o7V f(2F) TP, (8)

fa® +7hd") — f(a*) <
"> opV () d", (9)

Vf(* 4+ mhd*)Td

where 0 < 07 < 09 < 1, then a theorem by Wolfe [34] is used to obtain
convergence results. Moreover, the Wolfe’s Theorem suggests that if the cosine
of the angle between the search direction d* and —V f(z¥), is positive then

Jim [V f(24)| =0, (10)

which means that the sequence of gradients converges to zero [8,20]. For an
iterative scheme (7), the limit (10) is the best type of global convergence
result that can be obtained (see [20] for a detailed discussion). Evidently, no
guarantee is provided that (7) will converge to a global minimiser, z*, but only
that it possesses the global convergence property, [8,20], to a local minimiser.

In batch training, when the batch error measure is defined as the Sum-of-
Squared—differences Error function E over the entire training set, the error
function F is bounded from below, since E(w) > 0. For a given training set
and network architecture, if a w* exists such that F(w*) = 0, then w* is a
global minimiser; otherwise, w with the smallest F(w) value is considered a
global minimiser. Also, when using smooth enough activations (the derivatives
of at least order p are available and continuous), such as the well known
hyperbolic tangent, the logistic activation function etc., the error E is also
smooth enough.

Based on the above we proceed with the following convergence result for the
JRprop’s scheme.

Theorem 1: Suppose that for the error function E conditions (i)-(iii) are



fulfilled. Then, for any w® € R™ and any sequence {w*}?°, generated by the
JRprop’s scheme

U)k—H = wk — Tk dlag{nﬁ ce ,77?, T 7777]2} Sign <VE(wk)) ’ (11)

where sign(V E(w")) denotes the column vector of the signs of the components
of VE(w*) = (0, E(w*), 0, E(w"),... 0, E(w")), 7% > 0 satisfies the Wolfe’s
conditions (8)—(9), n* (m =1,2,... ,i—1,i+1,... ,n) are small positive real
numbers generated by the JRprop learning rates’ schedule:

if Ew") < E(w")

if (8mE(wk_1) O B (w*) > 0) then 7" = min {nfn_l nt, Amax} (12)
it (0,E(w ) 0, E(w") <0) then n% =max {5 5, Ay} (13)
if (&nE(wk_l) OmE(w®) =0) then nf =nk-t (14)

}

where 0 < 7~ < 1 < n™, ALa is the learning rate upper bound, A, is the
learning rate lower bound, and

0 <0< oo, OE(w*) # 0, (15)
holds that limy . [|[VE(w®)|| = 0.

Proof: Evidently, E is bounded below on R™. The sequence {w*}?°, generated
by the iterative scheme (11) follows the direction

d* = —diag{nf,... ,nf, ... ,nf}sign (VE(@")),

which is a descent direction if n*, where m = 1,2,... i — 1,i +1,... ,n,
are positive real numbers derived from Relations (12)—(14), and n¥ is given
by Relation (15), since VE(w*)"d* < 0. Following the proof of [32, Theorem
6], since d* is a descent direction and E is continuously differentiable and
bounded below along the radius {w* + 7d* | 7 > 0}, then there always exist
7* satisfying Relations (8)—(9) [8,20]. Moreover, the Wolfe’s Theorem [8,20]
suggests that if the cosine of the angle between the descent direction d* and

the —VE(wk) is positive then limy . [[VE(w*)|] = 0. In our case, indeed
_VE@HTE g
IVE(w?)][[[|d*| '

cosf), =
The Globally convergent modification of the JRprop, named GJRprop, is im-
plemented through Relations (11)—(15). It is also important to mention that
in case of an error increase then the corresponding weight update procedure
of JRprop, descibed in [3], is adopted. The role of § is to alleviate problems



with limited precision that may occur in simulations, and should take a small
value proportional to the square root of the relative machine precision. In our
tests we set & = 107% in an attempt to test the convergence accuracy of the
proposed strategy. Also 7% = 1 for all k allows the minimisation step along
the resultant search direction to be explicitly defined by the values of the local
learning rates (n¥,... ,n¥ ... n¥). The length of the minimisation step can
be regulated through 7% tuning to satisfy Conditions (8)—(9). Checking Con-
dition (9) at each iteration requires additional gradient evaluations; thus, in
practice Condition (9) can be enforced simply by placing the lower bound on
the acceptable values of the learning rates [17, p.1772], i.e. Apin.

4 Empirical Study

In this section, we evaluate the performance of the GJRprop, and compare
it with the JRprop and the Rprop algorithms. We have used well-studied
problems from the UCI Repository of Machine Learning Databases of the
University of California [19], as well as problems studied extensively by other
researchers, such as the parity—/N problems that possess strong local minima
and stationary points. Literature suggests standard neural architectures for
these problems so it helps us to reduce as much as possible biases introduced
by the size of the weights space. In all cases we have used networks with
classic logistic activations. Below, we report results from 150 independent
trials. These 150 random weight initializations are the same for all the learning
algorithms. In all cases we have used networks with sigmoid hidden and output
nodes, and adopted the notation I-H-O to denote a network architecture with
I inputs, H hidden layer nodes and O outputs nodes.

For the UCI problems, cancerl, diabetesl, thyroidl, and E.coli, we have used
the data sets as supplied on the PROBEN1 website [23]. PROBEN1 provides
explicit instructions for generating training and test sets, and choosing network
architectures [23]. The data set for the E.coli problem was used as supplied
on the UCI repository and the sets for training and testing were generated
following guidelines published by Horton [12].

The results reported below present the average number of iterations (epochs),
the average training time to reach the error goal + the corresponding value
of standard deviation, the average generalization (generalisation is measured
as the percentage of correctly classified test patterns), and the percentage of
convergence success (this percentage is calculated out of 150 runs).

In all experiments the parameters have been set as follows: n* = 1.2; = = 0.5;
AY = 1" = 0.1; Apax = 50 [24]. Finally we have set 6 = 107% in an attempt
to test the convergence accuracy of the proposed strategy and also 7% = 1 for
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Fig. 1. GJRprop, JRprop and Rprop learning curves for (a) the cancer problem and
(b) the diabetes problem

all k.

4.1 The Cancerl problem

The breast cancer diagnosis problem is based on 9 inputs describing a tu-
mour as benign or malignant. The data set consists of 350 patterns. We have
used a feed-forward neural network with 9-4-2-2 nodes as suggested in the
PROBENI benchmark collection and in [3]. The error goal in training was
E < 0.02 to harmonize with the training errors obtained in [3,13]. The results
for this pattern classification problem are summarized in Table 1. The new
algorithm performs significantly better than the other two methods. Table 2
presents the number of times each algorithm outperforms the other methods
in terms of training speed and generalization within 150 independent runs. It
yields that the new learning scheme is frequently faster and achieves better
generalization than the other two members of the Rprop family. Figure 1(a)

Table 1

Comparison of algorithms performance in the Cancer problem for the converged runs

Cancer

Algorithm Tterations Time (secs) Generalization (%) Convergence (%)
Rprop 234 1.6 £ 0.60 97.4 95
JRprop 150 1.2 + 0.50 97.2 96
GJRprop 137 1.0 £ 0.38 97.5 99

presents an example of convergence behavior starting from the same initial
conditions: the Rprop converges to a local minimizer, whilst both JRprop and
GJRprop converge to a feasible solution (E < 1072) with GJRprop outper-
forming all other methods.



Table 2

Number of times, out of 150 runs, each algorithm performs better than the other methods in the Cancer
problem with respect to training speed and generalization.

Cancer Times faster Times better

algorithm Generalization
Algorithm Rprop JRprop GJRprop Rprop JRprop GJRprop
Rprop - 55 25 - 20 13
JRprop 93 - 57 42 - 36
GJRprop 125 102 - 53 50 -

4.2 The Diabetes] problem

The aim of this real-world classification task is to decide when a Pima In-
dian individual is diabetes positive or not. We have 8 inputs representing
personal data and results from a medical examination. The data set consists
of 384 patterns. The PROBENT1 collection proposes several architectures for
this problem, including one with 8-2-2-2 nodes. We decided to use this ar-
chitecture as it was also suggested by others [3,13]. The error goal in this case
was set at 0.14 to conform to the training error obtained in [3,13].

Table 3 summarises the performance of the tested algorithms. The increased
training speed does not affect the generalization performance of the new
method. It is worth noting the standard deviation value of the GRprop is
significantly less than the corresponding Rprop and JRprop values, which
means GJRprop performance is closer to the average value. Table 4 gives an
analytic view of the comparative results in the 150 trials.

Table 3

Comparison of algorithms performance in the Diabetes problem for the converged runs
Diabetes
Algorithm Iterations Time (secs) Generalization (%) Convergence (%)
Rprop 380 23+ 20 75.5 90
JRprop 310 19+15 754 93
GJRprop 290 1.7 £ 0.8 75.8 98

Table 4

Number of times, out of 150 runs, each algorithm performs better than the other methods in the Diabetes
problem with respect to training speed and generalization.

Diabetes Times faster Times better

algorithm Generalization
Algorithm Rprop JRprop GJRprop Rprop JRprop GJRprop
Rprop — 45 38 - 18 20
JRprop 68 - 51 30 - 20
GJRprop 101 70 - 52 50 -

Figure 1(b) illustrates a training instance where all the methods start under
the same initial conditions: the Rprop converges to a local minimizer, whilst
both JRprop and GJRprop converge to a solution with £ < 1071

10



4.8 The FEscherichia coli problem

This problem concerns the classification of the Escherichia coli (E.coli) protein
localization patterns into eight localisation sites. E.coli, being a prokaryotic
gram-negative bacterium, is an important component of the biosphere. Three
major and distinctive types of proteins are characterized in E.Coli: enzymes,
transporters and regulators. The largest number of genes encodes enzymes
(34%) (this should include all the cytoplasm proteins) followed by the genes
for transport functions and the genes for regulatory proses (11.5%) [14].

In these experiments the neural networks were tested using 4—fold cross val-
idation, as this approach has been used before in the literature for training
probabilistic and nearest neighbor classifiers in this problem [12]. The best
available architectures that was suggested is a 7-16-8 FNN [1]. Rprop—trained
FNNs of this architecture achieved better generalization than the best results
reported in the literature [12], when the training error goal was £ < 0.02 [1].

Results from 150 runs for three algorithms using the same architecture are
given in Table 5. A detailed account of the algorithms’ performance is exhib-
ited in Table 6. Figure 2(a) illustrates the behavior of the training algorithms

Table 5
Comparison of algorithms performance in the E.coli problem for the converged runs
E.coli
Algorithm Tterations Time (secs) Generalization (%) Convergence (%)
Rprop 140 1.25 £ 0.31 90.0 99
JRprop 130 1.15 + 0.25 90.0 99
GJRprop 125 1.10 £+ 0.20 90.1 100
Table 6

Number of times, out of 150 runs, each algorithm performs better than the other methods in the E.coli
problem with respect to training speed and generalization.

E.coli Times faster Times better

algorithm Generalization
Algorithm Rprop JRprop GJRprop Rprop JRprop GJRprop
Rprop - 62 61 - 55 49
JRprop 87 - 70 70 - 67
GJRprop 86 73 - 87 70 -

in a case where F < 0.01. Convergence to a feasible solution is achieved by
GJRprop within 6000 iterations while the other schemes require more than
10000 iterations.

4.4 The Thyroid problem

In this problem, the aim is to find whether the patient’s thyroid has over func-
tion, normal function, or under function. We have used the thyroidl dataset
(3600 patterns), a network with 21-4-3 nodes, and the error goal was set at
0.0036, as suggested in [3,30].

11
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Fig. 2. GJRprop, JRprop and Rprop learning curves for (a) the E.coli problem and
(b) the thyroid problem.

Comparative results are given in Table 7. GJRprop outperforms the other
algorithms. Moreover, the value of the deviation of the new algorithm is sig-
nificantly lower than the standard deviation of the other two methods (see Ta-
ble 7). Finally it is worth mentioning that the GJRprop exhibits significantly
improved convergence success compared to the other tested algorithms. This
can be attributed to the ability of new globally convergent algorithm to follow
descent directions.

A detailed account of the algorithms’ performance is exhibited in Table 8.
The new learning scheme is faster than Rprop and JRprop 86 and 84 times
respectively. In terms of generalization success, GJRprop outperforms Rprop
and JRprop 78 and 76 times respectively.

Table 7

Comparison of algorithms performance in the Thyroid problem for the converged runs
Thyroid
Algorithm Iterations Time (secs) Generalization (%) Convergence (%)
Rprop 710 23.90 £ 12.5 98.12 87
JRprop 640 21.40 + 10.1 98.12 89
GJRprop 620 19.90 £ 7.5 98.23 95

Table 8

Number of times, out of 150 runs, each algorithm performs better than the other methods in the Thyroid
problem with respect to training speed and generalization.

Thyroid Times faster Times better

algorithm Generalization
Algorithm Rprop JRprop GJRprop Rprop JRprop GRprop
Rprop - 71 64 - 66 57
JRprop 79 - 66 69 - 60
GJRprop 86 84 - 78 76 -

Figure 2(b) illustrates a case where GJRprop converges to a minimizer while
Rprop and JRprop get stuck at a local minimizer with higher error value.
As shown in Figure 2(b) Rprop’s and JRprop’s learning curves exhibit non-
monotone behaviour denoted by two hard peaks: one around time point 100

12



for the Rprop, and the other around point 200 for the JRprop. The GJR-
prop decreases monotonically the error function as it always follows a descent
direction.

4.5  Boolean function approximation problems

Another set of experiments has been conducted to empirically evaluate the
performance of the globally convergent method in a well-studied class of
boolean function approximation problems that exhibit strong local minima
and stationary points [6,9]. These problems include the XOR problem (whose
local minina and saddle points have been analyzed in detail) and the various
parity—N problems, which are considered as classic benchmarks [16,21,33].
The adopted architectures were 2-2—1 for the XOR, 3-3-1 for the parity—3,
4-4-1 for the parity—4, 5-5-1 for the partiy—5.

For the XOR problem the error target was set to £ < 107> within 2000
iterations and for the parity-5 problem was set to £ < 107%, while for the other
remaining boolean function approximation problems the acceptable solution
was set at £ < 5 x 107°. All these target values are considered low enough to
guarantee convergence to a “global” solution.

4.5.1 XOR problem

Table 9 shows the performance of each algorithm. GJRprop exhibits better
convergence success than other methods: GJRprop achieved 79% average con-
vergence success, while Rprop and JRprop achieved on average 62% and 68%.
The GJRprop outperforms significantly over the Rprop in terms of conver-
gence speed and relatively similar speed with the JRprop.

Table 9

Comparison of algorithms performance in the XOR problem for the converged runs
XOR
Algorithm Tterations Time (secs) Convergence (%)
Rprop 160 1.57 £ 1.0 62
JRprop 105 1.22 +£ 0.6 68
GJRprop 112 1.26 = 0.5 79

Figure 3(a) gives an example of algorithms’ convergence. Starting from the
same initial conditions, the Rprop and the JRprop converge to a local mini-
mizer, whilst GJRprop reaches a lower value.
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Fig. 3. Learning error curves for (a) the XOR problem and (b) the parity—3

4.5.2  Parity-3 problem

Table 10 presents comparative results in terms of training speed (in secs) and
convergence success for the 150 runs. It presents the average training time and
the corresponding standard deviation for each algorithm calculated over the
converged runs. GJRprop shows an increase in the percentage of convergence
success. The globally convergent scheme manages to escape from some local
minima and finds acceptable solutions with higher possibility than the other
two tested methods do. Finally Figure 3(b) shows a case where Rprop and
JRprop converge to local minima while GJRprop reaches a minimiser with
lower function value for the parity—3 problem.

Table 10

Comparison of algorithms performance in the parity—3 problem for the converged runs
Parity—3
Algorithm Iterations Time (secs) Convergence (%)
Rprop 885 3.8 +1.9 79
JRprop 850 35+ 1.6 77
GJRprop 840 33+13 88

4.5.83  Parity—4 problem

Comparative results for the parity—4 problem are given in Table 11. GJR-
prop outperforms the other algorithms particularly in convergence success. It
achieves to meet the error goal with 91% success whilst Rprop and JRprop
have significantly less convergence success. Figure 4(a) illustrates a case where
GJRprop converges to a minimizer while Rprop and JRprop get stuck at a
local minimizer with higher error value.
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Table 11

Comparison of algorithms performance in the parity—4 problem for the converged runs

Parity—4
Algorithm Tterations Time (secs) Convergence (%)
Rprop 810 5.7+ 34 7
JRprop 720 4.8 + 3.0 81
GJRprop 615 4.2 + 2.2 91
N Y 10" — GRprop
10° ¢ ™ —- JRpr%pp* - JRpFrlopp
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Fig. 4. Typical learning error curves for (a) the parity—4 problem and (b) the par-
ity—5 problem.

4.5.4  Parity—=5 problem

Comparative results for the parity—5 problem are presented in Table 12. The
JRprop algorithm achieves the best training speed, while GJRprop exhibits
comparable performance. Both of them outperform the Rprop algorithm. Fur-
thermore the GJRprop is more stable and shows an important convergence
improvement over the other tested methods. Figure 4(b) illustrates a case
where GJRprop converges to an acceptable minimiser while the other meth-
ods converge to local minima with higher function values.

Table 12

Comparison of algorithms performance in the parity—5 problem for the converged runs
Parity—5
Algorithm Iterations Time (secs) Convergence (%)
Rprop 950 6.7 + 3.6 61
JRprop 760 4.1+ 2.0 64
GJRprop 795 4.5 + 2.1 82

5 Conclusions

It is widely accepted that the Rprop algorithm is one of the best performing
sign—based learning algorithms for neural networks with arbitrary topology. In
this paper we build on the nonlinear Jacobi process to develop a globally con-
vergent composite Jacobi-Rprop. In our experiments, the GJRprop exhibited
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better training speed than Rprop and JRprop in six out of the eight bench-
marks, and demonstrated stability in locating minimisers with high percentage
of success in all cases. The comparative study reported in the paper also shows
that GJRprop exhibits more consistent behavior than the other algorithms.
Nevertheless, we acknowledge that this is a small scale study. Further research
into the performance of the method is needed to fully explore its advantages
and identify possible limitations in pattern recognition problems.
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