2,790 research outputs found

    Quadratic perturbations of quadratic codimension-four centers

    Get PDF
    We study the stratum in the set of all quadratic differential systems xË™=P2(x,y),yË™=Q2(x,y)\dot{x}=P_2(x,y), \dot{y}=Q_2(x,y) with a center, known as the codimension-four case Q4Q_4. It has a center and a node and a rational first integral. The limit cycles under small quadratic perturbations in the system are determined by the zeros of the first Poincar\'e-Pontryagin-Melnikov integral II. We show that the orbits of the unperturbed system are elliptic curves, and II is a complete elliptic integral. Then using Picard-Fuchs equations and the Petrov's method (based on the argument principle), we set an upper bound of eight for the number of limit cycles produced from the period annulus around the center

    Bifurcation of Limit Cycles in Smooth and Non-smooth Dynamical Systems with Normal Form Computation

    Get PDF
    This thesis contains two parts. In the first part, we investigate bifurcation of limit cycles around a singular point in planar cubic systems and quadratic switching systems. For planar cubic systems, we study cubic perturbations of a quadratic Hamiltonian system and obtain 10 small-amplitude limit cycles bifurcating from an elementary center, for which up to 5th-order Melnikov functions are used. Moreover, we prove the existence of 12 small-amplitude limit cycles around a singular point in a cubic system by computing focus values. For quadratic switching system, we develop a recursive algorithm for computing Lyapunov constants. With this efficient algorithm, we obtain a complete classification of the center conditions for a switching Bautin system. Moreover, we construct a concrete example of switching system to obtain 10 small-amplitude limit cycles bifurcating from a center. In the second part, we derive two explicit, computationally explicit, recursive formulas for computing the normal forms, center manifolds and nonlinear transformations for general n-dimensional systems, associated with Hopf and semisimple singularities, respectively. Based on the formulas, we develop Maple programs, which are very convenient for an end-user who only needs to prepare an input file and then execute the program to “automatically” generate the results. Several examples are presented to demonstrate the computational efficiency of the algorithms. In addition, we show that a simple 3-dimensional quadratic vector field can have 7 small-amplitude limit cycles, bifurcating from a Hopf singular point. This result is surprising higher than the Bautin’s result for quadratic planar vector fields which can only have 3 small-amplitude limit cycles around an elementary focus or an elementary center

    Non-equilibrium fixed points of coupled Ising models

    Full text link
    Driven-dissipative systems are expected to give rise to non-equilibrium phenomena that are absent in their equilibrium counterparts. However, phase transitions in these systems generically exhibit an effectively classical equilibrium behavior in spite of their non-equilibrium origin. In this paper, we show that multicritical points in such systems lead to a rich and genuinely non-equilibrium behavior. Specifically, we investigate a driven-dissipative model of interacting bosons that possesses two distinct phase transitions: one from a high- to a low-density phase---reminiscent of a liquid-gas transition---and another to an antiferromagnetic phase. Each phase transition is described by the Ising universality class characterized by an (emergent or microscopic) Z2\mathbb{Z}_2 symmetry. They, however, coalesce at a multicritical point, giving rise to a non-equilibrium model of coupled Ising-like order parameters described by a Z2Ă—Z2\mathbb{Z}_2 \times \mathbb{Z}_2 symmetry. Using a dynamical renormalization-group approach, we show that a pair of non-equilibrium fixed points (NEFPs) emerge that govern the long-distance critical behavior of the system. We elucidate various exotic features of these NEFPs. In particular, we show that a generic continuous scale invariance at criticality is reduced to a discrete scale invariance. This further results in complex-valued critical exponents and spiraling phase boundaries, and it is also accompanied by a complex Liouvillian gap even close to the phase transition. As direct evidence of the non-equilibrium nature of the NEFPs, we show that the fluctuation-dissipation relation is violated at all scales, leading to an effective temperature that becomes "hotter" and "hotter" at longer and longer wavelengths. Finally, we argue that this non-equilibrium behavior can be observed in cavity arrays with cross-Kerr nonlinearities.Comment: 19+11 pages, 7+9 figure

    An Exact Elliptic Superpotential for N=1^* Deformations of Finite N=2 Gauge Theories

    Full text link
    We study relevant deformations of the N=2 superconformal theory on the world-volume of N D3 branes at an A_{k-1} singularity. In particular, we determine the vacuum structure of the mass-deformed theory with N=1 supersymmetry and show how the different vacua are permuted by an extended duality symmetry. We then obtain exact, modular covariant formulae (for all k, N and arbitrary gauge couplings) for the holomorphic observables in the massive vacua in two different ways: by lifting to M-theory, and by compactification to three dimensions and subsequent use of mirror symmetry. In the latter case, we find an exact superpotential for the model which coincides with a certain combination of the quadratic Hamiltonians of the spin generalization of the elliptic Calogero-Moser integrable system.Comment: 55 pages, 5 figures, latex with JHEP.cl

    On the perturbations theory of the Duffing oscillator in a complex domain

    Get PDF
    La thèse concerne l'étude des cycles limites d'une équation différentielle sur le plan (la deuxième partie du 16ème problème de Hilbert). La notion de "cycle limite" a une grande importance dans la théorie de la stabilité, elle est introduite par Poincaré vers la fin du 19ème siècle et désigne une orbite périodique isolée. Le but de cette thèse est : d'établir l'existence d'une borne supérieure finie, pour le nombre de cycle limites d'une équation quadratique dans le plan. Ce problème est aussi appelé 16ème problème d' Hilbert infinitésimal. Probablement, l'outil le plus fondamental pour l'étude de la stabilité et les bifurcations des orbites périodiques est l'application de Poincaré, défini par Henri Poincaré en 1881. Cependant, la méthode de Melnikov nous donne une excellente procédure pour déterminer le nombre de cycles limites dans une bande continue de cycles qui sont préservés sous perturbation. En effet, le nombre, les positions et les multiplicités des équations différentielles planes perturbées avec une petite perturbation non nulle sont déterminées par le nombre, les positions et les multiplicités des zéros des fonctions génératrices. La fonction de Melnikov est plus précisément, appelé la fonction de Melnikov de premier- ordre. Si cette fonction est identiquement nulle à travers la bande continue de cycles, on calcule ce qu'on appelle " la fonction de Melnikov d'ordre supérieure ". Ensuite, une analyse d'ordre supérieure est nécessaire, ce qui peut être fait par " l'algorithme de Françoise. Les discussions et les calculs présentés dans notre travail sont limités non seulement à la fonction de Melnikov de premier ordre, mais aussi pour les fonctions de Melnikov de deuxième -ordre. Ces outils seront utiles pour résoudre notre problématique. Les activités de recherche menées dans le cadre de cette recherche sont divisées en quatre parties : La première partie de cette thèse, traite les systèmes dynamiques plans et l'existence de cycles limites. Nous souhaitons après résoudre le problème suivant: Calculer la cyclicité de l'oscillateur asymétrique perturbé de Duffing. Dans la deuxième partie, nous sommes intéressés de la cyclicité à l'extérieur de l'anneau périodique de l'oscillateur de Duffing pour une perturbation particulière, puis, nous fournissons un diagramme de bifurcation complet pour le nombre de zéros de la fonction de Melnikov associée dans un domaine complexe approprié en se basant sur le principe de l'argument. Le nombre de cette cyclicité est égal à trois. Dans la troisième partie, nous étudions la cyclicité à l'intérieur ainsi que à l'extérieur de double boucle homocline pour une perturbation cubique arbitraire de l'oscillateur de Duffing en utilisant les mêmes techniques de Iliev et Gavrilov dans le cas d'un Hamiltonien asymétrique de degré quatre. Notre principal résultat est que deux au plus cycle limite peuvent bifurquer de la double homocline. D'autre part, il est représenté, qu'après bifurcation de eight-loop un cycle limite étranger est née, qui ne soit pas contrôlée par un zéro lié par les intégrales Abéliennes, ce cycle supplémentaire est appelé " Alien ".This thesis concerns the study of limit cycles of a differential equation in the plane (The second part of the 16th Hilbert problem). The concept of "limit cycle" has a great importance in the theory of stability; Poincaré introduces this notion at the end of the 19th century and denotes an isolated periodic orbit. The purpose of this thesis: Find an upper bound finite to the number of limit cycles of a quadratic equation in the plane. This problem is so- called the infinitesimal Hilbert 16th problem. Probably, the most basic tool for studying the stability and bifurcations of periodic orbits is the Poincaré, defined by Henri Poincaré in 1881. However, Melnikov's method gives us an excellent method for determining the number of limit Cycles in a continuous band of cycles that are preserved under perturbation. In fact, the number, positions and multiplicities of perturbed planar differential equations for a small nonzero parameters, are determined by the number, positions and multiplicities of the zeros of the generating functions. The Melnikov function is more precisely, called the first-order Melnikov function. If this function is identically equal zero across the continuous band of cycles, one computes the so-called "Higher order Melnikov function". Then, a higher order analysis is necessary which can be done by making use of the so called "the algorithm of Françoise". The discussions and computation presented in this thesis are restricted not only to the first order Melnikov function, but also to the second-order Melnikov functions. These tools will be useful to resolve the question problem. The research activities in the framework of this thesis are divided into four parts: The first part of this thesis, discusses planar dynamical systems and the existence of limit cycles. We wish to solve the following problem: Calculate the cyclicity of the perturbed asymmetric oscillator Duffing. In the second part, we are interested of the cyclicity of the exterior period annulus of the asymmetrically perturbed Duffing oscillator for a particular perturbation, then, we provide a complete bifurcation diagram for the number of zeros of the associated Melnikov function in a suitable complex domain based on the argument principle. The number of this cyclicity is equal to three. In the third part, we study the cyclicity of the interior and exterior eight-loop especially for arbitrary cubic perturbations by using the same techniques of Iliev and Gavrilov in the case of an asymmetric Hamiltonian of degree four. Our main result is that at most two limit cycles can bifurcate from double homoclinic loop. On the other hand, it is appears after bifurcation of eight-loop an "Alien" limit was born, which is not covered by a zero of the related Abelian integrals
    • …
    corecore