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Abstract
This thesis contains two parts. In the first part, we investigate bifurcation of limit cycles

around a singular point in planar cubic systems and quadratic switching systems. For planar
cubic systems, we study cubic perturbations of a quadratic Hamiltonian system and obtain 10
small-amplitude limit cycles bifurcating from an elementary center, for which up to 5th-order
Melnikov functions are used. Moreover, we prove the existence of 12 small-amplitude limit
cycles around a singular point in a cubic system by computing focus values. For quadratic
switching system, we develop a recursive algorithm for computing Lyapunov constants. With
this efficient algorithm, we obtain a complete classification of the center conditions for a
switching Bautin system. Moreover, we construct a concrete example of switching system to
obtain 10 small-amplitude limit cycles bifurcating from a center.

In the second part, we derive two explicit, computationally efficient, recursive formulae
for computing the normal forms, center manifolds and nonlinear transformations for general
n-dimensional systems, associated with Hopf and semisimple singularities, respectively. Based
on the formulae, we develop Maple programs, which are very convenient for an end-user who
only needs to prepare an input file and then execute the program to “automatically” generate
the results. Several examples are presented to demonstrate the computational efficiency of the
algorithms. In addition, we show that a simple 3-dimensional quadratic vector field can have 7
small-amplitude limit cycles, bifurcating from a Hopf singular point. This result is surprisingly
higher than the Bautin’s result for quadratic planar vector fields which can only have 3 small-
amplitude limit cycles around an elementary focus or an elementary center.

Keywords: planar cubic system, Hamiltonian system, Hilbert’s 16th problem, higher-order
Melnikov function, center, limit cycle, bifurcation, focus value, normal form

ii



Co-Authorship Statement

The article versions of Chapters 2 through 7 are co-authored with Pei Yu. The four papers
based on Chapters 3, 5, 6 and 7 have been published in journals, Chapter 2 has been submitted
for publication, and Chapter 4 will be submitted for publication.

Pei Yu provided guidance through all the works, and revised the final drafts. Pei Yu also
computed the focus values for Chapters 2, 3 and 7, and contributed the first drafts for Chapters
3 and 7.

iii



Acknowlegements

First of all, I would like to express my gratitude to my supervisor Dr. Pei Yu for his guidance
in my study and my research at the University of Western Ontario. His patience,
encouragement and all kinds of support make me grow as a researcher. I truly appreciate the
invaluable knowledge and experience provided over the last four years. His diligence and
rigorous scholarship sets me a good example. I am very grateful for his tireless dedication to
my thesis as well as his encouragement and help along the way.

Secondly, I would also thank Dr. Xingfu Zou and other members of dynamics systems
group. From the group’s seminars, I have learnt lots of interesting and useful topics in
biomathematics, which makes it much easier for me to widen my research area. I would like
to thank Changbo Chen and Yiming Zhang for good discussions on the regular chains method
and the elimination technique. I also want to thank Ms. Audrey Kager and Ms. Cinthia
MacLean for their great work in providing all the graduate students in the department with an
efficient and comfortable learning environment.

My special gratitude goes to my family. It would not be possible for me to finish this thesis
without their full support and encouragement. I dedicate this thesis to my wife Xiaopei, and
our daughter April.

iv



Contents

Abstract ii

Co-Authorship Statement iii

Acknowlegements iv

List of Figures viii

List of Appendices ix

1 Introduction 1
1.1 Overview of differential dynamical systems . . . . . . . . . . . . . . . . . . . 1

1.1.1 Planar differential systems . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Switching differential systems . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Higher-dimensional differential systems . . . . . . . . . . . . . . . . . 5

1.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.1 Displacement function and Melnikov functions . . . . . . . . . . . . . 7
1.2.2 Normal form theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Outline and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.1 Outline of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.2 Contributions of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Bifurcation of ten small-amplitude limit cycles by perturbing a quadratic
Hamiltonian system 22
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
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1.1 The Poincaré map for system (1.10). . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 The stable, unstable and center manifolds for system (1.22). . . . . . . . . . . . 13

2.1 Distribution of points Pi and their corresponding phase portraits. . . . . . . . . 42

4.1 Poincaré map of (4.1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2 Half-return maps P+ and (P−)−1. . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.1 The second-order approximation of the center manifold described by (7.6). . . . 130

viii



List of Appendices

Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Appendix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Appendix C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

ix



Chapter 1

Introduction

1.1 Overview of differential dynamical systems

A dynamical system can be considered as a fixed deterministic “rule”, which describes the time
dependence of a point in a geometrical space. For a dynamical system, a point, given by a real
vector, represents a state. The ”rule” is usually given in the form of differential equations or
difference equations. At any given time a dynamical system has a state, and for a given time
interval only one future state follows from the current state. Systems described by differential
equations are called continuous dynamical systems, or differential dynamical systems, and ones
described by difference equations are called discrete dynamical systems.

The concept of a dynamical system was developed from Newtonian mechanics in the
seventeenth century. At that time, many great scientists like Galileo Galilei, Edme Mariotte
and Robert Hooke attacked mathematical problems in this area [1, Chapter 21]. Since then
dynamical systems theory has been being animate. Today, dynamical systems theory has been
applied extensively in a wide range of research areas, including automatic control, space
technology, celestial mechanics, biology, medical science, economics and so on. For example,
the mathematical models that describe the motion of a mass on a vibrating spring, the flow of
electric current in a simple series circuit and the number of fish each spring in a lake, etc.
Besides differential dynamical systems, there are some other research fields of dynamical
systems, including topological dynamical systems, symbolic dynamical systems, ergodic
theory and complex dynamical systems and so on, see [2].

For some mathematical models described by differential equations, we may obtain the exact
expression of the solutions. In this case, for any given initial condition all future dynamical
behaviors of the solution can be determined. But there are many important problems, especially
nonlinear ones, which are too complicated to be solved. How do we study the dynamical
behaviors of such problems? Poincaré’s work “On curves defined by differential equations”[3]
showed us that the properties of the solutions could be studied and determined directly from
the differential equations, even if they can not be solved in terms of known functions. This
result initiated a new research branch of mathematics called qualitative theory of differential
equations.

Bifurcation is one of main research objects in the qualitative analysis of differential
equations. Generally speaking, bifurcation is the changes of topological structure of the orbits

1



2 Chapter 1. Introduction

in a dynamical system. In the real world, there are various of bifurcation phenomena that have
been discovered and described in the natural science. In 1883, Osborne Reynolds found that
the flow of fluid in pipes transitioned from laminar flow to turbulent flow when the velocity of
the flow is increased above a certain threshold. Other bifurcation phenomena include the
buckling of the Euler rod, the appearance of Taylor vortices and the onset of oscillations in an
electric circuit and so on. All these phenomena have a common feature: A specific physical
parameter crosses a threshold, which forces the system to the new organization of states that
differs considerably from that observed before. With the advancement of computer science,
symbolic computation has a great development, which provides us a more powerful tool to
study and simulate all the bifurcation phenomena.

Bifurcations in differential systems can be divided into two principal classes: local
bifurcations and global bifurcations. Local bifurcations includes the changes in the
topological structure of obits around a singular point. Global bifurcations occur when changes
are caused in the topological structure of ”larger” invariant sets, like a family of periodic
orbits, a homoclinic loop and a heteroclinic loop.

Bifurcation of limit cycles is one of the most popular topics in bifurcation theory and
applications. A limit cycle is an isolated closed trajectory in the phase space of an
autonomous differential system. A limit cycle corresponds to a periodic non-constant solution
of the system. Limit cycles represent the simplest (after the steady states) type of behavior of
a continuous time dynamical system, which can be obtained from bifurcations of an
elementary center (like Hopf bifurcation), a compact family of periodic orbits (Poincaré
bifurcation) or other closed loops consisting of a finite of saddle points and orbits as the
connections, like a homoclinic loop (homoclinic bifurcation) or a heteroclinic loop
(heteroclinic bifurcation).

In this thesis, we focus on the bifurcation of small-amplitude limit cycles in planar
differential systems, higher-dimensional dynamical systems as well as switching systems.

1.1.1 Planar differential systems
A well-known problem about the bifurcation of limit cycles in planar differential systems is
Hilbert’s 16th problem [4], which is related to the following polynomial vector field,

ẋ = Pn(x, y), ẏ = Qn(x, y), (1.1)

where Pn and Qn are nth-degree polynomial functions. This problem was posed by Hilbert
at the International Congress of Mathematicians in 1900. The second part of Hilbert’s 16th
problem is to find the upper bound of the number, called the Hilbert number, H(n), of limit
cycles in (1.1) and to study their distributions. The progress of solving the problem is very
slow. After more than one century, it has not even been solved for the case of quadratic systems.

In early 1990s, Ilyashenko and Yakovenko [5], and Écalle [6] independently proved the
finiteness of the number of limit cycles for any given planar polynomial vector fields. The
existence of a finite uniform upper bound H(n) for the number of limit cycles of planar
polynomial vector fields of degree n remains unsolved for any n > 1. For n = 2, it was proved
H(2) ≥ 4 more than 30 years ago [7, 8]. Recently, this result was also obtained for
near-integrable quadratic systems [9]. For cubic polynomial systems, many results have been
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obtained on the lower bound of H(n). Among them, the best one is H(3) ≥ 13 [10, 11]. Note
that the 13 limit cycles obtained in [10, 11] are distributed around several singular points. For
more on the research of Hilbert’s 16th problem see [12].

The local version of the second part of Hilbert’s 16th problem is to find the maximum
number, M(n), of small-amplitude limit cycles bifurcating from an elementary center or an
elementary focus in planar polynomial systems of degree n. Sometimes, it is also called the
cyclicity problem. The center-focus problem is closely related to the cyclicity problem, which
is to determine whether a singular point is a center or a focus in any planar systems. Both
problems are very difficult and still open.

In the 1880s, Poincaré first gave a necessary and sufficient condition to have a center at
a singular point with pure imaginary eigenvalues, for which there exists a local analytic non-
zero first integral in the neighborhood of the singular point. In order to find the first integral,
Poincaré created an algorithm for computing the so-called Poincaré-Lyapunov constants V1,
V2, V3, · · · . The singular point becomes a center if and only if all the Poincaré-Lyapunov
constants vanish. If the first nonzero Poincaré-Lyapunov constant is Vk, then the singular point
is a (weak) focus, and at most k small-amplitude limit cycles can bifurcate from it [13].

In 1952, Bautin proved M(2) = 3 by computing focus values, and obtained all center
conditions for general quadratic systems [14]. Moreover, it is well-known that quadratic
systems with one center can be classified into four sub-systems: Hamiltonian system,
Lotka-Volterra system, reversible system, and codimension-4 system, denoted by QH, QLV

3 ,
QR and Q4, respectively [15]. For n = 3, the center problem is a long way from being solved.
Some center conditions were obtained only for particular cubic systems [16, 17]. For the
cyclicity problem of cubic systems, there are results with examples in the literature. Among
them, the maximal number of small-amplitude limit cycles around a singular point was eleven
[18, 19, 20].

In order to help understand and attack Hilbert’s 16th problem, Arnold posed the so-called
weak Hilbert’s 16th problem [21], namely, to find the upper bound of the number of zeros,
N(n,m), of the Melnikov function given by the integral

M(h) =

∮
H(x,y)=h

q(x, y)dx − p(x, y)dy, (1.2)

along closed orbits defined by H(x, y) = h for h ∈ (h1, h2), where H(x, y), p(x, y) and q(x, y) are
all polynomial functions of x and y, and deg(H(x, y)) = n, deg(p(x, y)) = deg(q(x, y)) = m =

n− 1. The weak Hilbert’s 16th problem is closely related to the near-Hamiltonian system [22]:

ẋ = Hy(x, y) + εp(x, y), ẏ = −Hx(x, y) + εq(x, y), (1.3)

where 0 < ε � 1 represents a small perturbation, because the limit cycles of the above system
bifurcating from the periodic orbits H(x, y) = h for h ∈ (h1, h2) correspond to the isolated zeros
of the first non-zero Melnikov function Mk(h). The first-order Melnikov function, M1(h), of
system (1.3) is given by (1.2). Then if M1(h) . 0, the number of limit cycles bifurcating from
orbits H(x, y) = h can be determined by the number of isolated zeros of M1(h) = 0.

For any n and m, the finiteness of N(n,m) was proved independently by Khovansky [23]
and Varchenko [24] in 1984. But the explicit expression of N(n,m) has not been obtained.
When n is fixed, it was proved that for the set of “good” H(x, y) there exists a constant c(H) <
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+∞ such that N(n,m) ≤ exp(c(H)m) [25, 26, 27]. For quadratic near-Hamiltonian systems,
i.e. n = 3 and m = 2, all possible cases have been considered for the cubic Hamiltonians
[28, 29, 30, 31, 32, 33, 34]. Putting all the results together we have N(3, 2) = 2. For cases
where n is fixed, lots of results were obtained for polynomials P and Q with arbitrary degree
m, for instance, m − 1 zeros for the Bogdanov-Takens Hamiltonian, H = (x2 + y2)/2 − x3/3
[35], and [ 2(m−1)

3 ] for the Hamiltonian triangle H = (x2 + y2)/2 − x3/3 + xy2 [36].
If M1(h) ≡ 0, we need to consider higher-order Melnikov functions. In some cases, higher-

order Melnikov functions can help obtain more limit cycles [37, 38, 39, 40]. But it is usually not
easy to compute those higher-order Melnikov functions [41]. Only for some special polynomial
Hamiltonian functions, there is a procedure presented by Françoise [42] for computing higher-
order Melnikov functions through decompositions of one-forms. Its generalization can be
found in [43, 44].

1.1.2 Switching differential systems

In recent years, more and more attention has been attracted to non-smooth dynamical systems
whose functions on right-hand side are not differentiable or even not continuous. The basic
methods of qualitative theory for such systems can be found in [45, 46].

One class of planar non-smooth systems is the so-called switching system, given in the
form of

(ẋ, ẏ) =

{
( f +(x, y), g+(x, y)), if y > 0,
( f −(x, y), g−(x, y)), if y < 0,

(1.4)

where f ±(x, y) and g±(x, y) are analytic functions in x and y. In (1.4), the system defined for
y > 0 is called the upper system, ant the system defined for y < 0 is called the lower system.
A detailed discussion of the research on the dynamics of switching systems can be found in a
survey article [47].

A great deal of work has been done to generalize the classical bifurcation theory and
methods for smooth systems to non-smooth ones, for examples, the methods for Hopf
bifurcation [48, 49, 50, 51, 52, 53, 54]. Poincaré map has been introduced into the study of
Hopf bifurcation in switching systems [46, 49, 50], so that the corresponding Lyapunov
constants can be defined. In [49], the authors developed a new method for computing the
Lyapunov constants of switching systems, by applying a suitable decomposition of certain
one-forms. The approach based on Lyapunov constant is an important tool for the study of the
center problem and the cyclicity problem in switching systems, just like that for smooth
systems. But it becomes much more complicated in switching systems.

As we mentioned above, a planar smooth system has a center at a singular point, if and
only if there exists a local non-zero first integral near the singular point. For system (1.4), this
statement obviously remains true if the singular point is not located on the x-axis. But if it is
located on the x-axis, the singular point may not be a center even there exist first integrals for
both the upper and lower systems in (1.4). In this case, it is also required that these two first
integrals properly coincide on the x-axis. Conditions for a singular point to be a center have
been obtained for some switching Kukles systems [49], switching Liénard systems [50] and a
switching Bautin system [53].

The number of small-amplitude limit cycles bifurcating from a weak focus in switching
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systems has been investigated in [51, 52, 53, 54, 55]. For linear switching systems, Han and
Zhang proved that 2 small-amplitude limit cycles can appear near a focus [51]. Note that
smooth linear systems can not produce limit cycles. The cyclicity problem for quadratic
switching systems is much more difficult than that in smooth systems, and some results have
been obtained only for some special systems [49, 52, 53]. It has been proved that quadratic
switching systems can have at most 5 limit cycles near a singular point, when its lower system
is linear [49]. The best result so far for the number of small-amplitude limit cycles in
quadratic switching systems is 9 [52].

Because of various forms of non-smoothness, switching systems can exhibit more complex
bifurcations that only non-smooth systems can have, such as border-collision bifurcation [56],
grazing bifurcation [57, 58] and so on. These types of bifurcations will not be discussed in this
thesis.

1.1.3 Higher-dimensional differential systems
For higher-dimensional differential systems, a rich variety of bifurcations may occur around a
singular point, like Hopf, Hopf-zero, double-zero, double-Hopf and so on. A detailed study of
some local bifurcations in higher-dimensional systems could be found in [59].

For the bifurcation of small-amplitude limit cycles in higher-dimensional systems, there
are very few results in the literature. Over the last twenty years, several researchers have paid
attention to a 3-dimensional competitive Lotka-Volterra model, and particularly studied the
bifurcation of limit cycles [60, 61, 62, 63]. So far, the best result for this system is 4 limit
cycles [63], which include 3 small-amplitude limit cycles and a large one.

Normal form theory plays an important role in studying local dynamical behaviors around
a singular point. Its basic idea is to introduce a near-identity nonlinear transformation into a
given differential system and to get a simpler one, which keeps the topological structure of the
original system around the singular point [59, 64, 65]. When the Jacobian matrix evaluated
at a singular point of higher-dimensional differential systems has eigenvalues with zero real
part, center manifold theory is always applied together with normal form theory. It allows us
to determine the dynamical behaviors by studying the flows on the center manifold, which has
less dimension than the original system.

In order to find more small-amplitude limit cycles around a singular point, we usually need
to compute higher-order normal forms. But even with the help of computer algebra systems,
such as Maple, Mathematica, Matlab and so on, it is still not easy to obtain higher-order normal
forms since considerably more computer memory and computational time are demanded as the
order of normal forms increases.

Lots of methods have been developed for computing normal forms and equivalent
quantities (focus values or Poincaré-Lyapunov constants), including the time-averaging
method [59, 66], Poincaré method [67, 68], the perturbation technique combined with
multiple time scales [69]. Recently, researchers have also paid attention to further reduction of
the (conventional or classical) normal forms, called the simplest normal forms (e.g. see
[70, 71, 72, 73]). The computation of the parametric simplest normal forms [72, 73] is much
more complex and difficult, which will not be discussed in this thesis. For Hopf bifurcation of
two-dimensional systems, a recursive formula was presented for the computation of
Poincaré-Lyapunov constants in terms of the coefficients of the original system [68]. For
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general n-dimensional differential systems, the method of multiple time scales was combined
with a perturbation technique to obtain normal forms for a number of different singularities
such as Hopf [74], Hopf-zero [75], double Hopf [76, 77] and so on. Yu [78] developed a
unified procedure for computing the center manifold, the normal form of a differential system
and the corresponding nonlinear transformation.

1.2 Preliminaries
In this section, we shall give a brief introduction to displacement function and normal form
theory, which play a critical role in this thesis.

Consider an n-dimensional differential system

ẋ = f (x, δ), x ∈ Rn, δ ∈ Rm, (1.5)

where the dot represents differentiation with respect to time t, f (x, δ) is an analytic function in
the region D ⊂ Rn, and δ is a parameter vector.

According to the theorem of existence and uniqueness of solutions, for any point x0 ∈ D
system (1.5) has a unique solution x = ϕ(t, x0, δ) satisfying ϕ(0, x0, δ) = x0. If ϕ(t, x0, δ) ≡ x0,
then point x0 is called a singular point (singularity) of system (1.5), otherwise a regular point.
The curve defined by x = ϕ(t, x0, δ) is call the orbit of (1.5) through x0. An orbit is called a
periodic orbit if it is closed. A limit cycle is an isolated periodic orbit, i.e. there are no other
periodic orbits in a neighborhood of it.

The topological structure of orbits near a regular point is simple: the family of orbits in a
small neighborhood of a regular point is topologically equivalent to the family of parallel lines
[79]. For a singular point, the situation is complicated.

Without loss of generality, suppose that the origin is a singular point of system (1.5). The
linearization of system (1.5) at the origin is

ẋ = Ax, (1.6)

where Ax is the linear part of f (x) and A is an n × n matrix. Then matrix A has eigenvalues
λi, i = 1, · · · , n, with zero, negative and positive real parts. The corresponding eigenvectors of
matrix A span three sub-spaces of Rn: center eigenspace Ec, stable eigenspace E s and unstable
eigenspace Eu, and Rn = Ec

⊕
E s

⊕
Eu. Obviously, each eigenspace Ec, E s or Eu is invariant

for the linearized system (1.6). All orbits of system (1.6) in eigenspace E s (Eu) tend to the
origin as t → +∞ (−∞), and the orbits in Ec are periodic or singular points.

According to Grobman [80] and Hartman [81], if all eigenvalues of system (1.6) at the
origin have non-zero real part, then system (1.6) is said to be hyperbolic, and system (1.5) has
the same topological structure of the orbits near the origin as system (1.6). This means that the
changes in nonlinear parts of system (1.5) have no effects on the topological structure of the
orbits around a singular point, if its corresponding linearized system is hyperbolic.

If system (1.6) involves eigenvalues with zero real part, then small-amplitude limit cycles
could bifurcate from the origin under small perturbations. The cyclicity problem naturally
arises here. In this situation, the topological structure of the orbits near the origin in system
(1.5) is unstable, and various bifurcations may occur, depending on the number of zero
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eigenvalues and pairs of purely imaginary eigenvalues. If a singular point xδ of system (1.5)
has eigenvalues with zero real part at δ = δ0, then (xδ0 , δ0) is called a critical point, or a
bifurcation point. The following is Hopf bifurcation theorem, which can also serve as the
definition of Hopf bifurcation.

Theorem 1.2.1 ([82, Section 11.2]) Let J(δ) be the Jacobian of system (1.5) evaluated at a
singular point xδ of it. Suppose that J(δ0) has a simple pair of purely imaginary eigenvalues
and no other eigenvalues with zero real part. A Hopf bifurcation arises when these two
eigenvalues cross the imaginary axis because of a variation of δ around δ0.

In order to study bifurcation problems, the critical point usually needs to be determined.
The eigenvalues can be obtained from the characteristic polynomial of the Jacobian J(δ) as

pn(λ) = det(λI − J(δ)) = λn + a1(δ)λn−1 + · · · + an(δ). (1.7)

To find the critical point of a Hopf bifurcation, we do not have to solve the eigenvalues from
the above polynomial. Instead, we use the Hurwitz criteria [83], ∆i, i = 1, · · · , n − 1, of the
polynomial pn(λ). The theorem is given below.

Theorem 1.2.2 ([83]) Suppose that J(δ) is the Jacobian of system (1.5) evaluated at a singular
point xδ of it. Let (1.7) hold. The necessary and sufficient condition for system (1.5) to have a
Hopf bifurcation at xδ without eigenvalues having positive real part is ∆i > 0 for i = 1, 2, · · · ,
n − 2, ∆n−1 = 0 and an > 0.

If matrix J(δ) has n different eigenvectors, which is equivalent to J(δ) being diagonalizable,
then we say that the singular point xδ in system (1.5) is semisimple.

The next two subsections are devoted to two important tools for bifurcation of
small-amplitude limit cycles, displacement function and the method of normal forms
associated with semisimple singular points.

1.2.1 Displacement function and Melnikov functions
Consider a planar analytic differential system with a parameter vector of the form

ẋ = f (x, y, δ), ẏ = g(x, y, δ), (1.8)

where δ ∈ Rm, m ≥ 1, and f (0, 0, δ) = g(0, 0, δ) = 0. Then the origin is a singular point of
system (1.8).

The linearization of system (1.8) at the origin is given by(
ẋ
ẏ

)
=
∂( f , g)
∂(x, y)

∣∣∣∣
(0,0)

(
x
y

)
=

(
A11 A12

A21 A22

) (
x
y

)
(1.9)

with the characteristic polynomial p2(λ) = λ2 + a1λ + a2, where a1 = −(A11 + A22), a2 =

A11A22 − A21A12. Denote by λ1 and λ2 its two eigenvalues. Then the origin of system (1.9) is a
saddle point, if λ1λ2 < 0,
node, if λ1λ2 > 0, Im(λ1) = 0,
focus, if Re(λ1) , 0, Im(λ1) , 0,
center, if Re(λ1) = 0, Im(λ1) , 0,
degenerate point, if λ1λ2 = 0.
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Therefore, we have a center point at the origin with a pair of purely imaginary eigenvalues,
when a1 = 0 and a2 > 0. In this case, the origin in system (1.8) could be an elementary center
or an elementary focus, and the center-focus problem arises here. Under proper conditions of
δ, small-amplitude limit cycles can bifurcate from the origin.

Assume system (1.9) has an elementary center at the origin for δ = δ0. Without loss of
generality, we may further assume that system (1.9) has a focus at the origin for any 0 <
|δ − δ0| � 1. Under a proper linear transformation, system (1.8) becomes

ẋ = α(δ)x − β(δ)y + F(x, y, δ),
ẏ = β(δ)x + α(δ)y + G(x, y, δ),

(1.10)

where |δ−δ0| � 1, α(δ0) = 0, β(δ0) > 0 and F, G = O(|x, y|2). Letting x = r cos(θ), y = r sin(θ),
system (1.10) is transformed into

ṙ = α(δ)r + cos(θ)F + sin(θ)G, θ̇ = β(δ) + (cos(θ)G − sin(θ)F)/r.

Then eliminating time t yields

dr
dθ

=
α(δ)r + cos(θ)F + sin(θ)G
β(δ) + (cos(θ)G − sin(θ)F)/r

= R1(θ)r + R2(θ)r2 + R3(θ)r3 + R4(θ)r4 + · · · , (1.11)

where Ri(θ) is a polynomial function of sin(θ) and cos(θ).
Suppose r(θ, ρ) is the solution of equation (1.11) satisfying r(0, ρ) = ρ. Then for system

(1.10) we define the Poincaré map as P(ρ) = r(2π, ρ), 0 < ρ � 1 (see Figure 1.1). The
function d(ρ) = P(ρ) − ρ, is called the displacement function of system (1.10). It is easy to see
that d(ρ) ≡ 0 for 0 < ρ � 1 if and only if the origin is a center of system (1.10). If d(ρ) < 0
(> 0) for 0 < ρ � 1, then we say the origin is a stable (unstable) focus.

Obviously, if and only if ρ0 is an isolated zero of the function d(ρ), i.e. P(ρ0) = ρ0, then
system (1.10) has a small-amplitude limit cycle near the origin passing through point (ρ0, 0).
So the number of isolated zeros of d(ρ) = 0, 0 < ρ � 1, corresponds to the number of
small-amplitude limit cycles near the origin in system (1.10).

The displacement function d(ρ) can be written as a power series in ρ:

d(ρ) = v1ρ + v2ρ
2 + v3ρ

3 + · · · , 0 < ρ � 1. (1.12)

It is easy to see that if vk = 0, k = 1, 2, 3, · · · , then the origin is a center.

Theorem 1.2.3 [84, Chapter 2] Let (1.12) hold for system (1.10). If for some k ≥ 1 it holds
that

d(ρ) = vkρ
k + O(ρk+1), vk , 0, (1.13)

then k is odd, and the origin is a stable (unstable) focus of system (1.10) if vk < 0 (> 0).

Definition 1.4.1 Let (1.13) hold with k = 2i + 1, i ≥ 0. We call the origin a focus of order i,
and vk the ith order focus value. Sometimes vk is also called the ith order Lyapunov constant.
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x

y

O ρ

P(ρ)

Figure 1.1: The Poincaré map for system (1.10).

Theorem 1.2.4 [84, Chapter 2] (i) If system (1.10) has a kth-order focus at the origin (k ≥ 1)
for δ = δ0, then it has at most k limit cycles near the origin for δ near δ0. Moreover, k limit
cycles can appear near the origin if

rank
(∂(v1, v3, · · · , v2k−1)
∂(δ1, δ2, · · · , δm)

(δ0)
)

= k.

(ii) If system (1.10) is analytic and satisfies

v2 j+1 = O(|v1, v3, · · · , v2k+1|), j ≥ k + 1

for some k ≥ 1, then for any given N > 0 system (1.10) has at most k limit cycles near the
origin for |v1| + |v2| + · · · + |v2k+1| < N.

One basic approach to compute the focus values of system (1.10) is to substitute the power
series of the solution r(θ, ρ) given in ρ,

r(θ, ρ) = r1(θ)ρ + r2(θ)ρ2 + r3(θ)ρ3 + · · · ,

into equation (1.11) and then compare the coefficients of the terms in ρ with the same power.
For r1(θ), we get r′1(θ) = R1(θ)r1(θ), or

r1(θ) = e
α(δ)
β(δ) θ, since R1(θ) =

α(δ)
β(δ)

from (1.11).

Then v1 = e2π α(δ)
β(δ) − 1. When v1 = 0, i.e. α(δ) = 0, we can easily obtain

r1 = 1, r2(θ) =

∫ θ

0
R2(θ)dθ, r3(θ) =

∫ θ

0
(R3(θ) + 2r2(θ)R2(θ))dθ, · · · . (1.14)

Obviously, vi = ri(2π), i > 1.
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Usually, we do not use (1.14) to study bifurcation of small-amplitude limit cycles in
system (1.10) since (1.14) involves integration of trigonometric functions, which demands lots
of computational time, especially when higher-order focus values are needed. On the other
hand, computation of normal forms or Poincaré-Lyapuvnov constants only contains algebraic
computations, which can be easily implemented in a computer using a computer algebra
system. Recently, researchers paid more and more attention to the computation of (1.14),
because Poincaré map and displacement function can be also applied to Hopf bifurcations of
switching systems.

The displacement function can be also expressed in terms of Melnikov functions for near-
Hamiltonian systems in the form of

ẋ = Hy + εp(x, y, ε, δ), ẏ = −Hx + εq(x, y, ε, δ), (1.15)

where H(x, y), p(x, y, ε, δ) and q(x, y, ε, δ) are C∞ functions, and ε is small. For ε = 0 system
(1.15) becomes

ẋ = Hy, ẏ = −Hx, (1.16)

which is a Hamiltonian system.
Suppose system (1.16) has a family of periodic orbits given by Hamiltonian levels,

γh : H(x, y) = h, h ∈ (h0, h1)

and a center at the origin, denoted by γh0 , such that γh → γh0 as h→ h+
0 . Using the Hamiltonian

level H = h, h ∈ (h0, h1), to parameterize the positive x-axis near the origin, we can express
the Poincaré map P in terms of h, ε and δ. Thus, the corresponding displacement function
d(h, ε, δ) = P(h, ε, δ) − h can be written as

d(h, ε, δ) = εM1(h, δ) + ε2M2(h, δ) + ε3M3(h, δ) + · · · , (1.17)

where
M1(h, δ) =

∮
γh

(qdx − pdy)|ε=0,

is called (the first-order) Melnikov function, and Mi(h, δ), i > 1, is called ith-order (higher-
order) Melnikov function.

Then the number of limit cycles bifurcating from the periodic orbits γh, h ∈ (h0, h1), in
system (1.15) could be determined by the number of zeros of the first non-zero Melnikov
function Mk(h, δ) in (1.17). The zeros near h = h0 correspond to the limit cycles near the center
γh0 . For the first-order Melnikov function, M1(h, δ), we have the following two theorems [84].

Theorem 1.2.5 For system (1.15) we have
(i) The Meknikov function M1(h, δ) is of class C∞ in h ≥ h0 at h = h0. If the functions H, p

and q are analytic in x and y, then M1(h, δ) is also analytic in h at h = h0.
(ii) If there exists a function Bk(δ0) , 0 such that

M1(h, δ) = Bk(δ0)hk+1 + O(hk+2) for 0 < h − h0 � 1,

then there exist ε > 0 and a neighborhood V of γh0 such that (1.15) has at most k limit cycles
in V for 0 < ε < ε0 and δ near δ0.
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In many cases (polynomial systems for example), the first-order Melnikov function may be
written in the form of

M1(h, δ) =

k∑
j=1

δ jI j(h), k ≥ 2. (1.18)

Theorem 1.2.6 Let (1.18) hold. Suppose W(h), h − h0 � 1, is the Wronskian of the functions
I1(h), I2(h), · · · , Ik(h). If W(h0) , 0, then system (1.15) has at most k − 1 limit cycles near γh0 .

When M1(h) ≡ 0, we need to consider higher-order Melnikov functions. Although higher-
order Melnikov functions can be easily expressed as iterated integrals, it is not easy to compute
them. In [42], Françoise developed a procedure to compute higher-order Melnikov functions.
Assume that for system (1.15) H, p and q are polynomials in x and y, and H satisfies the
so-called ∗-condition: for any polynomial one-form ω,

if
∮
γh

ω ≡ 0, thenω = rdH + dR,

where r and R are polynomials. We further assume that p and q can be expressed in the form
of

p(x, y, ε, δ) = p1(x, y) + εp2(x, y) + ε2 p3(x, y) + · · · ,

q(x, y, ε, δ) = q1(x, y) + εq2(x, y) + ε2q3(x, y) + · · · .
(1.19)

Then, Françoise’s procedure [42] gives

Theorem 1.2.7 Under the conditions (1.19), assume that for some k ≥ 2, M1(h) = M2(h) =

· · · = Mk−1(h) ≡ 0 in (1.17). Let ω j = q jdx − p jdy, j = 1, 2, · · · , k. Then

Mk(h) =

∮
γh

Φk,

where
Φ1 = ω1, Φm = ωm +

∑
i+ j=m

riω j, 2 ≤ m ≤ k,

and the functions ri, 1 ≤ i ≤ k − 1 are determined successively from the representation Φi =

dRi + ridH.

1.2.2 Normal form theory

Let us re-consider system (1.10) with α = 0. Then system (1.10) has a Hopf singularity at the
origin. For any positive integer m there exist two positive polynomials Q1(u, v) and Q2(u, v) of
degree 2m + 1 with

Q1(u, v) = u + O(|u, v|2), Q2(u, v) = v + O(|u, v|2),
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such that through transformations x = Q1(u, v) and y = Q2(u, v), system (1.10) can be
transformed into

u̇ = −βv +

m∑
j=1

(a ju − b jv)(u2 + v2) j + O(|u, v|2m+2),

v̇ = βu +

m∑
j=1

(b ju + a jv)(u2 + v2) j + O(|u, v|2m+2),

(1.20)

which is called the normal form of system (1.10) of order 2m + 1. In polar coordinates, the
normal form (1.20) can be rewritten as

ṙ = a1r3 + a2r5 + · · · + amr2m+1 + O(r2m+2),

θ̇ = β + b1r2 + b2r4 + · · · + bmr2m + O(r2m+1).
(1.21)

There is an equivalence relation between v2k+1 in (1.12) and ak in (1.21): ak = 0 ⇔ v2k+1 = 0
if a j = 0, v2 j+1 = 0, 1 ≤ j ≤ k − 1. Then for system (1.10), ak’s can be used to study the
center-focus problem as well as the cyclicity problem. So ak is also called the kth order focus
value of system (1.10) in the literature.

Note that the normal form (1.21) is derived from planar differential systems. Combined
with center manifold theory, normal form theory can also be applied to higher-dimensional
differential systems, to simplify the study of dynamic behaviors of orbits around a singular
point. For Hopf singular points, the normal form of a higher-dimensional system still keeps
the form of (1.21). Next, we will give a brief introduction to the center manifold theory and
normal form theory in n-dimensional systems.

Without loss of generality, any n-dimensional analytic system can be written in the
following form

ẋ = Ax + O(|xT , yT , zT |2),

ẏ = By + O(|xT , yT , zT |2),

ż = C z + O(|xT , yT , zT |2),

(1.22)

where (xT , yT , zT )T ∈ Rn, and the eigenvalues of matrices A, B and C have zero, negative and
positive real parts, respectively. Then the corresponding eigenvectors of matrix diag(A, B,C)
span three sub-spaces of Rn: center eigenspace Ec, stable eigenspace E s and unstable
eigenspace Eu, and Rn = Ec

⊕
E s

⊕
Eu. According to center manifold theorem [59], there

exist a center manifold Wc, a stable manifold W s and a unstable manifold Wu, which are
tangent to Ec, E s and Eu at the origin O, respectively, see Figure 1.2.

For real applications, we usually assume that system (1.22) does not have the unstable
manifold Wu. If the origin is a semisimple singularity, then system (1.22) becomes

ẋ = Ax + X(x, y),
ẏ = By + Y(x, y),

(1.23)

where A and B are diagonal matrices, X(x, y) and Y(x, y) are analytic functions starting at least
from second-order terms.
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Ec

Eu E s

Wc

Wu

W s

O

Figure 1.2: The stable, unstable and center manifolds for system (1.22).

Since the center manifold Wc is tangent to Ec at the origin, Wc can be expressed in terms
of the variables of Ec in the neighborhood of the origin. Assume the center manifold Wc of
system (1.23) is given by

y = h(x), |x| � 1.

Then h(0) = 0, Dh(0) = 0, and h(x) satisfies

Bh(x) + Y(x, h(x)) = Dh(x)(Ax + X(x, h(x))).

Expanding the above equation in Taylor series and balancing the coefficients of corresponding
terms, we can get the power series of h(x) up to any order we wish to obtain. In [85], the
authors presented a method to compute center manifolds to any order, and showed how to
analyze the errors of the analytical approximations.

Thus, system (1.23) restricted on the center manifold Wc is described by

ẋ = Ax + X(x, h(x)). (1.24)

Further, to simplify system (1.24), we introduce a nonlinear transformation,

x = Q(u) = u + O(|u|2), (1.25)

where Q(u) is a polynomial in u of degree 2m + 1, resulting in a simple system,

u̇ = Au + C(u) + O(|u|2m+2). (1.26)

where C(u) is a polynomial in u of degree 2m+1, and C(u) = O(|u|2). System (1.26) is obtained
by eliminating as many terms as we can through the transformation (1.25), and it is called the
normal form of system (1.23) of order 2m + 1. The terms retained in the normal form (1.26)
are called resonant terms.
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1.3 Outline and Contributions

1.3.1 Outline of thesis
The thesis is outlined as follows.

Chapter 2 contains two parts. In the first part, we shall show that the result given in [18],
which claims the existence of 11 small-amplitude limit cycles around a singular point in a
particular cubic polynomial vector field by the second order Melnikov function, is not correct.
Mistakes made in [18] leading to the erroneous conclusion have been identified. In fact, only
9 small-amplitude limit cycles can be obtained from this example after the mistakes are
corrected, which agrees with the result obtained later by using the method of normal form
computation [86].

In the second part of Chapter 2, we consider a cubic near-Hamiltonian system in the form

ẋ = y + a1xy + a2y2 + εP(x, y, ε), ẏ = −x + x2 − a1/2y2 + εQ(x, y, ε), (1.27)

where P and Q are cubic polynomials in x and y with coefficients depending analytically on
the small parameter ε. It is proved that 10 small-amplitude limit cycles can bifurcate from an
elementary center in system (1.27), for which up to 5th-order Melnikov functions are used.
This demonstrates a good example in applying higher-order Melnikov functions to study
bifurcation of limit cycles.

In Chapter 3, we consider two previously developed cubic systems in [19, 20], which have
been proved to exhibit 11 small-amplitude limit cycles. Applying a different method, we not
only prove the existence of the 11 limit cycles, but also show that one of the systems given by

ẋ = 10x(8axy − 3x2 − 9x − 12y2 − 6),

ẏ = 24a − 16ax + 90y + 15xy − 16axy2 + 60y3,

can actually have 12 small-amplitude limit cycles around a singular point under suitable cubic
perturbations. So M(3) ≥ 12. This is the best result so far obtained in cubic planar vector fields
around a singular point.

Chapter 4 is concerned with quadratic polynomial switching systems. A computationally
efficient algorithm for computing Lyapunov constants of switching systems is developed. We
apply this algorithm to the following switching Bautin system,

(
ẋ
ẏ

)
=


(
δx − y − a3x2 + (a5 + a2)xy + (a6 + a3)y2

x + δy + a2x2 + (a4 − a3)xy − a2y2

)
, y > 0,(

δx − y − b3x2 + (b5 + b2)xy + (b6 + b3)y2

x + δy + b2x2 + (b4 − b3)xy − b2y2

)
, y < 0,

(1.28)

and determine its all possible center conditions by computing resultants of Lyapunov constants
when a6b6 = 0. In addition, we prove that a switching Bautin system can have at least 10
small-amplitude limit cycles around a singular point.

Chapters 5 and 6 are devoted to computation of normal forms. Explicit, recursive
formulae are presented for simultaneously computing the normal forms, center manifolds and
nonlinear transformations for general n-dimensional systems, associated with Hopf and
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semisimple singularities, respectively. Maple programs are developed based on the analytical
formulae for Hopf bifurcation and semisimple cases with center manifolds of any dimension.
The computational efficiency of the algorithm is demonstrated by examples.

There are very few results in the literature about bifurcation of limit cycles in
higher-dimensional differential systems. As an application of our developed algorithm for
computing normal forms, in Chapter 7, we study a simple 3-dimensional differential system,
given by

ẋ1 = α x1 + x2 + f1(x1, x2, x3),
ẋ2 = −x1 + α x2 + f2(x1, x2, x3),
ẋ3 = − β x3 + f3(x1, x2, x3),

(1.29)

where α and β > 0 are parameters, and fi’s are quadratic polynomials. We obtain 7 small-
amplitude limit cycles around the origin in system (1.29).

1.3.2 Contributions of thesis
This thesis contains contributions in both theoretical development and applications, mainly in
three aspects.

(i) Obtained 10 small-amplitude limit cycles in a quadratic Hamiltonian system under cubic
polynomials perturbation by using higher-order Melnikov functions, up to 5th order.
This is an excellent example in demonstrating the powerful method of using higher-order
Melnikov function method. The result of 10 small-amplitude limit cycle is a record in
this direction of research. See Chapter 2.

(ii) The research of the candidate is focused on one special type of non-smooth dynamical
systems called switching system, which has different definitions of continuous vector
field in the two different regions divided by a straight line. Switching systems have
recently been extensively studied by researchers from many different areas. Switching
systems also serve as a rich source of open problems, see [47]. The particular problem
addressed in this thesis is: under what condition does a quadratic polynomial switching
system have a center? This is a fundamental problem and a complete answer is given
in this system, and a better result on the number of limit cycles has been obtained. See
Chapter 4.

(iii) Developed the computationally efficient algorithms and Maple programs for computing
the center manifolds and normal forms of general n-dimensional systems, associated
with Hopf singularity and semisimple singularity. These algorithms improved the
computational efficiency of the existing algorithms, and the user-friendly Maple
programs can be easily applied by those engineers and applied scientists to solve real
world problems. See Chapters 5 and 6.
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Chapter 2

Bifurcation of ten small-amplitude limit
cycles by perturbing a quadratic
Hamiltonian system

2.1 Introduction
The well-known Hilbert’s 16th problem [1] has been studied for more than one century, and the
research on this problem is still very active today. To be more specific, consider the following
planar system:

ẋ = Pn(x, y), ẏ = Qn(x, y), (2.1)

where Pn(x, y) and Qn(x, y) represent nth-degree polynomials of x and y. The second part of
Hilbert’s 16th problem is to find the upper bound, called Hilbert number H(n), on the number
of limit cycles that system (2.1) can have. The progress in the solution of the problem is
very slow. Even the simplest case n = 2 has not been completely solved, though in the early
1990’s, [2] and [3] proved that H(n) is finite for any given planar polynomial vector fields. For
general quadratic polynomial systems, the best result is H(2) ≥ 4, obtained more than 30 years
ago [4, 5]. Recently, this result was also obtained for near-integrable quadratic systems [6].
However, whether H(2) = 4 is still open. For cubic polynomial systems, many results have
been obtained on the low bound of the Hilbert number. So far, the best result for cubic systems
is H(3) ≥ 13 [7, 8]. Note that the 13 limit cycles obtained in [7, 8] are distributed around
several singular points. This number is believed to be below the maximal number which can
be obtained for generic cubic systems. A comprehensive review on the study of Hilbert’s 16th
problem can be found in the survey article [9].

In order to help understand and attack Hilbert’s 16th problem, the so called weakened
Hilbert’s 16th problem was posed by Arnold [10]. The problem is to ask for the maximal
number of isolated zeros of the Abelian integral or Melnikov function:

M(h, δ) =

∮
H(x,y)=h

Q(x, y) dx − P(x, y) dy, (2.2)

A version of this chapter has been submitted to the Journal of Differential Equations, and published on
arXiv.org.
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where H(x, y), P(x, y) and Q(x, y) are all real polynomials of x and y , and the level curves
H(x, y) = h represent at least a family of closed orbits for h ∈ (h1, h2), and δ denotes the
parameters (or coefficients) involved in Q and P. The weakened Hilbert’s 16th problem itself
is a very important and interesting problem, closely related to the study of limit cycles in the
following near-Hamiltonian system [11]:

ẋ = Hy(x, y) + ε P(x, y), ẏ = −Hx(x, y) + εQ(x, y), (2.3)

where 0 < ε � 1 is a small perturbation. Studying the bifurcation of limit cycles for such a
system can be now transformed to investigating the zeros of the first-order Melnikov function
M(h, δ), given in (2.2).

When we focus on the maximum number of small-amplitude limit cycles, M(n), bifurcating
from an elementary center or an elementary focus, one of the best-known results is M(2) = 3,
which was proved by Bautin in 1952 [12]. For n = 3, several results have been obtained (e.g.
see [13, 14, 15]). Among them, in 1995 Żoła̧dek [13] first constructed a rational Darboux
integral to show the existence of 11 small-amplitude limit cycles in a cubic vector field, which
was considered the best and was cited by many researchers in this field. The rational Darboux
integral proposed by Żoła̧dek [13] is given by

H0 =
f 5
1

f 4
2

=
(x4 + 4x2 + 4y)5

(x5 + 5x3 + 5xy + 5x/2 + a)4 , (2.4)

which in turn generates the dynamical system in the form of

ẋ = x3 + xy + 5x/2 + a,

ẏ = −ax3 + 6x2y − 3x2 + 4y2 + 2y − 2ax,
(2.5)

with the integrating factor M = 20 f 4
1 f −5

2 .
For a < −25/4, system (2.5) has a center C0 = (−a/2,−a2/4−1/2) and five (real or complex)

critical points (r,−r2−5/2−a/r), where r satisfies the polynomial equation r5−10r−4a = 0. In
addition, system (2.5) has a saddle point and a non-elementary critical point at infinity. Let h0 =

H0(C0) = −2/a. Around C0, there exists a family of periodic orbits given by γh : H0(x, y) = h,
0 < h − h0 � 1. γh approaches C0 as h→ h+

0 .
Recently, Yu & Han [14] applied a different method to system (2.5) and only got 9 small-

amplitude limit cycles. This difference motivated us to reconsider the Żoła̧dek’s example and
find that the result in [13] is not correct. In the next section, we shall present a detailed analysis
on the Żoła̧dek’s example and point out where the mistakes were made in the paper [13].

In the second part, we will present an example to demonstrate the use of higher-order
Melnikov functions to obtain 10 small-amplitude limit cycles by perturbing a quadratic
Hamiltonian system with 3rd-degree polynomial functions. In general, a perturbed quadratic
Hamiltonian system can be described by

ẋ = y + a1xy + a2y2 + εP(x, y, ε),

ẏ = −x + x2 −
1
2

a1y2 + εQ(x, y, ε),
(2.6)
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where P and Q are nth-degree polynomials of x and y with coefficients depending analytically
on the small parameter ε. When ε = 0, system (2.6) has a cubic Hamiltonian,

H(x, y) =
1
2

(x2 + y2) −
1
3

x3 +
1
2

a1xy2 +
1
3

a2y3, (2.7)

and its parameters a1 and a2 take values from the set,

Ω =

{
−1 ≤ a1 ≤ 2, 0 ≤ a2 ≤ (1 −

a1

2
)
√

1 + a1

}
.

The Hamiltonian given in (2.7) is actually the so-called normal form [16] for all quadratic
Hamiltonian systems which have a center at the origin. There exists a family of closed ovals
around the origin given by Γh : H(x, y) = h, h ∈ (0, 1

6 ).
For any h ∈ (0, 1

6 ) the displacement function d(h, ε) of system (2.6) has a representation

d(h, ε) = εM1(h) + ε2M2(h) + ε3M3(h) + · · · , (2.8)

where Mi(h) is called the ith-order Melnikov function, particularly the higher-order Melnikov
functions if i ≥ 2. Then, we may determine the number of the limit cycles of system (2.6)
emerging from the closed ovals {Γh} by studying the zeros of the first non-vanishing Melnikov
function Mi(h) in h ∈ (0, 1

6 ).
Suppose M1(h) . 0 in (2.8). Denote Z(n) the sharp upper bound of the number of zeros

of M1(h). Gavrilov [17] proved Z(2) = 2 for the Hamiltonian H with four distinct critical
values (in a complex domain). Horozov & Iliev [18] obtained a linear estimate Z(n) ≤ 5(n + 3).
Also, some sharp upper bounds were given for some particular cubic Hamiltonian: n − 1 for
the Bogdanov-Takens Hamiltonian, H = 1

2 (x2 + y2) − 1
3 x3 (see [19]), and [ 2

3 (n − 1)] for the
Hamiltonian triangle, H = 1

2 (x2 + y2) − 1
3 x3 + xy2 (see [20]).

Moreover, for the Bogdanov-Takens Hamiltonian, there are some results on the upper
bound of the number of zeros of the first nonvanishing higher-order Melnikov functions
Mk(h). Li & Zhang [21] got a sharp upper bound 2n − 2 if n is even or 2n − 3 if n is odd for
k = 2. Iliev [22] obtained a sharp upper bound 3n − 4 for k = 3, by applying the Françoise’s
procedure [23] for computing higher-order Melnikov functions. The higher-order Melnikov
functions can be also easily expressed via iterated integrals, which will be seen in the next
section.

In this chapter, we study the number of small-amplitude limit cycles in (2.6) bifurcating
from the origin, using higher-order Melnikov functions. Hereafter we suppose P and Q are
cubic polynomials with the following forms,

P(x, y, ε) =

∞∑
m=1

εm−1Pm(x, y) with Pm(x, y) =

3∑
i+ j=1

ai jmxiy j,

Q(x, y, ε) =

∞∑
m=1

εm−1Qm(x, y) with Qm(x, y) =

3∑
i+ j=1

bi jmxiy j.

(2.9)

Our main result is given below, and its proof will be given in Section 2.4.
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Theorem 2.1.1 Let the functions P and Q in (2.6) be given by (2.9). Then system (2.6) can have
[ 4k

3 ]+4 small-amplitude limit cycles around the origin, when Mk(h) is the first non-vanishing
Melnikov function in (2.8), 1 ≤ k ≤ 5.

Remark 1. It follows from Theorem 2.1.1 that 10 small-amplitude limit cycles exist in the
vicinity of the origin of system (2.6) when k = 5, i.e., M(3) ≥ 10.

The rest of the chapter is organized as follow. In the next section, we consider the
Żoła̧dek’s example [13], and show that the result given in [13] is not correct. In Section 2.3,
we present some preliminary results for polynomial one-forms with respect to the
Hamiltonian (2.7). Then, in Section 2.4 by choosing special forms for the polynomials P and
Q without loss of generality, we prove Theorem 2.1.1. Finally, conclusion is drawn in Section
2.5.

2.2 Żoła̧dek’s example
In this section, we consider the Żoła̧dek’s example, described by (2.4) and (2.5), and briefly
describe the method used in [13]. Suppose the perturbed system of (2.5) is described by

ẋ = M−1H0y + εp(x, y, ε),

ẏ = −M−1H0x + εq(x, y, ε),
(2.10)

where p(x, y, ε) and q(x, y, ε) are polynomials of x and y with coefficients depending
analytically on the small parameter ε and max(deg(p), deg(q)) ≤ 3.

Let S be a section transversal to the closed orbit γh. Using H0 = h as a parameter, 0 <
h − h0 � 1, we define the Poincaré map P(h, ε) of system (2.10), and thus the corresponding
displacement function, d(h, ε) = P(h, ε) − h has the form

d(h, ε) = ε

∫
L(h,ε)

M(qdx − pdy) = εM1(h) + ε2M2(h) + O(ε3), (2.11)

where L(h, ε) is a trajectory of the perturbed system (2.10). We can use the first non-vanishing
Melnikov function Mk(h) in (2.11) to investigate the number of the limit cycles around the
center C0. Generally, the zeros of Mk(h) correspond to the limit cycles of system (2.10).

Let$ = qdx−pdy, deg($) = max(deg(p), deg(q)). Then, the first-order Melnikov function
M1(h) can be expressed in the form of

M1(h) =

∮
γh

M$|ε=0 = h
∮
γh

$

f1 f2

∣∣∣∣∣
ε=0

.

When M1(h) ≡ 0, we may use an iterated integral to express the second-order Melnikov
function M2(h). The first integral of system (2.10) can be approximated as Hε = H0 − εH1,
where the function H1(B) is the integral H1(B) =

∫ B

A
M$|ε=0, computing along the γh, with

A = γh
⋂

S and B ∈ γh. Thus, for system (2.10) we have the second-order Melnikov function,
given by

M2(h) =
d
dε

( ∫
Hε=h

M$
)∣∣∣∣∣∣
ε=0

. (2.12)
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Suppose that the polynomials p and q are expanded as

p(x, y, ε) = p1(x, y) + εp2(x, y) + O(ε2),
q(x, y, ε) = q1(x, y) + εq2(x, y) + O(ε2).

Further, let $i = qidx − pidy, i = 1, 2. Then (2.12) can be rewritten as

M2(h) =
d
dε

( ∫
Hε=h

M$1

)∣∣∣∣∣∣
ε=0

+

∮
γh

M$2 =

∮
γh

d(M$1)
dH0

H1 + h
∮
γh

$2

f1 f2
, (2.13)

where d(M$1)
dH0

is the Gelfand-Leray form (see [24]).
In [13], the author studied small-amplitude limit cycles of system (2.10), bifurcating from

the center C0, by using the second-order Melnikov function M2(h). More precisely, for (2.13),
the author chose twelve Abelian integrals Iωi(h) =

∮
γh
ωi/( f1 f2), i = 1, . . . , 12, where one-forms

ωi are given as follows:

ωk = xk−1dx, k = 1, 2, 3, 4, ω5 = (18x2 + 18y + 5)dx, ω6 = xydx,

ω7 = x2ydx, ω8 = xy2dx, ω9 = y3dx, ω10 = xy2dy, ω11 = y3dy,

ω12 = y2(5 − 3x2)dx + xy(x2 + 1)dy.

Then, by showing the independency of the integrals Iωi(h), the author claimed that 11 small-
amplitude limit cycles could bifurcate from the center C0 after suitable cubic perturbations.

Later, system (2.10) was re-investigated by using the method of focus values
computation [14]. Based on the computation of ε-order and ε2-order focus values, the authors
of [14] showed that system (2.10) has at most 9 small-amplitude limit cycles bifurcating from
the center C0. This obvious difference raises a question: which conclusion is correct? If the
result of 11 limit cycles is not correct, then what possible mistakes were made in the
article [13]? In the following, we will answer these questions.

In [13], a key part in the proof of the existence of 11 limit cycles is the lemma in Section
5.1, which states that the eleven integrals, Iω j(h), j = 1, . . . , 11, form a basis of the linear space
of integrals Iω(h) =

∮
γh
ω/( f1 f2), deg(ω) ≤ 3. We will show that this is not true. Firstly, we find

the relation aIω4(h) − Iω5(h) = 0, showing that Iω4(h) and Iω5(h) are linearly dependent. This
can be seen from the proof of the lemma [13], where the author obtained nine one-forms η j,
j = 1, . . . , 9 such that Iη j(h) = 0, where

η1 = (x3 + 2x)dx + dy,

η2 = (−3ax2 + 12xy − 6x − 2a)dx − (3x2 + y + 5/2)dy,

η3 = (6x2 + 8y + 2)dx − xdy,

η4 = (−3ax3 + 12x2y − 6x2 − 2ax)dx − (2x3 − a)dy,

η5 = (ax3 + 3x2 + 4y2 + 2ax)dx − xydy,

η6 = (−ax3 + 6x2y − 3x2 + 4y2 + 2y − 2ax)dx − (x3 + xy + 5x/2 + a)dy,

η7 = (3ax2y − 12xy2 + 6xy + 2ay)dx − (3x2y − ax3 − 3x2 + 3y2 − y/2 − 2ax)dy,

η8 = (−5x3 − 7xy + x/2 + a)dx + x2dy,

η9 = (21xy/2 − 7xy2 + ay)dx + (2x2y − 3x2/2 + ax + y)dy.
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It is easy to show that (3aη1−5η3−η4)/2−η5 +η6 = aω4−ω5, which yields aIω4(h)− Iω5(h) = 0.
Secondly, we find another one-form η10, given by

η10 =
[
− 29

3 ax3 − 8
3y3 − (2a2 − 5

2 )x2 − 9axy + 6y2 + 13
6 ax + a2]dx + xy2dy,

such that the integral Iη10(h) vanishes near h0. Therefore, based on these ten one-forms η j,
1 ≤ j ≤ 10, we can remove Iω5(h) from the basis without adding another integral. Thus, the
number of integrals in the basis claimed in [13] should be one less.

Next, consider the integral Iω12(h), whereω12 = y2(5−3x2)dx+xy(x2+1)dy, which was used
in [13] when the second-order Melnikov function was considered. Obviously, deg(ω12) = 4.
In Remark 7 of [13], the author showed that Iω12(h) could appear in the second-order Melnikov
function M2(h) of system (2.10), under a suitable perturbation.

However, Iω12(h) has no contribution to generate small-amplitude limit cycles in the vicinity
of C0, since for x2y2dx and x3ydy in ω12, we can show that there are two one-forms ξ1 and ξ2,
given by

ξ1 =
[
x2y2 −

1
36

a(a2 + 144)x3 + (a2 + 3)x2y +
11
6

axy2 −
4
9

y3 +
1

24
(3a4 − 28a2 + 46)x2

+
1
6

a(6a2 − 7)xy +
1
6

(3a2 + 4)y2 +
1

72
a(9a4 + 36a2 + 77)x +

1
12

(3a4 − 10a2 + 12)y

+
1

288
(9a6 + 36a4 + 100a2 + 80)

]
dx,

ξ2 =
[ 1
48

a(a2 − 60)x3 −
3
2

(a2 + 4)x2y −
19
4

axy2 +
4
3

y3 −
1

16
(3a4 + 70a2 − 16)x2

−
1
2

a(3a2 − 4)xy − (3a2 + 2)y2 +
1

48
a(3a4 − 36a2 + 137)x −

1
16

(15a4 + 2a2 + 48)y

+
1
32

a4 +
1

48
a2 −

5
6
]
dx +

[
x3y +

1
4

(a2 + 2)x3 +
3
2

ax2y +
3
8

a(a2 + 2)x2 +
3
4

a2xy

+
3
16

a2(a2 + 2)x +
1
8

a3y +
1

32
a3(a2 + 2)

]
dy,

satisfying Iξ1(h) = Iξ2(h) = 0 for 0 < h − h0 � 1. This implies that Iω12(h) can be expressed as
a linear combination of integrals Iω(h), deg(ω) ≤ 3, for h near h0.

Summarizing the above results shows that Iω5(h) and Iω12(h) can be removed from the basis,
since they can be expressed as linear combinations of the other elements in the basis. Thereby,
now there are only ten of the integrals chosen in [13] left. This clearly indicates that at most 9
(not 11) small-amplitude limit cycles may appear in the vicinity of the center C0.

In [13], having obtained the twelve integrals Iω j(h), 1 ≤ j ≤ 12, in order to show the
existence of 11 limit cycles, the author tried to prove the independency of the twelve integrals.
In the first place, the author showed that Iω11(h) is independent of the other integrals Iω j(h),
j , 11, by considering the behavior of the integrals at h = 1. In order to prove the independency
of the remaining integrals Iω j(h), j , 11, the author considered the integrals Iω as functions
of two variables h ∈ C and a ∈ C. With prolonging Iω(h, a) to the point a = 0, the author
used the independency of the integrals, Iω j(h, a), j , 11, for a close to 0, to determine their
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independence for generic a ∈ C. The closed orbit γh has the form

γh =

{
(x, y) : x = εeiθ, y = −

1
2

+
ε

5
e−iθ + O(ε2), θ ∈ [0, 2π]

}
ε = (−h)−1/82−5/8,

(2.14)

for a = 0 and h is close to the critical value h0 = −2/a = ∞.
In addition, the author introduced new variables u and v in the following form,

u =
1

H1/4
0 x

, H0v4 = 1 +
4
x2 +

4y
x4 .

Let Ki, j =
∫
δh

uiv jdv, where δh is the image of the closed orbit γh defined in (2.14) under the
change of variables. In Lemma 3 of [13], the integrals Iω j(h, 0) and some partial derivatives
with respect to a, for h close to h0, are expressed in terms of h and Ki, j. Using these expressions
and eleven independent functions: 1, τ−1, (τ−1)/τ, gi, j = h1/4Ki, j(h), (i, j) = (−1, 0), (−1,−1),
(−2, 0), (−2,−1), (1, 0), (1,−1) and h1/2K−2,2, h1/4K−3,2, the author claimed the independency of
integrals Iω j(h, a), j , 11 for a close to 0. Especially, the expressions for Iω5 and its derivatives
with respect to a in Lemma 3 were given by

Iω5(h, 0) = 0,
∂Iω5

∂a
(h, 0) = Iω4(h, 0),

∂

∂a

(∂Iω5

∂a
− Iω4

)
(h, 0) =

9
56

h1/2K−2,2 +

0∑
j=−2

α jh−1/2K−2, j.

(2.15)

Based on the third equation of (2.15), the author claimed the independence of Iω5 from other
integrals. But this is not correct since we have already shown that aIω4(h)−Iω5(h) = 0, implying
that the third equation of (2.15) should be replaced by

∂

∂a

(∂Iω5

∂a
− Iω4 − a

∂Iω4

∂a

)
(h, 0) ≡ 0,

which is the correct second-order derivative of the function F(h, a) = Iω5(h) − aIω4(h). For
the integral Iω12(h), the author made a similar error in the proof of its independence from other
integrals.

2.3 Cubic Hamiltonians with cubic perturbations

In order to prove Theorem 2.1.1, we need some preliminary results for cubic Hamiltonians
with cubic perturbations. Let ωi j = xiy jdx and σi j = xiy jdy.
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Lemma 2.3.1 For the cubic Hamiltonian given in (2.7), the following identities hold.

(a) σi j =
1

j + 1
d(xiy j+1) −

i
j + 1

ωi−1, j+1;

(b) ωi j = ωi−1, j +
j − 2i + 4

2 j + 4
a1ωi−2, j+2 −

i − 2
j + 2

ωi−3, j+2 −
i − 2
j + 3

a2ωi−3, j+3

− xi−2y jdH + d
( 1

j + 2
xi−2y j+2 +

a1

j + 2
xi−1y j+2 +

a2

j + 3
xi−2y j+3), i ≥ 2;

(c) ω0, j =
3 j

a2( j + 1)
[
Hω0, j−3 −

1
6
ω1, j−3 −

a1( j − 3) + 6 j − 2
12( j − 1)

ω0, j−1 −
a1( j + 1)
3( j − 1)

ω1, j−1

+ r0, j(x, y)dH + dR0, j(x, y)
]
, j ≥ 3;

(d) ω1, j =
3 j

a2( j + 2)
[
Hω1, j−3 −

( j + 2)a2
1

6( j + 1)
ω0, j+1 +

a2

6 j
ω0, j −

a1(5 j + 3) + 6 j + 2
12( j − 1)

ω1, j−1

−
a1 j − 3a1 − 2

12( j − 1)
ω0, j−1 −

1
6
ω1, j−3 + r1, j(x, y)dH + dR1, j(x, y)

]
, j ≥ 3;

where ri, j(x, y) and Ri, j(x, y) are polynomials in x and y with degrees i + j − 2 and i + j + 1,
respectively.

Proof A direct calculation using integration by parts yields formula (a). From the
Hamiltonian, we have the equation 1

3 x3 = 1
2 (x2 + y2) + 1

2a1xy2 + 1
3a2y3 − H, giving

x2dx = xdx + ydy +
a1

2
y2dx + a1xydy + a2y2dy − dH,

which yields

ωi, j = ωi−1, j + σi−2, j+1 +
a1

2
ωi−2, j+2 + a1σi−1, j+1 + a2σi−2, j+2 − xi−2y jdH, i ≥ 2. (2.16)

Then, combining (2.16) with the formula (a) results in the formula (b).
Similarly, the equation 1

3a2y3 = H − 1
2 (x2 + y2) + 1

3 x3 − 1
2a1xy2 generates

1
3

a2ωi, j = Hωi, j−3 −
1
2
ωi+2, j−3 −

1
2
ωi, j−1 +

1
3
ωi+3, j−3 −

1
2

a1ωi+1, j−1, j ≥ 3. (2.17)

Finally, the formulas (c) and (d) follow the formula (b) and (2.17).

From Lemma 2.3.1, we know that any polynomial one-form ω, deg(ω) = m, can be
expressed in the form of

ω = r(x, y)dH + dR(x, y) +
∑
i=0,1

m−i∑
j=0

αi, jωi, j.

The next lemma shows that there also exist some relationships among the one-forms ωi, j, i =

0, 1.
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Lemma 2.3.2 For any non-negative integer m mod 3 , 2, there exist βi, j,m, r̃m(x, y) and
R̃m(x, y) satisfying the following identity∑

i=0,1

m−i∑
j=0

βi, j,mωi, j = r̃m(x, y)dH + dR̃m(x, y), (2.18)

where R̃m(x, y) and r̃m(x, y) are polynomials of degrees m+1 and m−1 in x and y, respectively;
and βi, j,m are polynomials in a1 and a2, with β0,0,0 = β1,0,1 = 1, β0,1,1 = 0, and

β0,m+3,m+3 =
m + 4

3(m + 3)
(a2β0,m,m +

a2
1

2
β1,m−1,m),

β1,m+2,m+3 =
m + 4

3(m + 2)
(a1β0,m,m + a2β1,m−1,m),

(2.19)

if β1,−1,0 is defined as β1,−1,0 = 0.

Proof We use the method of mathematical induction to prove this lemma. It is easy to see that
the conclusion is true for m = 0, 1. Now, suppose (2.18) holds for m mod 3 , 2. Then, we
prove that (2.18) also holds for m + 3. Multiplying (2.18) by H on both sides yields∑

i=0,1

m−i∑
j=0

βi, j,mHωi, j = Hr̃mdH + HdR̃m. (2.20)

The right-hand side of (2.20) can be rewritten as

Hr̃mdH + HdR̃m = (Hr̃m − R̃m)dH + d(HR̃m). (2.21)

For the left-hand side of (2.20), it follows from the formulas (c) and (d) in Lemma 2.3.1 that

Hωi, j = ξi, j+3 + ηi, j+3, i + j < m,

Hω0,m =
a2(m + 4)
3(m + 3)

ω0,m+3 +
a1(m + 4)
3(m + 2)

ω1,m+2 + η0,m+3,

Hω1,m−1 =
a2

1(m + 4)
6(m + 3)

ω0,m+3 +
a2(m + 4)
3(m + 2)

ω1,m+2 + η1,m+2, m > 0,

(2.22)

where ηi, j = ri, jdH + dRi, j, and ξi, j is a one-form with deg(ξi, j) ≤ i + j. Then, substituting (2.22)
into the left-hand side of (2.20) yields∑

i=0,1

m−i∑
j=0

βi, jHωi, j =
m + 4

3(m + 3)
(a2β0,m,m +

a2
1

2
β1,m−1,m)ω0,m+3

+
m + 4

3(m + 2)
(a1β0,m,m + a2β1,m−1,m)ω1,m+2

+
∑
i=0,1

m−i∑
j=0

βi, j(ξi, j+3 + ηi, j+3).

(2.23)

Finally, combining (2.23) with (2.20) and (2.21) shows that the conclusion is also true for m+3.
The proof of the lemma is complete.
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Noting that β0,0,0 = β1,0,1 = 1, β1,−1,0 = β0,1,1 = 0, we know from (2.19) that βk,m−k,m in
Lemma 2.3.2 are polynomials in a1 and a2 with positive coefficients for m mod 3 = k, k < 2.
Thus, ωk,m−k can be expressed in terms of other one-forms ωi, j, i + j ≤ m and rmdH + dRm. This
gives the following lemma.

Lemma 2.3.3 Any polynomial one-form ω of degree m can be expressed as

ω = r(x, y)dH + dR(x, y) +
∑
i=0,1

1≤ j≤m−i∑
j mod 3,0

αi jωi j, (2.24)

where R(x, y) and r(x, y) are polynomials of degrees m + 1 and m − 1 in x and y, respectively.

Now, it follows from (2.24) that

M(h) =

∮
Γh

ω =
∑
i=0,1

1≤ j≤m−i∑
j mod 3,0

αi j

∮
Γh

ωi j, (2.25)

that is, any Melnikov function M(h) =
∮

Γh
ω, deg(ω) = m, can be expressed as a linear

combination of integrals Ii j(h) =
∮

Γh
ωi j, i = 0, 1, j mod 3 , 0. A reasonable expectation is

that the integrals Ii, j(h) form a basis for the linear space of Melnikov functions M(h) =
∮

Γh
ω.

Actually, it will be seen in the next section that the space of Melnikov functions M(h) could
be Chebyshev with accuracy at least 2. So the number of limit cycles in system (2.6) is not
determined by the number of elements in the basis. Further, the coefficients αi, j in (2.25)
could become very complicated when M(h) is a higher-order Melnikov function of system
(2.6). In this case, it is really not easy to prove the independency of αi, js, which is the second
big obstacle in the use of the independency of the integrals Ii, j(h) to determine the number of
limit cycles.

To overcome the above mentioned difficulty, we turn to an alternative, which decreases the
complexity in computing M(h) by (2.24), but it still does not solve the problem of independency
of basis. Let ω j = Q j(x, y)dx−P j(x, y)dy. Then, for higher-order Melnikov functions of system
(2.6), we have the following result.

Lemma 2.3.4 (cf. [22, 23]) Let (2.9) hold. Assume that for some k ≥ 2, system (2.6) has

Mm(h) =

∮
Γh

rmdH + dRm ≡ 0, 1 ≤ m ≤ k − 1. (2.26)

Then,

Mk(h) =

∮
Γh

(ωk +
∑
i+ j=k

riω j),

rmdH + dRm = ωm +
∑

i+ j=m

riω j, 1 ≤ m ≤ k − 1.
(2.27)
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Proof We prove this lemma by using the method of mathematical induction. First, write
system (2.6) in the Pfaffian form,

dH − εω1 − ε
2ω2 − · · · = 0. (2.28)

Multiplying (2.28) by 1 + εr1 + . . . + εk−1rk−1 and combing the like terms yield

dH + ε(r1dH − ω1) + ε2(r2dH − r1ω1 − ω2) + · · ·

+ εk(−rk−1ω1 − · · · − r1ωk−1 − ωk) + O(εk+1) = 0,

which, by using (2.27), can be written as

dH − εdR1 − · · · − ε
k−1dRk−1 − ε

k(rk−1ω1 + · · · + r1ωk−1 + ωk) + O(εk+1) = 0.

Then, we integrate the above equation along the phase curve γ from point A to point B, which
are used to define the first return map. Note that

d(h, ε) =

∫
γ

dH = H(B) − H(A) = O(|A − B|)

and ∣∣∣∣ ∫
γ

(εdR1 + ε2dR2 + · · · + εk−1dRk−1)
∣∣∣∣ = εO(|A − B|).

In addition, it follows from (2.8) and (2.26) that d(h, ε) = O(εk). Therefore, |A − B| = O(εk)
and we finally obtain

d(h, ε) = εk
∫
γ

(rk−1ω1 + · · · + r1ωk−1 + ωk) + O(εk+1),

which yields

Mk(h) =

∮
Γh

(ωk +
∑
i+ j=k

riω j).

The proof is finished.

2.4 Proof of Theorem 2.1.1
Now we are ready to prove our main result – Theorem 2.1.1.

Proof We return to system (2.6) with P(x, y) and Q(x, y) defined in (2.9), and want to use
higher-order Melnikov functions to prove the existence of 10 small-amplitude limit cycles
around the origin.

Due to the difficulty in the proof of independency of basis, we use the computation of focus
values to prove the theorem. However, the computation becomes very demanding or almost
impossible for computing higher-order focus values if all the coefficients are retained in the
computation, and in fact many terms are not necessarily needed. Thus, before computing the
focus values of system (2.6), without loss of generality, we want to simplify this system, by
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choosing a group of coefficients ai jm, bi jm in the polynomials P(x, y) and Q(x, y), which does
not affect the number of limit cycles bifurcating from the origin.

In the following, we shall show how to choose a group of coefficients which are necessary
for the first non-vanishing Melnikov function Mk(h) in (2.8). Based on the results presented in
the previous section (in particular, Lemmas 2.3.1, 2.3.3 and 2.3.4), we provide an algorithm as
follows.

Consider M1(h) in system (2.6), we know M1(h) =
∮

Γh
ω1. Using Lemma 2.3.3, we have

ω1 = Q1dx − P1dy =

1∑
i=0

2∑
j=1

αi j1xiy jdx + r1dH + dR1, (2.29)

with r1 = −(b211 + 3a301)y. Then,

M1(h) =

∮
Γh

(α011ydx + α111xydx + α021y2dx + α121xy2dx).

It is seen that M1(h) depends on αi j1, i = 0, 1, j = 1, 2. So only four coefficients in the
polynomials P1(x, y) and Q1(x, y) are needed in order to keep αi j1, i = 0, 1, j = 1, 2 being
independent without decreasing the number of zeros of M1(h). We choose these four
coefficients as bi j1, i = 0, 1, j = 1, 2. (Certainly, this is not a unique choice.) Then, we have
polynomials

P1(x, y) = 0, Q1(x, y) = b011x + b111xy + b021y2 + b121xy2. (2.30)

Next, let us consider M2(h) when M1(h) =
∮

Γh
r1dH + dR1 ≡ 0, i.e., all αi j1 = 0 in (2.29).

Lemma 2.3.4 gives M2(h) =
∮

Γh
ω̃2, where ω̃2 = ω2 + r1ω1. Thus, by using Lemma 2.3.3, we

obtain

ω̃2 =

1∑
i=0

2∑
j=1

αi j2xiy jdx + α042y4dx + r2dH + dR2,

which shows that M2(h) depends on αi j2, i = 0, 1, j = 1, 2 and α042. Obviously, the coefficient
α042 is derived from r1ω1 by Lemma 2.3.3 because the one-form y4dx of degree 4 comes from
r1ω1. For ε-order perturbations, bi j1, i = 0, 1 j = 1, 2 are needed to get all αi j1 = 0 in (2.29).
For r1 we may simply take b211 = 1 and a301 = 0, yielding r1 = −y. We also see that the
one-form y4dx can be derived from x3ydx by using the formula (b) in Lemma 2.3.1. Hence, we
may choose b301 for α042 so that b301x3ydx could appear in r1ω1. For αi j2, i = 0, 1, j = 1, 2, by
an argument similar to that for M1(h), we choose b012, b112, b022 and b122. Hence, we obtain the
following polynomials,

P1(x, y) = 0, Q1(x, y) = b011x+b111xy+b021y2+b121xy2+b301x3+x2y,

P2(x, y) = 0, Q2(x, y) = b012x + b112xy + b022y2 + b122xy2.
(2.31)

Following the above procedure, we can choose the coefficients for M3(h), and so on. We
list the polynomials for up to M5(h) in the following (the detailed arguments are omitted here
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for brevity)

P j(x, y) = a21 jx2y + a12 jxy2, j = 1, 2, 3, P4(x, y) = P5(x, y) = 0,

Q1(x, y) = b011y+b111xy+b021y2+b121xy2+b301x3+b031y3+b211x2y,

Q2(x, y) = b012y + b112xy + b022y2 + b122xy2 + b302x3 + b032y3,

Q3(x, y) = b013y + b113xy + b023y2 + b123xy2 + b303x3,

Q4(x, y) = b014y + b114xy + b024y2 + b124xy2 + b304x3,

Q5(x, y) = b015y + b115xy + b025y2 + b125xy2.

(2.32)

Here, the difficult part is to compute the functions ri, i = 1, 2, 3, 4 in ω̃i.
Having determined the coefficients we need in P and Q of system (2.6), we now use the

computation of focus values to prove the existence of 10 small-amplitude limit cycles. We
compute the focus values up to ε5 order as follows:

V =

5∑
i=0

εiVi, where Vi = {vi0, vi1, vi2, · · · }. (2.33)

We call vi j the jth εi-order focus value of system (2.6), and note that v0 j = 0, j = 0, 1, 2, . . .
since at ε = 0 system (2.6) is a Hamiltonian system. The computation of Vi is equivalent to
the computation of ith-order Melnikov function Mi(h). But the computation of focus values is
much easier than that of the higher-order Melnikov functions. The disadvantage of the focus
value computation is that conditions obtained from the first few focus values can not be used
to prove an infinite number of focus values to equal zero. But this can be easily verified by the
above formulas ω̃i.

The focus values vi j can be obtained by using many different symbolic programs (e.g., the
Maple program developed in [25]). Firstly, note that vi0 = 1

2 b01i, i = 1, 2, . . . . In order to
execute the Maple program, set b01i = 0, i = 1, 2, . . . . In addition, set b211 = 1. Now, we start
from V1 and obtain

v11 = 1
8 (a121 + 3b031 + b111 −

1
2a1b111 − 2a2b021 + 1).

Setting v11 = 0 yields b031 = (1
2a1b111 + 2a2b021 − a121 − b111 − 1)/3. Further, setting v12 = 0

results in

b121 = a1b021 − a211 +
1

4a2(5a1 − 2)
(3a2

1 + 20a2
2 + 4a1 − 20)(b111 + 1).

Then, we have

v13 =
35

3072(5a1 − 2)
(b111 + 1)(a3

1 − 3a2
1 + 4 − 4a2

2)F11,

v14 =
−7

73728(+5a1 − 2)
(b111 + 1)(a3

1 − 3a2
1 + 4 − 4a2

2)F12,

v15 =
−7

84934656(+5a1 − 2)
(b111 + 1)(a3

1 − 3a2
1 + 4 − 4a2

2)F13,
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where

F11 = 3a2
1 + 12a1 − 4 − 4a2

2,

F12 = 27a4
1 − 90a3

1 − 1308a2
1 + 1608a1 − 256 + (420a2

1 + 1608a1 − 1376 − 256a2
2)a2

2,

F13 = 19683a6
1 + 343116a5

1 − 124524a4
1 − 6168672a3

1 + 7612368a2
1 + 1585344a1 − 1071424

+4[3(140715a4
1 + 622536a3

1 + 39880a2
1 − 1689568a1 + 421808)

−(404508a2
1 − 396336a1 + 267856a2

2 − 1265424)a2
2]a2

2.

It is easy to see that setting b111 = −1 results in v13 = v14 = v15 = · · · = 0, as discussed
above. In order to obtain maximal number of small-amplitude limit cycles bifurcating from the
origin, we have to use the coefficients a1 and a2 to solve F11 = F12 = 0 (i.e., v13 = v14 = 0).
If the solution of F11 = F12 = 0 yields F13 , 0, i.e., we have parameter values such that
v10 = v11 = · · · = v14 = 0, but v15 , 0, then we obtain 5 small-amplitude limit cycles by
properly perturbing b011, b031, b021, a1 and a2, respectively. In fact, by using the Groebner
basis reduction procedure, we can reduce F12 and F13 to

F̃12 = F12|F11=0 = 18(a1 + 2)(11a3
1 + 46a2

1 − 84a1 + 24),

F̃13 = F13|F11=F̃12=0 = −
179712

121
(a1 + 2)(3073a2

1 − 5272a1 + 1500) , 0.

In fact, solving the system of two equations, F11 = F12 = 0 (or F11 = F̃12 = 0) we obtain the
solutions for a1 as follows:

a1 = ai
11, a2 = ai

21 = ±1
2

√
3(ai

11)2 + 12ai
11 − 4, i = 1, 2, 3, for which

a1
11 = −5.61185383 · · · , a2

11 = 0.36507058 · · · , a3
11 = 1.06496506 · · · ,

(2.34)

where the second number ‘1’ in the subscripts of ai
11 and ai

21 denotes the solutions
corresponding to the first-order Melnikov function, i.e, k = 1. Note that a1 = −2 is not a
solution of F11 = 0. Further, we obtain

det
(
∂(F11, F12)
∂(a1, a2)

)
F11=F̃12=0

= 576a2(a1 + 1)(11a2
1 + 40a1 − 36) , 0,

which can be easily verified by directly substituting the solutions given in (2.34) into the above
determinant.

Summarizing the above results we can conclude that based on the ε1-order focus values
(equivalently based on the first-order Melnikov function M1(h)) we obtain at most 5 small-
amplitude limit cycles around the origin.

Now let b111 = −1, then b121 = a1b021 − 1 and b031 = −1
3 (a121 + 1

2a1 − 2a2b021), under which
all ε1-order focus values vanish, or equivalently, the first-order Melnikov function M1(h) ≡ 0.
Then, one uses the ε2-order focus values to solve the polynomial equations v21 = v22 = v23 = 0,
yielding the solutions for b032, b122 and b112. Under these solutions, we further obtain

v24 = − F20F21/(3a2
1 + 12a1 − 4 − 4a2

2)/36864,

v25 = F20F22/(3a2
1 + 12a1 − 4 − 4a2

2)/31850496,

v26 = 11F20F23/(3a2
1 + 12a1 − 4 − 4a2

2)/107297229312,
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for which we have applied the Groebner basis reduction procedure to obtain

F20 = [2(3a3
1 − 4a2

2)b021 − 3(a3
1 − 4a2

2)b301 − 6a2
1a211 + 4a2a121 − 4a1a2b211]b211

+12a1(a1a121 − a2a211)b021,

F21 = 81a4
1 − 648a3

1 − 648a2
1 + 1632a1 − 880 − (504a2

1 − 1632a1 − 1696 + 880a2
2)a2

2,

F̃22 = F22|F21=0

= 1408[243a3
1 − 522a2

1 + 5172a1 + 6664 + (1053a2
1 − 2424a1 − 5572 + 1300a2

2)a2
2]a2

2

−50688(63a3
1 + 56a2

1 − 148a1 + 80),
F̃23 = F23|F21=F̃22=0

= 72(675121644a3
1 + 475639745a2

1 − 1491227668a1 + 849702020)
+{3893155245a3

1 + 22056197796a2
1 − 131201934348a1 − 117343356608

+20[303274623a1 + 3083354476 − 26(55458a1 − 130879)a2
2]a2

2}a
2
2 , 0,

Similarly, we obtain the following solutions satisfying F21 = F̃22 = 0:

a1 = ai
12, i = 1, 2, . . . , 7,

a2 = ai
22 =

√
10179a6

1−81864a5
1−179172a4

1+204992a3
1−32496a2

1−124032a1+66880
4(5109a4

1+12076a3
1−75936a2

1−167664a1+48944)
, (a1 = ai

12),

where
a1

12 = −2.43192492 · · · , a2
12 = 0.12148877 · · · , a3

12 = 0.23963547 · · · ,
a4

12 = 0.89471272 · · · , a5
12 = 1.60031174 · · · , a6

12 = 7.33752703 · · · ,
a7

12 = 10.40950390 · · · .

(2.35)

In addition, we can show that for the above solutions the following determinant is non-zero,

det
(
∂(F21, F22)
∂(a1, a2)

)
F21=F̃22=0

=
360448

351
a2{36(1571445a3

1 + 860083a2
1 − 3207848a1 + 1911580)

+ a2
2[4977612a3

1 + 24045705a2
1 − 138196596a1 − 132836684

+ 20a2
2(−119877a1 + 2945227 + 169a2

2(459a1 + 1799))]} , 0.

The above results show that we have parameter values such that v20 = v21 = · · · = v25 = 0, but
v26 , 0. Then, taking proper perturbations on the coefficients b012, b032, b122, b112, a1 and a2

yields 6 small-amplitude limit cycles around the origin of system (2.6) when the ε2-order focus
values (or the second-order Melnikov function M2(h)) are used.

In order to get more limit cycles, we let F20 = 0 and solve this equation for b301, yielding
all the ε2-order focus values v2 j = 0. Under the conditions obtained above, we then use the
ε3-order focus values v3 j to determine the number of small-amplitude limit cycles. Similarly,
we may linearly solve the polynomial equations v31 = v32 = v33 = v34 = 0 for the coefficients
b023, b123, b113 and b302. After this, no coefficients can be solved linearly. So we solve a211 from
the equation, v35 = 0, which is quadratic about a211, to obtain two solutions a±211. We choose
a211 = a+

211 and then v36, v37 and v38 are simplified to

v36 = −624 F30 F31, v37 = −1248 F30 F32, v38 = −208 F30 F33,
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where F30 is a lengthy irrational function, and we further apply the Groebner reduction
procedure to F32 and F33 to obtain

F31 = 405a4
1 + 6264a3

1 + 6264a2
1 − 5664a1 + 1360 − 8(99a2

1 + 708a1 + 524 − 170a2
2)a2

2,

F̃32 = F32|F31=0

= 4(261117a3
1 + 307422a2

1 − 260532a1 + 60680) − [9(1035a3
1 + 13266a2

1

+ 111492a1 + 84376 + 5(513a2
1 − 4824a1 − 57156 + 2660a2

2)a2
2]a2

2,

F̃33 = F32|F31=F̃32=0

= 4(152348063679a3
1 + 175217936814a2

1 − 151386504684a1

+ 35757329960) + {7428338685a3
1 − 38896637238a2

1

− 568264627476a1 − 439876872808 − 20[714254595a1 − 6998804702

− 380(11970a1 + 132193)a2
2]a2

2}a
2
2 , 0.

Solving F31 = F̃32 = 0 yields

a1 = a13 = 0.01871627 · · · ,

a2 = a23 = ±

√
99a2

13+708a13+524−12
√

1104+8496a13+504a2
13−2724a3

13−171a4
13

340 .
(2.36)

Further, we have

det
(
∂(F31, F32)
∂(a1, a2)

)
(a1,a2)=(a13,a23)

= −0.1124026367 · · · × 1010 , 0.

This, together with the above results, suggests that we may have parameter values such that
v3i = 0, i = 0, 1, 2, . . . , 7, v38 , 0, and so the system could have at most 8 small-amplitude
limit cycles. Then, properly applying perturbations on the coefficients, b013, b023, b123, b113,
b302, a211, a1 and a2 yields 8 limit cycles,

Now, we want all ε3-order focus values to vanish (i.e., M3(h) ≡ 0). This can be achieved
by solving the coefficient a121 from a polynomial equation. Having obtained the conditions
for which all the ε1-, ε2- and ε3-order focus values vanish, we now use the ε4-order focus
values to linearly solve for b024, b124, b114, b303, a212 and a122 one by one from the equations
v41 = v42 = v43 = v44 = v45 = v46 = 0. Then, the higher-order focus values are given by

v47 =
13

1179648
F40F41, v48 =

−13
127401984

F40F41, v49 =
13

244611809280
F40F41,

where F40 is a common factor, and F41, F42 and F43 are functions of a1 and a2, given by

F41 =37179a8
1 − 524880a7

1 − 4747248a6
1 − 12436416a5

1 + 7737120a4
1 + 13042944a3

1

− 17299200a2
1 + 6945792a1 − 578816 − 16a2

2{12393a6
1 − 802548a4

1 − 102708a5
1

− 1317600a3
1 − 40464a2

1 + 232128a1 + 144704 − 2a2
2[3(11475a4

1 − 35496a3
1

− 271896a2
1 − 38688a1 + 129712) + 18088a2

2(3a2
1 + 12a1 − 4 − a2

2)]},
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F42 =2676888a10
1 − 52205877a9

1 − 223716978a8
1 + 3206239200a6

1 + 200795760a7
1

− 5054946912a5
1 − 3905952192a4

1 + 10386531072a3
1 − 7205736960a2

1

+ 2022961920a1 − 144704000 + 2a2
2{780759a8

1 − 9325368a7
1 − 641496672a6

1

− 2909890656a5
1 + 558977760a4

1 + 5294374272a3
1 − 2824768512a2

1

+ 1366334976a1 − 486784256 − 16a2
2[945999a6

1 − 2537325a5
1 − 136313118a4

1

− 397028520a3
1 + 244645056a2

1 + 201986928a1 − 100792544 − 2a2
2(4716225a4

1

− 23135436a3
1 − 141272064a2

1 + 42697968a1 + 50396272

+ 9044a2
2(3495a1 + 810a2

1 − 1682 − 250a2
2))]},

F43 =5(1366216713a12
1 − 33939081972a11

1 + 44272893168a10
1 + 493387025040a9

1

− 628994298672a8
1 − 14032675198080a7

1 + 18889326323712a6
1

+ 18007656030720a5
1 − 42717415378176a4

1 + 28085352201216a3
1

− 6517758455808a2
1 − 261522960384a1 + 82636402688) − 16a2

2{3(3255393240a10
1

− 44439681807a9
1 − 361043394498a8

1 − 1113177716208a7
1 − 333653885856a6

1

+ 4370955883488a5
1 + 418550391360a4

1 − 5262495843072a3
1 + 6238547740160a2

1

− 2585249949440a1 + 164748398080) − a2
2[3(17368810155a8

1 − 138413665080a7
1

− 974515821120a6
1 − 2142258103008a5

1 − 1380949222176a4
1 + 8851316920704a3

1

+ 2793260427776a2
1 − 2239742773760a1 − 792175055104) − 16a2

2(2(7413637185a6
1

− 9049012605a5
1 − 244787495850a4

1 − 257911746696a3
1 + 922435001664a2

1

+ 209975885040a1 − 361224302752) + a2
2(3(9653815755a4

1 + 43625458140a3
1

− 8316724720a2
1 − 161578121840a1 + 49510940944) − 180880a2

2(26034a2
1

− 28239a1 − 170778 + 8923a2
2)))]}.

Similarly, we obtain the solutions of a1 and a2 for F41 = F42 = 0, but F43 , 0 are given as
follows:

a1 = ai
14, a2 = ±ai

24 = ±a2(ai
14), i = 1, 2, . . . , 6, where

a1
14 = −4.58252393 · · · , a2

14 = −1.72294798 · · · , a3
14 = −0.21827689 · · · ,

a4
14 = −0.09420293 · · · , a5

14 = 0.14811742 · · · , a6
14 = 1.45012903 · · · ,

(2.37)

and a2(.) denotes a rational function of the variable, which satisfy F43 , 0 and

det
(
∂(F41, F42)
∂(a1, a2)

)
F41=F̃42=0

, 0.

This suggests that with the ε4-order focus values, we can obtain 9 small-amplitude limit cycles
by properly perturbing the coefficients, b014, b024, b124, b114, b303, a212, a122, a1 and a2.

Finally, in order to have all the ε4-order focus values to become zero, we let b021 = −2a2
a2

1
.

Then, we have the following simplified conditions, under which all the ε1-, ε2-, ε3-, ε4-order
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focus values equal zero.

b121 = b112 = b301 = 0, b031 = −
1

10a2
1

(a3
1 + 8a2

2), b111 = −1,

b032 =
12
25

a2b022 −
2

125a2a5
1(a3

1 − 2a2
2)
{(5a1 + 31)a6

1 − 2a2
2[(8a1 + 13)a3

1 + 4(a1 + 14)a2
2]},

b122 =
3
5

a1b022 −
2

25a4
1(a3

1 − 2a2
2)
{(2a1 − 2)a6

1 − a2
2((17a1 − 50)a3

1 + 4(a1 + 38)a2
2)},

b113 = b302, a211 = −
2a2

a1
, a121 = −

a3
1 + 8a2

2

5a2
1

, b114 = b303, b021 = −
2a2

a2
1

,

b023 =
1

2a2
a123 −

3 + a1

10a2
b022 −

a1 − 2
25a2a5

1(a3
1 − 2a2

2)
{2a6

1 + a2
2[(3a1 − 22)a3

1 + 4(a1 + 14)a2
2]},

b123 = −a213 +
a1

2a2
a123 −

a2
1

50a2
[5(a1 + 3)a3

1 + 4(a1 − 34)a2
2]b022

−
1

125a2a7
1(a3

1 − 2a2
2)
{10(a1 − 2)a9

1 + a2
2[(5a2

1 − 142a1 + 208)a6
1

− 8a2
2((a2

1 − 118a1 + 96)a3
1 + 8a2

2(a1 − 1)(a1 + 21))]},

b302 =
2
5

b022 +
4

25a5
1(a3

1 − 2a2
2)
{2a6

1 + a2
2[(3a1 − 22)a3

1 + 4(a1 + 14)a2
2]},

a212 =
2a1

5
b022 −

2
25a4

1(a3
1 − 2a2

2)
{(3a1 + 7)a6

1 − a2
2[(3a1 + 20)a3

1 − 24(a1 + 3)a2
2]},

a122 =
14a2

25
b022 +

2a2

125a5
1(a3

1 − 2a2
2)
{(15a1 − 32)a6

1 − 4a2
2[(12a1 − 43)a3

1 + 6(a1 + 14)a2
2]},

b024 =
a1 − 2
2a1a2

a213 −
1

20a2
2(a3

1 − 4a2
2)

[(3a1 − 1)a3
1 − 4(9a1 − 13)a2

2]a123 −
4a2

1(a1 − 2)

25(a3
1 − 4a2

2)
b2

022

+
1

500a3
1a2

2(a3
1 − 2a2

2)(a3
1 − 4a2

2)
{(15a2

1 + 40a1 − 15)a9
1 − 2a2

2[(113a2
1 + 366a1

− 609)a6
1 − 4a2

2((16a2
1 + 571a1 − 781)a3

1 − 8a2
2(3a2

1 + 102a1 − 166))]}b022

+
2

2500a8
1a2

2(a3
1 − 2a2

2)(a3
1 − 4a2

2)
{(30a2

1 − 70a1 + 20)a12
1 − a2

2[(65a3
1 + 857a2

1

− 864a1 − 1420)a9
1 − 8a2

2((9a3
1 + 849a2

1 − 314a1 − 1640)a6
1 − 2a2

2((18a3
1

+ 1759a2
1 − 740a1 − 2500)a3

1 − 8a2
2(11a3

1 + 207a2
1 − 108a1 + 100)))]},

b303 = −
2
a1

a213 +
3(a3

1 − 12a2
2)

5a2(a3
1 − 4a2

2)
a123 +

16a2
1a2

25(a3
1 − 4a2

2)
b2

022 −
1

125a3
1a2(a3

1 − 4a2
2)(a3

1 − 2a2
2)

× {15(a1 + 3)a9
1 − 2a2

2[(113a1 + 417)a6
1 − 16a2

2((4a1 + 107)a3
1

− 2(3a1 + 83)a2
2)]}b022 −

2
625a8

1a2(a3
1 − 4a2

2)(a3
1 − 2a2

2)
{30(a1 − 2)a12

1

− a2
2[(65a2

1 + 1062a1 − 40)a9
1 − 8a2

2((9a2
1 + 967a1 + 370)a6

1

− 4a2
2((9a2

1 + 935a1 + 450)a3
1 − 4a2

2(11a2
1 + 204a1 − 50)))]},
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b124 =
a3

1 − 2a2
1 − 4a2

2

2a2
1a2

a213 −
125

2500a2
1a2

2(a3
1 − 4a2

2)
{(3a1 − 1)a6

1 − 4a2
2[(12a1 − 5)a3

1

− 4(9a1 + 14)a2
2]}a123 −

2
25(a3

1 − 4a2
2)

[(2a1 + 1)a3
1 − 4(2a1 + 7)a2

2]b2
022

+
1

500a5
1a2

2(a3
1 − 2a2

2)(a3
1 − 4a2

2)
{5(3a2

1 + 8a1 − 3)a12
1 − 2a2

2[(53a2
1 + 436a1 − 459)a9

1

+ 4a2
2((26a2

1 − 1141a1 + 624)a6
1 − 4a2

2((53a2
1 − 758a1 + 474)a3

1

− 16a2
2(a2

1 − 48a1 + 21)))]}b022 +
1

1250a9
1a2

2(a3
1 − 2a2

2)(a3
1 − 4a2

2)
{10(3a2

1 − 7a1 + 2)a14
1

− a2
2[(65a3

1 + 617a2
1 − 904a1 − 2140)a11

1 − 4a2
2((218a3

1 + 1205a2
1 + 994a1

− 5000)a8
1 − 4a2

2((156a3
1 + 1731a2

1 + 934a1 − 4140)a5
1

− 4a2
2((15a3

1 + 1392a2
1 + 54a1 + 20)a2

1 − 48a2
2(a2

1 + 20a1 − 56))))]}.

Under the above conditions, we use the ε5-order focus values to find 10 small-amplitude
limit cycles. Linearly solving the seven polynomial equations, v51 = v52 = · · · = v57 = 0 one
by one for the seven coefficients, b025, b125, b115, b304, a213, a123 and b022. Then, v58, v59 and v510

are given in terms of a1 and a2:

v58 =
187

6193152000
F50F51, v59 =

−187
990904320000

F50F52, v510 =
17

11890851840000
F50F53,

where the common factor F50 is a rational function of a1 and a2, and F5i, i = 1, 2, 3 are
polynomials of a1 and a2, with degrees 6, 7 and 8 with respect to a2

2, respectively. F51 and F52

are given blow (F53 is omitted here).

F51 =3365793a12
1 + 60938568a11

1 − 774250488a10
1 + 1966200480a9

1 + 13136171760a8
1

− 8029124352a7
1 − 42401159424a6

1 + 61639418880a5
1 + 11348709120a4

1

− 85053265920a3
1 + 68653025280a2

1 − 20425531392a1 + 2343047168

− 8a2
2{3(1620567a10

1 + 26340228a9
1 − 214842132a8

1 + 216250560a7
1 + 2573086176a6

1

+ 131414400a5
1 − 4093628544a4

1 + 1881934848a3
1 + 1137593088a2

1 − 1275165696a1

+ 718412800) − 2a2
2[3(10180485a8

1 + 153299952a7
1 − 674144208a6

1 − 353045952a5
1

+ 4636649952a4
1 + 880277760a3

1 − 3232210176a2
1 + 170572800a1 + 1300940032)

+ 16a2
2(7853517a6

1 + 134834868a5
1 − 120423348a4

1 − 748001952a3
1 + 215457840a2

1

+ 31982400a1 − 434094272 − 133a2
2(3(14175a4

1 − 72216a3
1 − 415512a2

1 − 299616a1

− 611344) − 8a2
2(1215a2

1 − 74988a1 − 63300 + 8602a2
2)))]},

F52 =595745361a14
1 + 9456106860a13

1 − 180495550692a12
1 + 866884039776a11

1

+ 1125517505040a10
1 − 7989977121984a9

1 + 3366147119040a8
1 + 34380042236928a7

1

− 59273145771264a6
1 + 7717979427840a5

1 + 76097098183680a4
1

− 94586831216640a3
1 + 49990295040000a2

1 − 12029752197120a1

+ 1171523584000 − 4a2
2{908390133a12

1 + 9845436600a11
1 − 161757046008a10

1

+ 687515327712a9
1 − 956879159760a8

1 − 5927821906176a7
1 + 11861554007808a6

1
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+ 5082805251072a5
1 − 21066056398080a4

1 + 16917933938688a3
1 − 4446179260416a2

1

− 2461820755968a1 + 1818858868736 − 4a2
2 [3(680430375a10

1 + 5494977468a9
1

− 93511317348a8
1 + 342554370624a7

1 − 417148084512a6
1 − 2601812555136a5

1

+ 3432229497216a4
1 + 1662404330496a3

1 − 2256035345664a2
1 − 180750713856a1

+ 499346197504) + 4a2
2(6850884663a8

1 + 97499706480a7
1 − 620311388976a6

1

+ 219072133440a5
1 + 3577077122976a4

1 − 2324658546432a3
1 − 1344157539072a2

1

+ 1227803667456a1 − 445085841664 + 4a2
2(4026591891a6

1 + 79808495508a5
1

− 88999950204a4
1 + 243954873936a2

1 − 494926244640a3
1 − 33890758848a1

− 111271460416 − 532a2
2(3(1871505a4

1 − 8465592a3
1 − 82349256a2

1 − 24101472a1

− 58663792) − 4a2
2(248955a2

1 − 22082340a1 + 2150500a2
2 − 13355108))))]}.

It can be shown that there are in a total 12 real solutions for (a1, a2) such that F51 = F52 = 0,
but F53 , 0, as follows:

a1 = ai
15, a2 = ±ai

25 = ±a2(ai
15) i = 1, 2, . . . , 6, where

a1
15 = −2.39560267 · · · , a2

15 = −1.53681619 · · · , a3
15 = −0.38249860 · · · ,

a4
15 = −0.19575710 · · · , a5

15 = 0.05960015 · · · , a6
15 = 0.29402249 · · · ,

(2.38)

and a2(.) denotes a rational function of the variable, which satisfy F53 , 0 and

det
(
∂(F51, F52)
∂(a1, a2)

)
F51=F52=0

, 0,

implying that we can apply perturbations on the 10 parameters, b015, b025, b125, b115, b304, a213,
a123, b022, a1 and a2 to obtain 10 small-amplitude limit cycles around the origin.

Finally, we need to check the critical values given in equations (2.34), (2.35), (2.36), (2.37)
and (2.38) are properly distributed in the bifurcation diagram in terms of the parameters a1 and
a2 with the Hamiltonian function H(x, y) given in (2.7). See Figure 1 in [16] in terms of the
parameters a and b with the Hamiltonian function H(x, y) = 1

2 (x2 + y2)− 1
3 x3 + axy2 + 1

3by3. For
convenience, we define the following points in the a1-a2 plane:

k = 1 : P1 = ( 0.3650705869 . . . , 0.4417795388 . . . )
k = 2 : P2 = ( 0.1214887712 . . . , 0.6855794168 . . . )

P3 = ( 0.8947127237 . . . , 0.3648137316 . . . )
k = 3 : P4 = ( 0.0187162703 . . . , 0.5708409903 . . . )
k = 4 : P5 = (−0.0942029335 . . . , 0.6741464973 . . . )

P6 = ( 0.1481174260 . . . , 0.2303270018 . . . )
k = 5 : P7 = (−0.1957571086 . . . , 0.7336772199 . . . )

P8 = ( 0.0596001501 . . . , 0.4237619510 . . . ),

where the number k denotes the order of Melnikov function. Note that all of the points satisfy
the conditions −1 ≤ a1 ≤ 2 and 0 ≤ a2 ≤ (1 − a1/2)

√
1 + a1, that is, inside the curve defined

by

a2
2 =

(
1 −

a1

2

)2
(1 + a1),



42 Chapter 2. Ten limit cycles in a cubic near-Hamiltonian system

P1

P2

P3

P4

P5

P6

P7

P8

-1 0 2

a1

a2

Phase portrait at P3 Phase portrait at other points

a2
2 = (1 − a1

2 )2(1 + a1)

Figure 2.1: Distribution of points Pi and their corresponding phase portraits.

as shown in Figure 2.1. But it should be noted that there are other points outside the curve
(not shown in this figure) which are also solutions. For each k, there exist proper Hamiltonian
functions for which the conclusion in Theorem 2.1.1 holds. It has been seen from our solution
procedures that a2 = 0 is not allowed, and none of the above cases is degenerate. In particular,
the degenerate case, defined by a3

1 = 2a2
2, does not belong to our parameter values. The

corresponding phase portraits for the eight sets of parameter values (8 points Pi) are also
sketched in Figure 2.1.

The above results indeed show that by using the kth-order Melnikov function Mk, we may
obtain [ 4k

3 ]+4 number small-amplitude limit cycles bifurcating from the origin of system (2.6).

2.5 Conclusion
In this chapter, we have shown that the result of 11 small-amplitude limit cycles found in [13]
is wrong, and proved that there are nine limit cycles when the two mistakes are corrected.
Further, we have given an example of 10 small-amplitude limit cycles obtained by perturbing a
quadratic Hamiltonian system. This demonstrates how to use higher-order Melnikov functions
combined with the method of focus value computation to obtain more limit cycles.
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Chapter 3

Twelve limit cycles around a singular
point in a planar cubic-degree polynomial
system

3.1 Introduction

Studying bifurcation of limit cycles in planar polynomial systems is the second part of the
well-known Hilbert’s 16th problem [1]. The progress in the solution of the problem is very
slow. It has not even solved the simplest quadratic systems after more than one century since
the problem was posed by Hilbert at the Paris conference of the International Congress of
Mathematicians in 1900. More precisely, the second part of Hilbert’s 16th problem is to find
the upper bound, called Hilbert number H(n), on the number of limit cycles that the following
system,

ẋ = Pn(x, y), ẏ = Qn(x, y), (3.1)

can have, where Pn(x, y) and Qn(x, y) represent nth-degree polynomials of x and y. In early
1990’s, Ilyashenko and Yakovenko [2], and Écalle [3] independently proved that H(n) is finite
for given planar polynomial vector fields. For general quadratic polynomial systems, the best
result is H(2) ≥ 4, obtained more than 30 years ago [4, 5]. Recently, this result was also
obtained for near-integrable quadratic systems [6]. However, whether H(2) = 4 is still open.
For cubic polynomial systems, many results have been obtained on the low bound of the Hilbert
number. So far, the best result for cubic systems is H(3) ≥ 13 [7, 8]. Note that the 13
limit cycles obtained in [7, 8] are distributed around several singular points. This number is
believed to be below the maximal number which can be obtained for generic cubic systems.
A comprehensive review on the study of Hilbert’s 16th problem can be found in a survey
article [9].

In order to help understand and attack Hilbert’s 16th problem the so called weak Hilbert’s
16th problem was posed by Arnold [10], which is closely related to the so-called

A version of this chapter has been published in the Communications in Nonlinear Science and Numerical
Simulation.
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46 Chapter 3. Twelve limit cycles in a planar cubic system

near-Hamiltonian system [11]:

ẋ = Hy(x, y) + ε pn(x, y), ẏ = −Hx(x, y) + ε qn(x, y), (3.2)

where H(x, y), pn(x, y) and qn(x, y) are all polynomial functions of x and y, and 0 < ε � 1
is a small perturbation. Investigating the bifurcation of limit cycles for such a system can be
now transformed to investigating the zeros of the (first-order) Melnikov function, given as an
integral

M(h, δ) =

∮
H(x,y)=h

qn(x, y) dx − pn(x, y) dy, (3.3)

along closed orbits H(x, y) = h for h ∈ (h1, h2), where δ represents the parameters (or
coefficients) involved in the polynomial functions qn and pn.

When we focus on the maximum number of small-amplitude limit cycles, M(n), bifurcating
from an elementary center or an elementary focus, one of the best-known results is M(2) = 3,
which was solved by Bautin in 1952 [12]. For n = 3, a number of results have been obtained.
Around an elemental focus, James and Lloyd [13] considered a particular class of cubic systems
to obtain 8 limit cycles in 1991, and the systems were reinvestigated couple of years later by
Ning et al. [14] to find another solution of 8 limit cycles. Yu and Corless [15] constructed a
cubic system and combined symbolic and numerical computations to show 9 limit cycles in
2009, which was confirmed by purely symbolic computation with all real solutions obtained in
2013 [16]. Another cubic system was also recently constructed by Lloyd and Pearson [17] to
show 9 limit cycles with purely symbolic computation.

On the other hand, around a center, there are also few results obtained in the past two
decades. Żoła̧dek studied classification of cubic centers and listed 17 cases for reversible
centers and 35 cases for Darboux centers [18, 19]. In 1995, Żoła̧dek [20] first proposed a
rational Darboux integral,

H0 =
f 5
1

f 4
2

=
(x4 + 4x2 + 4y)5

(x5 + 5x3 + 5xy + 5x/2 + a)4 , (3.4)

and used it to prove the existence of 11 small-amplitude limit cycles around a center. This result
was extensively cited by many researchers in this area. After more than ten years, another two
cubic systems are constructed to show 11 limit cycles [21, 22]. Recently, the system defined
by (3.4) was reinvestigated by Yu and Han with the method of focus value computation, who
only obtained 9 limit cycles [23]. This obvious difference motivated a further investigation on
this problem. Very recently, Tian and Yu [24] have proved that the 11 limit cycles obtained
by Żoła̧dek [20] are not correct, and the mistakes leading to the erroneous result have been
identified.

In this chapter, we will consider the two cubic systems proposed by Christopher [21], and
Bondar and Sadovskii [22]. The first system discussed in [21] is determined by a Darboux first
integral,

H1 =
(xy2 + x + 1)5

x3(xy5 + 5
2 xy3 + 5

2y3 + 15
8 xy + 15

4 y + a)2
, (3.5)

where a is a parameter, from which we obtain the dynamical system,

ẋ = 10x(8axy − 3x2 − 9x − 12y2 − 6),
ẏ = 24a − 16ax + 90y + 15xy − 16axy2 + 60y3.

(3.6)
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System (3.6) has an equilibrium point, given by

xe =
6(8a2 + 25)
32a2 − 75

, ye =
70 a

32a2 − 75
. (3.7)

Shifting the equilibrium point (xe, ye) to the origin and setting a = 2 finally yields the system:

ẋ = −10(342 + 53x)(289x − 2112y + 159x2 − 848xy + 636y2),
ẏ = −605788x + 988380y − 432745xy + 755568y2 − 89888xy2 + 168540y3,

(3.8)

which has been used in [21] to show 11 small-amplitude limit cycles around the origin (i.e.,
around the equilibrium point (xe, ye)).

The second system given in [22] is described by

ẋ = y [1 − 2r(3r2 + 5)x + (r2 + 3)(3r2 + 1)2x2],
ẏ = −x(1 − 8rx)[1 − 3r(r2 + 3)x] + 2[2(3r2 − 1) − r(r2 + 3)(15r2 − 7)x] xy

−[r(r2 + 11) − (r2 + 3)(3r4 + 22r2 − 1)x] y2 + 2r(r2 + 3)(r2 − 1)y3,

(3.9)

where r is a parameter. It can be shown that the origin of system (3.9) is a center [22].
To find the small-amplitude limit cycles bifurcating from the origin of the systems (3.8) and

(3.9), in general we may apply perturbations to the systems and then compute the Melnikov
functions around the loops defined by the first integral H(x, y) = h. For system (3.8), we may
use H1, while for system (3.9), we need to find the first integral, which is not an easy job.
Even we have these H functions, it is difficult to compute the Melnikov functions. Therefore,
we turn to using focus value computation to analyze bifurcation of limit cycles around the
origin. Suppose the focus values around the origin of the system (3.8) or (3.9) are given in the
following form:

V =
∑
i≥0

εiVi, where Vi = {vi0, vi1, vi2, · · · }, (3.10)

where ε is a small perturbation parameter. We call vi j the jth εi-order focus value of the system,
and note that v0 j = 0, j = 0, 1, 2, . . . since the origin is a center of these two systems. We use
M(n) to denote the number of limit cycles bifurcating from a singular point, where n is the
order of the system.

The rest of the chapter is organized as follow. In the next section, we use the method
of focus value computation to show that there are 11 small-amplitude limit cycles around the
origin of the system (3.8) and (3.9). In Section 3.3, we use system (3.6) with the free coefficient
a to prove that there exist 12 small-amplitude limit cycles around the origin. Conclusion is
drawn in Section 3.4.

3.2 11 limit cycles in systems (3.8) and (3.9)
In this section, we will use the method of focus value computation to show that the systems
(3.8) and (3.9) can have 11 small-amplitude limit cycles bifurcating from the origin, i.e.,
M(3) ≥ 11. Firstly, we consider system (3.8) and have the following result.

Theorem 3.2.1 System (3.8) can have 11 small-amplitude limit cycles bifurcating from the
origin by proper cubic perturbation.
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Proof Adding perturbations to the non-perturbed system, we have two choices: either to
the original system (3.6) (with a = 2) or after the shifting the equilibrium (3.7) to the origin
plus a linear transformation applied such that the Jacobian of the resulting system is in Jordan
canonical form. These two choices are equivalent, giving the same result on the number of
limit cycles, but the latter is simpler. Therefore, we take the second choice. We first apply a
linear transformation and a time scaling, given by(

x
y

)
→

[
1 0

289
2112

12
√

23602332855
7223040

] (
x
y

)
, t →

t

12
√

23602332855
,

into system (3.8) to obtain

ẋ = y −
384833 · 12

√
23602332855

6969827487744
x2 +

5022227
10593792

xy −
53 · 12

√
23602332855

1271255040
y2

−
20396149 · 12

√
23602332855

2383681000808448
x3 +

1047757
21187584

x2y −
2809 · 12

√
23602332855

434769223680
xy2

+ ε p3(x, y) ≡ f1(x, y) + ε p3(x, y),

ẏ = − x−
15317
371712

x2−
154813 12

√
23602332855

757589944320
xy+

5149003
35312640

y2+
4490071331

774425276416
x3

−
448925953 12

√
23602332855

23836810008084480
x2y +

165731
47083520

xy2 +
2809 12

√
23602332855

869538447360
y3

+ ε q3(x, y) ≡ f2(x, y) + ε q3(x, y),
(3.11)

where the linear part of the unperturbed system is now in the Jordan canonical form, and the
cubic polynomial perturbations have been added, given in the general form:

p3(x, y) = a10x + a01y + a20x2 + a11xy + a02y2 + a30x3 + a21x2y + a12xy2 + a03y3,

q3(x, y) = b10x + b01y + b20x2 + b11xy + b02y2 + b30x3 + b21x2y + b12xy2 + b03y3.
(3.12)

To make the origin of the system be an elementary center, it requires that a10 + b01 = 0, or
b01 = −a10. To further simplify the analysis, introducing another linear transformation and a
time scaling, given by(

x
y

)
→

[
ε a10 1 + ε a01

−1 + ε b10 −ε a10

] (
x
y

)
, t →

t
ωc
,

where ωc =

√
1 + ε(a01 − b10) − ε2(a2

10 + a01b10), into system (3.11) to obtain

ẋ = f1(x, y) + ε p̃(x, y),
ẏ = f2(x, y) + ε q̃(x, y),

(3.13)

where higher-order ε terms have been dropped since system (3.11) only has first-order ε terms
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added, f1 and f2 are given in (3.11), and p̃ and q̃ are given below,

p̃ =
[
a20 −

5022227
10593792

a10 +
1937634155

247808
√

23602332855
(a01 − b10)

]
x2

+
[
a11 +

53
√

23602332855
52968960

a10 −
5022227

10593792
a01

]
xy

+
[
a02 +

4389205759

743424
√

23602332855
(3a01 + b10)

]
y2

+
[
a30 −

1047757
21187584

a10 +
5404979485

4460544
√

23602332855
(a01 − b10)

]
x3

+
[
a21 +

2809
√

23602332855
18115384320

a10 −
1047757

21187584
a01

]
x2y

+
[
a12 +

232627905227

254251008
√

23602332855
(3a01 + b10)

]
xy2 + a03y3,

q̃ =
[
b20 +

5233613631

123904
√

23602332855
a10 −

15317
371712

b10

]
x2

+
[
b11 +

4832063
26484480

a10
3585623893

123904
√

23602332855
(a01 − b10)

]
xy

+
[
b02 −

53
√

23602332855
105937920

a10 −
5149003

35312640
a01

]
y2

+
[
b30 +

4327705513

1486848
√

23602332855
a10 +

4490071331
774425276416

b10

]
x3

+
[
b21 +

8985991
211875840

a10 +
448925953

√
23602332855

3972801668014080
(a01 + b10)

]
x2y

+
[
b12 −

2809
√

23602332855
14492307456

a10 −
165731

47083520
a01

]
xy2

+
[
b03 −

2809
√

23602332855
144923074560

(3a01 + b10)
]
y3.

(3.14)

Now, based on system (3.13), we use focus value computation (e.g., using the Maple program
developed in [25]) to obtain the ε-order focus values v1 j, j = 1, 2, . . . , all of them are linear
functions of ai j and bi j. For example, v11 is given by

v11 =
8776116145175287

1132248475384012800
a10 −

215539887437
√

23602332855
2264496950768025600

a01 −
4187
60192

a20

+
24857

√
23602332855

171005581440
a11 −

57611
601920

a02 −
440628167

√
23602332855

13242672226713600
b10 +

159
12160

b11

−
2597

√
23602332855

5500179520
b20 −

371
√

23602332855
2044631952

b02 +
1
8

(a12 + b21 + 3a30 + 3b03).

Thus, we can use any one of the parameters, say b03, to solve v11 = 0 to obtain b03 expressed in
terms of other parameters. Similarly, we can solve the equation v12 = 0 for b12, v13 = 0 for b21,
v14 = 0 for b30, v15 = 0 for b02, v16 = 0 for b11, v17 = 0 for b20, v18 = 0 for b10, v19 = 0 for a30,
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v110 = 0 for a21, respectively. Finally, under theses solutions, the 11th- and 12th-order focus
values are given by v111 = c11 F10 and v112 = c12 F10, where c11 and c12 are some constants, and
the common factor F10 is a function of a10, a01, a20, a11, a02, a12 and a03, given by

F10 = 691234068956115
√

23602332855 a10 + 77703544185425357945 a01

−2095858834724574
√

23602332855 a20 − 302178196047882421530 a11

+3804860775858270
√

23602332855 a02

−42463100922992640
√

23602332855 a12

−21814740024914038118400 a03.

This shows that the best result we can obtain is v1 j = 0, j = 0, 1, 2, . . . , 10 but v111 , 0,
implying that system (3.11) can have at most 11 small-amplitude limit cycles bifurcating from
the origin. The above function F10 also implies that besides the bi j parameters, only two ai j

parameters are used to solve the focus values. In other words, we may leave one free parameter,
say a10 which can be used to scale the focus values, and set all other parameters zero, a01 =

a20 = a11 = a02 = a12 = a03 = 0. Certainly, one can choose other possible combinations of
the parameters ai j and bi j to show the same result. Thus, without loss of generality, we may
assume 0 < v111 � 1.

Finally, taking small perturbations in backward order on a21 for v110, on a30 for v19, on b10

for v18, on b20 for v17, on b11 for v16, on b02 for v15, on b30 for v14, on b21 for v13, on b12 for v12,
on b03 for v11, and on b01 for v10 so that

v1 jv1( j+1) < 0, |v1 j| � |v1( j+1)| for j = 0, 1, 2, . . . , 10. (3.15)

This shows that there exist 11 small-amplitude limit cycles around the origin of system (3.8).

Next, we consider system (3.9) and have the following result.

Theorem 3.2.2 System (3.9) can have 11 small-amplitude limit cycles bifurcating from the
origin by proper cubic perturbation.

Proof According to [22], the perturbations added to system (3.9) are given by

p̄3(x, y) = a0 x + a1 x2 + a2 xy + a3y2 + a4 x3 + a5 x2y + a6 xy2,

q̄3(x, y) = a0 y + a7 x2 + a8 xy + a9y2 + a10 x3 + a11 x2y,
(3.16)

and so the perturbed system (3.9) becomes

ẋ = f̃1(x, y) + ε p̄x,y,

ẏ = f̃2(x, y) + ε q̄x,y,
(3.17)

where f̃1 and f̃2 are given in (3.9). First note that the zero-order ε-order focus value v10 = a0.
Letting a0 = 0 and then executing the Maple program for computing the focus values [25] to
obtain

v11 =
1
8

[4r(3r2 + 11)a1 + 8r(r2 + 4)a3 + 3a4 + a6 + 4(3r2 − 1)(a7 + a9) + 2r(r2 + 3)a8 + a11],
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v12 =
−1
96

[4r(729r8 + 7816r6 + 26110r4 + 27656r2 + 89)a1 − 24r2(3r2 + 1)(r2 + 3)2a2

+ 8r(245r8 + 2773r6 + 9669r4 + 10643r2 − 2)a3 + (709r6 + 5107r4 + 7227r2 + 45)a4

− 4r(3r4 + 58r2 − 13)a5 + (215r6 + 1809r4 + 3177r2 + 15)a6

+ 4(759r8 + 4548r6 − 2596r2 + 5022r4 + 11)a7 + 20r(3r4 − 22r2 + 3)a10

+ 2r(r2 + 3)(263r6 + 1601r4 + 2585r2 − 1)a8 + (263r6 + 1553r4 + 2649r2 − 17)a11

+ 4(735r8 + 4744r6 + 5778r4 − 2744r2 − 1)a9],
...

Similarly, we can linearly solve the equations v1i = 0 for ai, i = 1, 2, . . . , 10 one by one.
Then, the 11th and 12th-order focus values are obtained as v111 = 2340 F20N (r)

F20D(r) F21(r) and v112 =

−120 F20N (r)
F20D(r) F22(r), where F20N , F20D, F21 and F22 are all polynomials of r, given by

F20N = a11r12(r2 − 1)11(r2 + 3)8(3r2 + 1)8(3r6 − 31r4 − 19r2 − 1),
F20D = 1323377757r34 + 26996002137r32 + 37965987792r30

−3268655299296r28 − 16760339520156r26 + 12963886884900r24

+38642548810176r22 + 3147430151568r20 + 6604961423494r18

+38723884663134r16 + 6683800535760r14 − 3528405585600r12

−58333647916r10 + 237931831540r8 + 32335049504r6

+6091835792r4 + 715493989r2 + 26239665,
F21 = 63r12 + 868r10 + 1407r8 − 1232r6 − 803r4 + 588r2 + 133,
F22 = 355761r18 + 9537262r16 + 77877345r14 + 179927041r12

+41987927r10 − 169741431r8 − 36416005r6 + 63798403r4

+14431452r2 + 383173.

In order to obtain maximal number of limit cycles, we may solve F21 = 0 for r. However,
unfortunately, F21 = 0 has no real solutions for r. Thus, the best result we can get is v1i =

0, i = 0, 1, 2, . . . , 10, but v111 , 0, implying that system (3.17) can have at most 11 small-
amplitude limit cycles bifurcating from the origin. Again, without loss of generality, we may
use the parameter a11 to scale the focus values such that 0 < v111 � 1. Further, by perturbing,
in backward order, on ai for v1i, i = 10, 9, . . . , 0 such that the relations given in (3.15) hold,
which implies that system (3.17) exhibits 11 small-amplitude limit cycles around the origin.

3.3 12 limit cycles in system (3.6)
Now we return to system (3.6) and let the parameter a be free to vary. In this case, we have the
following result.

Theorem 3.3.1 System (3.6) can have 12 small-amplitude limit cycles bifurcating from the
center (xe, ye) given in (3.7) by proper cubic perturbation with a properly chosen value of a,
i.e., M(3) ≥ 12.
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In order to prove Theorem 3.3.1, we need a lemma. Consider the following generally
perturbed system:

ẋ = P(x, y, δ1) + ε p(x, y, δ2),
ẏ = Q(x, y, δ1) + ε q(x, y, δ2),

(3.18)

where P, Q, p and q are polynomials of x and y. Suppose that the vector parameter δ1 involved
in P and Q is m dimension, while the vector parameter δ2 involved in p and q is l dimension.
It is further assumed that when ε = 0 system (3.18) is integrable. In Hamiltonian case, P =

Hy, Q = −Hx, where H is a Hamiltonian. If it is not a Hamiltonian system one needs to
multiply the integrating factor in order to use Melnikov function. This increases complexity of
computation. While with the method of focus value computation, it does not need to find the
integrating factor and thus greatly simplifies the computation. For system (3.18), we have the
following lemma.

Lemma 3.3.2 By properly choosing the parameters δ1 and δ2 in system (3.18), k
small-amplitude limit cycles exist around the origin of the system, satisfying k ≤ m + l. The
exact number of the limit cycles depends upon how many parameters can be chosen
independently to solve the focus value equations (or to determine the zeros of Melnikov
functions).

The proof can follow the proof for Theorem 3 in [26].
We first consider ε-order focus values (equivalent to first-order Melnikov function), and

then consider ε2-order focus values. We will show that using ε2-order focus values does not
increase the number of limit cycles.

3.3.1 Based on ε-order focus values
Proof Following the procedure in the proof for Theorem 3.2.1, for system (3.6), we first shift
the equilibrium point defined in (3.7) to the origin, and then apply a liner transformation with
a proper time scaling such that the Jacobian of the resulting system evaluated at the origin is in

the form of
[ 0 1
−1 0

]
. The time scaling is taken as t → t

12ωc
, where ωc is given by

ωc =
√

(8a2 + 25)(32a2 − 75)(16384a6 − 14400a4 + 165000a2 + 84375). (3.19)

Then, adding the ε-order perturbation terms p3(x, y) and q3(x, y), given by

p3(x, y) = a101x + a011y + a201x2 + a111xy + a021y2 + a301x3 + a211x2y + a121xy2 + a031y3,

q3(x, y) = b101x + b011y + b201x2 + b111xy + b021y2 + b301x3 + b211x2y + b121xy2 + b031y3,
(3.20)

into system (3.6), resulting a new system. Here, note that we add one more sub-index “1” to
explicitly indicate the ε-order perturbation in order to distinct from the the ε2-order perturbation
considered in the next subsection. Further, under the condition b011 = −a101, we apply another
linear transformation and a second time scaling, given below,(

x
y

)
→

[
1 0

−ε a101
1+ε a011

ωc
1+ε a011

] (
x
y

)
, t →

t
ω∗c
,
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where ω∗c =

√
1 + ε(a011 − b101) − ε2(a2

101 + a011b101), and obtain the final system, given by

ẋ = −

√
5Ca

768a2(4a2 − 5)2ωc
x2 +

(32a2 − 75)Aa

384Ba
xy −

√
5(32a2 − 75)ωc

3840Ba
y2 −

√
5(32a2 − 75)Ca

4608Baωc
x3

+
(32a2 − 75)2(128a4 − 176a2 − 225)

2304Ba
x2y −

√
5(32a2 − 75)2ωc

23040(8a2 + 25)Ba
xy2

+ε
{
a201x2 + a111xy + a021y2 + a301x3 + a211x2y + a121xy2 + a031y3

+
[
−

(32a2 − 75)Aa

384Ba
a101 +

√
5(8a2 + 25)Ca

1536Baωc
(a011 − b101)

]
x2

+
[ √5(32a2 − 75)ωc

1920Ba
a101 −

(32a2 − 75)Aa

384Ba
a011

]
xy +

√
5(32a2 − 75)ωc

7680Ba
(3a011 + b101)y2

+
[
−

(32a2 − 75)2(128a4 − 176a2 − 225)
2304Ba

a101 +

√
5(32a2 − 75)Ca

9216Baωc
(a011 − b101)

]
x3

+
[
−

(32a2 − 75)2(128a4 − 176a2 − 225)
2304Ba

a011 +

√
5(32a2 − 75)2ωc

11520(8a2 + 25)Ba
a101

]
x2y

+

√
5(32a2 − 75)2ωc

46080(8a2 + 25)Ba
(3a011 + b101)xy2

}
,

ẏ = −
(16a2 + 225)Da

768Ba
x2 −

√
5(4288a4 − 1200a2 + 3375)D2

a

1920Baωc
xy +

√
5(32a2 − 75)2ωc

46080(8a2 + 25)Ba
y3

−
(2048a6 − 30400a4 + 23000a2 − 28125)Da

3840(8a2 + 25)Ba
y2 −

7
√

5(16a2 + 15)(16a2 + 225)Ca

46080(32a2 + 9)Baωc
x2y

+
(16a2 + 225)(3328a4 − 8320a2 − 3375)D3

a

3072(8a2 + 25)Baω2
c

x3 −
(32a2 − 75)2(512a4 − 1040a2 − 5625)

46080Ba
xy2

+ε
{
b201x2 + b111xy + b021y2 + b301x3 + b211x2y + b121xy2 + b031y3

+
[
−

5(16a2 + 225)Da

3840Ba
b101 +

√
5(1152a4 + 2720a2 + 3375)D2

a

1280Baωc
a101

]
x2

+
[ (6144a6 − 17120a4 − 28125)Da

960(8a2 + 25)Ba
a101 +

√
5(4288a4 − 1200a2 + 3375)D2

a

3840Baωc)
(a011 − b101)

]
xy

+
[

+
(32a2 − 75)(2048a6 − 30400a4 + 23000a2 − 28125)

3840Ba
a011 −

√
5(32a2 − 75)ωc

3840Ba
a101

]
y2

+
[5(8a2 + 25)(16a2 + 225)(3328a4 − 8320a2 − 3375)Ca

15360(32a2 + 9)Baω2
c

b101

−

√
5(2816a4 − 16000a2 − 10125)Ca

15360(32a2 + 9)Baωc
a101

]
x3 −

√
5(32a2 − 75)2ωc

92160(8a2 + 25)Ba
(3a011 + b101)y3

+
[7(256a4 − 400a2 − 1125)D2

a

23040(8a2 + 25)2Ba
a101 +

7
√

5(16a2 + 15)(16a2 + 225)Ca

92160(32a2 + 9)Baωc
(a011 − b101)

]
x2y

+
[ (512a4 − 1040a2 − 5625)D2

a

46080(8a2 + 25)2Ba
a011 −

√
5(32a2 − 75)2ωc

9216(8a2 + 25)Ba
a101

]
xy2

}
,
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where

Aa = 2048a6 − 768a4 − 4600a2 − 5625, Ba = a2(4a2 − 5)2(8a2 + 25),

Ca = (8a2 + 25)(32a2 + 9)(32a2 − 75)3, Da = (8a2 + 25)(32a2 − 75),
(3.21)

and ωc is given in (3.19). Now applying the method of focus value computation (e.g., executing
the Maple program in [25]) yields v1 j, j = 1, 2, · · · . For example,

v11 =
[ (32a2 − 75)3(805306368a12 + 3501916160a10 − 8707840000a8 − 6744000000a6)

460800a2(4a2 − 5)2(8a2 + 25)ω2
c

+
(32a2 − 75)3(−55188750000a4 − 33328125000a2 − 83056640625)

460800a2(4a2 − 5)2(8a2 + 25)ω2
c

]
a101

−
7
√

5(32a2 − 75)3(111616a6 + 270400a4 − 232500a2 + 421875)
921600Baωc

a011

−
(32a2 − 75)2

96(4a2 − 5)Da

[
(16a2 + 15)a201 +

128a2 + 575
10

a021 +
32a2 − 425

20
b111

]
−

7
√

5(32a2 − 75)2

48(4a2 − 5)ωc

[
(2a2 + 15)b021 +

21(8a2 + 25)
20

b201 −
128a2 + 225

40
a111

]
−

21
√

5(32a2 − 75)3(1024a4 + 100a2 + 5625)
921600a2(4a2 − 5)2ωc

b101 +
1
8

[a121 + b211 + 3(a301 + b031)].

Similarly, we linearly solve the polynomial equations one by one for v11 = 0 using b031, for
v12 = 0 using b121, for v13 = 0 using b211, for v14 = 0 using b301, for v15 = 0 using b021, for
v16 = 0 using b111, for v17 = 0 using b201, for v18 = 0 using b101, for v19 = 0 using a301, for
v110 = 0 using a211, and then obtain

v111 = 12103
F30N

F30D
F31, v112 = −931

F30N

F30D
F32, (3.22)

where F30D is a 62th-degree polynomial of a, and F30N is given by

F30N =
15(32a2 − 75)32(2048a6 − 3200a4 − 13500a2 + 5625)

a12(4a2 − 5)11(8a2 + 25)11ω2
c

a101

+

√
5(16a2 + 15)(32a2 − 75)33(2048a6 + 7360a4 − 55300a2 + 16875)

a12(4a2 − 5)11(8a2 + 25)10ω3
c

a011

−
6(32a2 − 75)31(17408a6 − 40640a4 − 67500a2 + 28125)

a12(4a2 − 5)11(8a2 + 25)10ω2
c

a201

−
6
√

5(32a2 − 75)32(16384a8 + 109056a6 − 558080a4 − 52500a2 + 84375)
a12(4a2 − 5)11(8a2 + 25)9ω3

c
a111

+ 30(32a2 − 75)32
[67108864a14 − 6291456a12 − 2059927552a10 + 5214044160a8

a12(4a2 − 5)11(8a2 + 25)9ω4
c

+
−809408000a6 − 7945500000a4 + 1307812500a2 + 474609375

a12(4a2 − 5)11(8a2 + 25)9ω4
c

]
a021

−
23040(32a2 − 75)31(16a2 + 15)(2048a6 + 7360a4 − 55300a2 + 16875)

a10(4a2 − 5)9(8a2 + 25)8ω4
c

a121
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−
[7680

√
5(32a2 − 75)32(44171264a10 + 194867200a8 − 849510400a6)

a10(4a2 − 5)9(8a2 + 25)8ω5
c

+
7680

√
5(32a2 − 75)32(−1291260000a4 + 47362500a2 + 170859375)

a10(4a2 − 5)9(8a2 + 25)8ω5
c

]
a031.

The lengthy expressions for F31 and F32 are given in Appendix A. It can be shown by using the
Groebner basis reduction procedure that F32|F31=0 , 0 and F30D|F31=0 , 0. F31 = 0 has three
real solutions for a2 (up to 1000 digit points, but only list 50 digits here):

a2 = 4.08009735271177103610297484395201964354626904458021 · · · ,
55.41863304110367260819951662137654320234143464768321 · · · ,

244.18157931458134109747463727402489732946108654167498 · · · ,

and all of them satisfy ωc > 0 (see the expression of ωc given in (3.19)). So there are in a total
six solutions. Taking the positive value of the second solution for a:

a = 7.44436921714013810024462398546267395063347650296272 · · ·

and setting the non-used parameters a011 = a201 = a111 = a021 = a121 = a031 = 0 and a101 = 1,
we obtain the critical parameter values:

b031 = −0.19166152145498089355202548357797946751132495935848 · · · ,
b121 = 0.11417084514014593144202950698087209236746686969414 · · · ,
b211 = −1.21440862253395164484193434261717547030904451575014 · · · ,
b301 = 0.13315882740016516186295687278609694132824695861367 · · · ,
b021 = 0.39631189749427819043808615679104642347912703580286 · · · ,
b111 = −5.32984926540348883870841754242680645572842701602586 · · · ,
b201 = −0.12480581817579714308657357120962081536587770395955 · · · ,
b101 = −19.01617439016444745664609221188921421020650255893027 · · · ,
a301 = −0.34039103269248693441579309816048517526296907212322 · · · ,
a211 = −0.15448521013159245023264811458682922516993711282715 · · · ,

under which the focus values become

v11 = −0.6×10−999, v12 = 0.4×10−999, v13 = −0.6×10−999,

v14 = 0.12×10−998, v15 = −0.13×10−997, v16 = 0.8×10−997,

v17 = 0.4×10−996, v18 = 0.8×10−995, v19 = −0.2×10−994,

v110 = 0.16×10−992, v111 = −0.5×10−991,

v112 = 0.344486281117620615510983080164 · · ·×10−18.

Therefore, we can take perturbations in backward order on a for v111, on a211 for v110, on
a301 for v19, on b101 for v18, on b201 for v17, on b111 for v16, on b021 for v15, on b301 for v14, on
b211 for v13, on b121 for v12, on b031 for v11, on b011 for v10, to obtain 12 small-amplitude limit
cycles bifurcating from the origin.
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3.3.2 Based on ε2-order focus values

Proof In order to show that higher-order Melnikov functions will not generate more limit
cycles, equivalently, here we use the ε2-order focus values to prove this. To achieve this, we
change the perturbation to include the ε2-order perturbation, given as follows:

p3(x, y) = a101x + a011y + a201x2 + a111xy + a021y2 + a301x3 + a211x2y + a121xy2 + a031y3

+ ε[a102x + a012y + a202x2 + a112xy + a022y2 + a302x3 + a212x2y + a122xy2 + a032y3],

q3(x, y) = b101x + b011y + b201x2 + b111xy + b021y2 + b301x3 + b211x2y + b121xy2 + b031y3

+ ε[b102x + b012y + b202x2 + b112xy + b022y2 + b302x3 + b212x2y + b122xy2 + b032y3].
(3.23)

In order to make the origin an elementary center, we have b011 = −a101 and b012 = −a102.
Also, in order to have all ε-order focus values to vanish, we may solve a121 from the equation
F30N = 0. Then, all the solutions for the ε-order perturbation parameters are obtained, as given
in Appendix A. Now, we use these parameter expressions to simplify the ε2-order focus values
v2 j, j = 1, 2, · · · and then linearly solve the polynomial equations one by one for v21 = 0 using
b032, for v22 = 0 using b122, for v23 = 0 using b212, for v24 = 0 using b302, for v25 = 0 using b022,
for v26 = 0 using b112, for v27 = 0 using b202, for v28 = 0 using b102, for v29 = 0 using a302, for
v210 = 0 using a212. Finally, we obtain

v211 = − 146381281540702208
F40N

5 F30D
F31,

v212 = 180161577280864256
F40N

5 F30D
F32,

(3.24)

where the common factor F40N is a function of the unused ε-order perturbation parameters,
a101, a011, a201, a111, a021, a031 and ε2-order perturbation parameters,
a102, a012, a202, a112, a022, a122, a032, while the polynomial functions, F30D, F31 and F32 are
exactly the same as that obtained from using the ε-order focus values, see equation (3.22).
Therefore, the best result we can have is v2 j = 0, j = 0, 1, 2, . . . , 11, but v212 , 0, indicating
that using ε2-order perturbations still gives 12 small-amplitude limit cycles bifurcating from
the origin. This suggests that using higher-order perturbations may do not increase the
number of limit cycles.

3.4 Conclusion

In this chapter, we have applied the method of focus value computation to confirm the results of
11 small-amplitude limit cycles around a singular point in two existing systems in the literature.
Further, we used one of the two systems with a free parameter to obtain 12 small-amplitude
limit cycles. This is the best result so far obtained in cubic planar vector fields around a singular
point.
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Appendix A

In this appendix, we list the expressions for F31, F32 in equation (3.22), as well as the solutions
for the ε-order perturbation parameters under which all the ε-order focus values vanish.

F31 = 1000026716592044048191270590349312
124556484375 a52

+819686924091392323696339765486944256
124556484375 a50

+631565347915542732579532606804066304
332150625 a48

−144491654217902126140674110413441335296
199290375 a46

−115507069376852987648285501307291172864
39858075 a44

−6732806604930966441039914753995927715840
531441 a42

−86756528992167810184858626362595239526400
177147 a40

+1635541261270023148372887981613624852480000
59049 a38

+70235227993601155933776510850258960384000000
59049 a36

+376899976798232659047065576520743321600000000
6561 a34

+171684034961379014743720051976420800000000000
243 a32

−2596904471315354305194736912364454250000000000
2187 a30

+22984024317894706571442263665320020922851562500
243 a28

+908740714146641997798947934773427473907470703125
324 a26

+4125233345223780686551133296904906654521942138671875
165888 a24

+107567819827193027781148287212115671421527862548828125
1179648 a22

+284999570580602343108427299249127665312290191650390625
50331648 a20

−704195633244279596986967502655697730006158351898193359375
536870912 a18

−410853279732262501367963542595769453933392465114593505859375
68719476736 a16

−16250392011965952848377341255043775151892863214015960693359375
1099511627776 a14

−834793107195537567694252283677102759177903644740581512451171875
35184372088832 a12

−7301053088429557753325367797887383441864349879324436187744140625
281474976710656 a10

−1392720382042689388626305375788253537783790961839258670806884765625
72057594037927936 a8

−10907843491764222784369715798718827967621051357127726078033447265625
1152921504606846976 a6

−51347944774510356671385745541771817633276441483758389949798583984375
18446744073709551616 a4

−120902616645152499727691279661925752150591506506316363811492919921875
295147905179352825856 a2

−6641108029952768765569085330070167137276939683943055570125579833984375
302231454903657293676544 ,

F32 = 5801794936047356569857584023552864689324032
84075626953125 a66

+4871211304076925410039730660578079195954937856
84075626953125 a64

+98115617017701347629012133322377101678229848064
5605041796875 a62

−19624689786663606432543732667761814026010216103936
3363025078125 a60

−21256591905213042405396221854632976200299114921984
134521003125 a58
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−195263677424322371708861552414779290555435959975936
1793613375 a56

−7011943597709914198500295736221723652294678493003776
1076168025 a54

+5772105063198199391608064251261116917800389025202176
43046721 a52

+70992038737144757058356540939663171263951096564940800
4782969 a50

+10429634905075021491277172839820714249329922183004160000
14348907 a48

+83853150271215686752220226312264946195301195055104000000
4782969 a46

+87437962180467579496457634960502924312130761523200000000
531441 a44

+582678688158772734164733109697559543385741982720000000000
531441 a42

+21292488896396114083846506545169895680528187655000000000000
531441 a40

+47240009367317348656168824744785223517153830430859375000000
59049 a38

+10919491620426678750599007836144315153629494616546630859375
1458 a36

+89140128376927347670942144404721861811295305640422821044921875
2519424 a34

+629691266428426884575305752253104611762725698597240447998046875
11943936 a32

−130186402720436765803617626328118926015126601205780506134033203125
382205952 a30

−119160273116346012695267181435439155038386739708407461643218994140625
48922361856 a28

−165847643941527398290474279300538694341911125097103416919708251953125
21743271936 a26

−24407664203960220715836313385831611983950578039440028369426727294921875
1855425871872 a24

−26822982831292963241441867136595001776015586686010472476482391357421875
3298534883328 a22

+1237239683429339123586281174037416881980503446010383777320384979248046875
70368744177664 a20

+7253324110342472446370228429078979222726981398995849303901195526123046875
140737488355328 a18

+4154323473408135675207380714496250685227393743325475952588021755218505859375
72057594037927936 a16

+42329477774405611120670414032163925242228041885811762767843902111053466796875
2305843009213693952 a14

−9872142202266738724544947588328934558180174750800733818323351442813873291015625
295147905179352825856 a12

−30759339192605941087292459791259656325044229693090301225311122834682464599609375
590295810358705651712 a10

−10517418339169072658281117260237305664446979541714023298482061363756656646728515625
302231454903657293676544 a8

−14619852069348093811561760308887976067989345860892882456028019078075885772705078125
1208925819614629174706176 a6

−9278618885203336290965302082672859519981102111803039633741718716919422149658203125
4835703278458516698824704 a4

−3928798540956683603865726163827286688006574670861681397582287900149822235107421875
38685626227668133590597632 a2

+341459314235364526862512053347845995876592650741798706803820095956325531005859375
618970019642690137449562112 ,

b031 =−
(32a2−75)(2048a6−3200a4−13500a2+5625)ω2

c
3072(8a2+25)2(16a2+15)BaEa

a101 −
√

5(32a2−75)2ωc
46080(8a2+25)Ba

a011

+
(17408a6−40640a4−67500a2+28125)ω2

c
7680(8a2+25)(16a2+15)BaEa

a201

+
√

5(32a2−75)(16384a8+109056a6−558080a4−52500a2+84375)ωc
7680(16a2+15)BaEa

a111

− 32a2−75
1536(16a2+15) [

67108864a14−6291456a12−2059927552a10+5214044160a8

BaEa

−809408000a6+7945500000a4−1307812500a2−474609375
BaEa

] a021

−
√

5
15 [ 603979776a14+304087040a12−19492044800a10+53643008000a8

(16a2+15)Eaωc

−7845600000a6+155209500000a4+3585937500a2−21357421875
(16a2+15)Eaωc

] a031,
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b121 =
√

5ωc
15360 [ 14680064a12+195297280a10−106700800a8−1193728000a6+2031300000a4

(32a2−75)(8a2+25)2(16a2+15)BaEa

+ 1746562500a2−791015625
(32a2−75)(8a2+25)2(16a2+15)BaEa

] a101 +
(32a2−75)2(512a4−1040a2−5625)

46080Ba
a011

−
√

5ωc
38400 [ 22020096a12+985661440a10−81203200a8−4414080000a6

(8a2+25)(16a2+15)BaEa

+10975500000a4+8732812500a2−3955078125
(8a2+25)(16a2+15)BaEa

] a201

−
(32a2−75)(8a2+25)

7680(16a2+15) [ 16777216a12+17301504a10−299581440a8+495603200a6

BaEa

+1821720000a4+761062500a2−474609375
BaEa

] a111

−
√

5(8a2+25)(32a2+9)(32a2−75)2

16a2+15 [22020096a12+985661440a10−81203200a8−4414080000a6

Ea

+10975500000a4+8732812500a2−3955078125
Ea

] a021

+
(32a2−75)

3(16a2+15) [
19058917376a16−78454456320a14−480496844800a12+4597039104000a10+3557792000000a8

Eaω
2
c

+−45933048000000a6−40921650000000a4+5299804687500a2+4805419921875
Eaω

2
c

] a031

b211 =−
35(32a2−75)

46080(8a2+25) [
1073741824a16+10536091648a14−14659092480a12−130029977600a10

(16a2+15)BaEa

+206808064000a8+250732800000a6−557212500000a4−176554687500a2+106787109375
(16a2+15)BaEa

]a101

+
7
√

5(16a2+15)(16a2+225)(32a2−75)3

(46080a2(4a2−5)2ωc
a011 + 7

7680 [ 536870912a16+17012097024a14

(16a2+15)BaEa

+536870912a16+17012097024a14+13662945280a12−259778150400a10+308864000000a8

7680(16a2+15)BaEa

+317592000000a6−914512500000a4−294257812500a2+177978515625
7680(16a2+15)BaEa

] a201

−
√

5(8a2+25)2(32a2−75)2

7680(16a2+15) [ 4194304a12−52297728a10−169410560a8−1519603200a6

BaEaωc

−884160000a4+420187500a2−284765625
BaEaωc

] a111

+
7(8a2+25)3(32a2−75)2

1536(16a2+15) [ 32078036992a14−48473571328a12+40654602240a10

BaEaω
2
c

+151542988800a8−581091840000a6−411075000000a4−7973437500a2+64072265625
BaEaω

2
c

] a021

−
√

5(8a2+25)(32a2−75)
3(16a2+15) [3848290697216a20+12685185908736a18−98385621155840a16

Eaω
3
c

+46400222003200a14+874754277376000a12−4888711833600000a10−2960110272000000a8

Eaω
3
c

+
18303755400000000a6+10748143125000000 ja4−2100858398437500a2−1081219482421875

Eaω
3
c

] a031,

b301 =
√

5(32a2−75)
3072(16a2+15) [

240518168576a18+1523102777344a16−12233610362880a14−12036918476800a12

BaEaωc

+151498719232000a10−200093644800000a8−99326640000000a6

BaEaωc

+274416187500000a4+2705273437500a2−24027099609375
BaEaωc

] a101

−
(8a2+25)(32a2−75)3(16a2+225)(3328a4−8320a2−3375)

3072a2(4a2−5)2ω2
c

a011

−
√

5(8a2+25)
2560(16∗a2+15) [

223338299392a18+4358586499072a16−16686451261440a14

BaEaωc

−80077180108800a12−390446694400000a10+410136384000000a8+223834800000000a6

BaEaωc

+574332187500000a4−25866210937500a2−40045166015625
BaEaωc

] a201

−
(8a2+25)3(32a2−75)2

512(16a2+15) [ 21646802944a12−72642068480a10+179301990400a8

BaEaω
2
c

−429881280000a6+500337000000a4+1898437500a2−64072265625
BaEaω

2
c

] a111

−
√

5(8a2+25)3(32a2−75)2Aa
512(16a2+15) [ 21646802944a12−72642068480a10+179301990400a8

BaEaω
3
c

−429881280000a6+500337000000a4+1898437500a2−64072265625
BaEaω

3
c

] a021
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+
5(8a2+25)2(32a2−75)

16a2+15 [ 123145302310912a22+178533200560128a20−3617892545331200a18

Eaω
4
c

+2980885141913600a16+21154374352896000a14−149298441420800000a12

Eaω
4
c

+381401047552000000a10+160875573600000000a8−794835045000000000a6

Eaω
4
c

−302276812500000000a4−83774487304687500a2−27030487060546875
Eaω

4
c

] a031,

b021 =
√

5(135168a6+227840a4+432000a2+646875)ωc
80(8a2+25)2(16a2+15)Ea

a101

−
√

5(3792896a8−7065600a6+18484000a4+18675000a2−16171875)ωc
200(4a2−5)(8a2+25)(16a2+15)(32a2−75)Ea

a201

−524288a10+9306112a8−42483200a6+189188000a4+45975000a2−73828125
40(4a2−5)(16a2+15)Ea

a111

−
√

5(8a2+25)(32a2−75)(32a2+9)(3792896a8−7065600a6+18484000a4+18675000a2−16171875)
40(4a2−5)(16a2+15)Eaωc

a021

−
1536(10616832a10+14177280a8−174312000a6−6425000a4+555703125a2+284765625)Ba

(16a2+15)Eaω
2
c

a031,

b111 =−24117248a10+129826816a8−414392320a6−28512000a4−342450000a2−436640625
24(8a2+25)(16a2+15)Ea

a101

+[140509184a12+632684544a10−3217612800a8+4179008000a6−5355000000a4

20(4a2−5)(16a2+15)(32a2−75)Ea

− 4865625000a2−3955078125
20(4a2−5)(16a2+15)(32a2−75)Ea

] a201

+
147
√

5(8a2+25)3(32a2−75)(3328a4+5400a2−3375)
20(4a2−5)(16a2+15)Eaωc

a111

+
147(8a2+25)3(32a2−75)(3328a4+5400a2−3375)Aa

4(4a2−5)(16a2+15)Eaω
2
c

a021

−
1024

√
5(8a2+25)Ba

16∗a2+15 [ 1543503872a14+6099828736a12−36852367360a10−19248000000a8

Eaω
3
c

−104343000000a6−135160875000a4−352571484375a2−192216796875
Eaω

3
c

] a031,

b201 =−
√

5
48 [ 7516192768a14+108095602688a12+242027069440a10−491692032000a8

(8a2+25)(16a2+15)Eaωc

−
764928000000a6+1623960000000 ja4+3909515625000a2+2456103515625

(8a2+25)(16a2+15)Eaωc
] a101

+
√

5
40 [ 17179869184a16+389936054272a14+381681664000a12+1990696960000a10+15888230400000a8

(4a2−5)(16a2+15)(32a2−75)Eaωc

−69810300000000a6+27306562500000a4−49485937500000a2−2669677734375
(4a2−5)(16a2+15)(32a2−75)Eaωc

a201

+
(32a2−75)(8a2+25)2

8(4a2−5)(16a2+15) [ 67108864a12+2878603264a10+6557491200a8+89104320000a6

Eaω
2
c

+149073300000a4+1468125000a2−55529296875
Eaω

2
c

] a111

+
√

5(8a2+25)2(32a2−75)
8(4a2−5)(16a2+15) [3580928983040a16+9305952616448a14+196061429760000a12

Eaω
3
c

+78571315200000a10−47351270400000a8−1235033100000000a6

Eaω
3
c

+−1516122562500000a4+152634375000000a2+408460693359375
Eaω

3
c

] a021

−
2560a2(8a2+25)2(4a2−5)2

16a2+15 [ 481036337152a18+5655398187008a16+16872028241920a14

Eaω
4
c

−51098320896000a12+274010419200000a10+661372152000000a8+403593750000000a6

Eaω
4
c

+1894665937500000a4+2928636474609375a2+1081219482421875
Eaω

4
c

] a031,

b101 =−a011 −
2
√

5
5 [34359738368a18+36238786560a16+443023360000a14+2845179904000a12

(8a2+25)(16a2+15)(32a2−75)Eaωc

−12819968000000a10+17001600000000a8−25578000000000a6

(8a2+25)(16a2+15)(32a2−75)Eaωc

+46800000000000a4+20012695312500a2−13348388671875
(8a2+25)(16a2+15)(32a2−75)Eaωc

] a101
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+
96
√

5a2(4a2−5)
5(16a2+15) [ 536870912a14+96468992a12+6935347200a10+48501760000a8

(32a2−75)2Eaωc

−193125600000a6+70267500000a4−171843750000a2+11865234375
(32a2−75)2Eaωc

] a201

−
672a2(4a2−5)(8a2+25)2(2326528a8−41164800a6−31260000a4−8775000a2+18984375)

(16a2+15)Eaω
2
c

a111

−
96
√

5a2(4a2−5)(8a2+25)2

16a2+15 [ 17179869184a16+74625056768a14−982492643328a12+1010963251200a10

Eaω
3
c

−3191193600000a8−1906850400000a6−7689307500000a4−635343750000a2+1601806640625
Eaω

3
c

] a021

−
491520B2

a
16a2+15 [ 51539607552a16+428691423232a14−470936453120a12−4153282560000a10

(32a2−75)Eaω
4
c

−6479961600000a8+10387608000000a6−15258600000000a4−25445390625000a2−10144775390625
(32a2−75)Eaω

4
c

] a031,

a301 =−
(32a2−75)2

4608(8a2+25) [
67108864a14−115343360a12−2115502080a10+7158784000a8

(16a2+15)BaEa

−298880000a6+16416300000a4−2303437500a2−1423828125
(16a2+15)BaEa

] a101

+
√

5(32a2+9)(32a2−75)4

(4608a2(4a2−5)2ωc
a011 +

(32a2−75)
768(16a2+15) [

67108864a14−6291456a12−2059927552a10

768(16a2+15)BaEa

+5214044160a8−809408000a6−7945500000a4+1307812500a2+474609375
768(16a2+15)BaEa

] a201

−
√

5(8a2+25)2(32a2+9)(32a2−75)3(16384a8+109056a6−558080a4−52500a2+84375)
768(16a2+15)BaEaωc

a111

−
5(8a2+25)3(32a2+9)2(32a2−75)4(17408a6−40640a4−67500a2+28125)

768(16a2+15)BaEaω
2
c

a02

−
√

5(8a2+25)(32a2−75)3

3(16a2+15) [ 2147483648a16+28689039360a14+83844136960a12−49192140800a10

Eaω
3
c

−1668308480000a8+2393026080000a6+137097000000a4−376776562500a2−64072265625
Eaω

3
c

] a031,

a211 =−
√

5(32a2−75)2(136a2+75)(2048a6−3200a4−13500a2+5625)ωc
768(8a2+25)2(16a2+15)BaEa

a101

−
(32a2−75)2(128a4−176a2−225)

2304Ba
a011

+
√

5(32a2−75)(136a2+75)(17408a6−40640a4−67500a2+28125)ωc
1920(8a2+25)(16a2+15)BaEa

a201

+
(8a2+25)(32a2−75)

384(16a2+15) [ 4194304a12+4325376a10−110247936a8+128967680a6

BaEa

+92424000a4+7762500a2−18984375
BaEa

] a111

+
√

5(8a2+25)(32a2+9)(32a2−75)3(136a2+75)(17408a6−40640a4−67500a2+28125)
384(16a2+15)BaEaωc

a021

+
5(32a2−75)2

3(16a2+15) [ 335544320a14+7241465856a12+17690132480a10−85375795200a8

Eaω
2
c

−246324832000a6+96446400000a4−39479062500a2−12814453125
Eaω

2
c

] a031,

a121 =
(32a2−75)(2048a6−3200a4−13500a2+5625)ω2

c
1536(8a2+25)2(16a2+15)BaEa

a101 +
√

5(32a2−75)2ωc
23040(8a2+25)Ba

a011

−
(17408a6−40640a4−67500a2+28125)ω2

c
3840(8a2+25)(16a2+15)BaEa

a201

−
√

5(32a2−75)(16384a8+109056a6−558080a4−52500a2+84375)ωc
3840(16a2+15)BaEa

a111

+
(32a2−75)

768(16a2+15) [
67108864a14−6291456a12−2059927552a10+5214044160a8

BaEa

−809408000a6+7945500000a4−1307812500a2−474609375
BaEa

]a021 −
√

5(32a2−75)
3(16a2+15)

×[44171264a10+194867200a8−849510400a6−1291260000a4+47362500a2+170859375)
Eaωc

] a031.

where ωc is given in (3.19), Aa, Ba and Ca are given in (3.21), and Ea = 2048a6 + 7360a4 −

55300a2 + 16875.



Bibliography

[1] D. Hilbert, Mathematical problems, (M. Newton, Transl.) Bull. Amer. Math. 8 (1902)
437–479.

[2] Yu. S. Ilyashenko, S. Yakovenko, Finitely smooth normal forms of local families of
diffeomorphismes and vector fields, Russ. Math. Surv. 46 (1991) 3–19.
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Chapter 4

Center conditions in a switching Bautin
system

4.1 Introduction
Many problems arising in science and engineering are modeled by dynamical systems whose
vector fields (i.e. the right-hand sides of the equations) are not continuous or not differentiable.
These systems are indistinctly called discontinuous or non-smooth systems. A full discussion
on this subject can be found in the classical books [1, 2].

During the past few decades, increasing interest has been attracted to the qualitative
analysis of non-smooth systems, because non-smooth systems describe some real problems
more accuratly and display rich complex dynamical phenomena, which must not be
disregarded in applications, for instance the squealing noise in car brakes [3, 4], or the
absence of a thermal equilibrium in gases modeled by scattering billiards [5, 6]. Because of
various forms of non-smoothness, non-smooth systems can exhibit not only the classical
bifurcations, like Hopf bifurcation, homoclinic bifurcation, but also more complicated
bifurcations that only non-smooth systems can have, such as border-collision bifurcation
[7, 8, 9], grazing bifurcation [10, 11] and so on. A great deal of work has been done to
generalize the classical bifurcation methods for smooth systems to non-smooth ones, see for
instance [12, 13, 14, 15, 16, 17].

One class of planar non-smooth dynamical systems is the so-called switching system,
which has different definitions of the continuous vector fields in two different regions divided
by a line (or a curve). Our attention in this chapter is focused on switching systems, given in
the form of

(ẋ, ẏ) =

{
(δx − y + f +(x, y,µ), x + δy + g+(x, y,µ)), if y > 0,
(δx − y + f −(x, y,µ), x + δy + g−(x, y,µ)), if y < 0,

(4.1)

where µ ∈ Rm is a parameter vector and δ = µ1, f ±(x, y,µ) and g±(x, y,µ) are analytic functions
in x and y starting at least from second-order terms. Obviously, the origin is an equilibrium of
system (4.1). There are two systems in (4.1): the system defined in the upper half-plane for
y > 0 is called the upper system, and the system defined in the lower half-plane for y < 0 is
called the lower system.
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Many contributions have been made to the study of Hopf bifurcation in switching systems,
see for example [12, 13, 16, 18, 19, 20]. As in the study of smooth dynamical systems, the
center problem, determining the center conditions of a singular point being a center, and the
cyclicity problem, finding the maximal number of small-amplitude limit cycles around a
singular point, are fundamental in the analysis of Hopf bifurcation in switching systems.
These two problems in switching systems can be investigated by computing the Lyapunov
constants [12, 15, 16]. Gasull and Torregrosa [12] applied a suitable decomposition of certain
one-forms and developed a new method for computing the Lyapunov constants of switching
systems.

For the center problem, it is well-known that a singular point is a center in smooth systems
if and only if there exists a local first integral around the singular point. However, the situation
is quite complicated in switching systems. The origin of system (4.1) can be a center even if it
is not a center of either the upper system or the lower system. On the other hand, if the origin
is a center for both the upper system and the lower system of (4.1), one can not ensure that
system (4.1) has a center at the origin. It also requires that their first integrals of the upper and
lower systems coincide on the line y = 0. So far, some center conditions have been obtained
for some switching Kukles systems [12], switching Liénard systems [13, 18] and switching
Bautin systems [16].

For planar smooth polynomial dynamical systems, linear systems can not produce limit
cycles, and quadratic systems can have at most 3 small-amplitude limit cycles around a singular
point [21]. For cubic systems, it is only proved that 12 small-amplitude limit cycles can appear
around an elementary center [22]. With the same degrees, switching polynomial systems can
exhibit more limit cycles. For example, Han and Zhang [20] proved that 2 limit cycles can
appear near a focus in linear switching systems. Without loss of generality, quadratic switching
systems can be written as

(
ẋ
ẏ

)
=


(
δx − y − a3x2 + (a5 + a2)xy + (a6 + a3)y2

x + δy + a2x2 + (a4 − a3)xy + (a1 − a2)y2

)
, if y > 0,(

δx − y − b3x2 + (b5 + b2)xy + (b6 + b3)y2

x + δy + b2x2 + (b4 − b3)xy + (b1 − b2)y2

)
, if y < 0.

(4.2)

The number of small-amplitude limit cycles bifurcating from a focus in system (4.2) was
investigated in [12, 15, 16, 17]. Among them, it was showed in [12] that system (4.2) can have
at most 5 small limit cycles when its lower system is linear. In [15], 9 small limit cycles were
obtained from a concrete example of switching Bautin systems through perturbations.

In this chapter, we develop a recursive procedure to compute the Lyapunov constants of
system (4.1), which only involves algebraic computations. We then apply the method to discuss
the following switching Bautin system

(
ẋ
ẏ

)
=


(
δx − y − a3x2 + (a5 + a2)xy + (a6 + a3)y2

x + δy + a2x2 + (a4 − a3)xy − a2y2

)
, if y > 0,(

δx − y − b3x2 + (b5 + b2)xy + (b6 + b3)y2

x + δy + b2x2 + (b4 − b3)xy − b2y2

)
, if y < 0.

(4.3)

For system (4.3) we obtain a complete center classification under the condition a6b6 = 0.
Moreover, we introduce perturbations into system (4.2) with an elementary center, and get 10
small-amplitude limit cycles.
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Denote by E the interchange of parameters (a2, a3, a4, a5, a6) ↔ (b2,−b3,−b4, b4, b5,−b6).
Note that by the change of variables (x, y, t) → (x,−y,−t), the upper system and the lower
system in (4.3) exchange their equations, which can be derived equivalently by the interchange
E in (4.3).

Theorem 4.1.1 Let a6b6 , 0. Then system (4.3) has a center at the origin if and only if one
of the following conditions or the corresponding one under the interchange of parameters E
holds:

I : δ = b6 = 0, b5 = a5, a2 = a5 = b2b3 = 0,
II : δ = b6 = 0, b5 = a5, a2 − a5 = (b2 − a2)(b2 + 2a2) = b3 = a4 − 3a3 = 0,

III : δ = b6 = 0, b5 = a5, a2 = a5, b2 = 0, a4 − 3a3 = b4b3 − 2a2
5 = 0,

IV : δ = b6 = 0, b5 = a5, a2 = a5 = b2, a4 − 3a3 = b4 − 3b3 = 0,
V : δ = b6 = 0, b5 = a5, a6 = b3 = a3a4 − b2(a5 + b2) = a2 = 0,

VI : δ = b6 = 0, b5 = a5, a6 = b3 = a3 + a4 = 3a2 + a5 = (a2 − b2)(2a2 − b2) = 0,
VII : δ = b6 = 0, b5 = a5, a6 = a3 = a5 = b3 = 0,

VIII : δ = b6 = 0, b5 = a5, a6 = b3 = a3 = (b2 − a2)(a2 + b2 + a5) = 0,
IX : δ = b6 = 0, b5 = a5, a6 = b3b4 − a3a4 = b2 = a2 = 0,
X : δ = b6 = 0, b5 = a5, a6 = b4 − a4 = b2 − a2 = b3 − a3 = 0,

XI : δ = b6 = 0, b5 = a5, a6 = b4 + a4 = b2 − a2 = b3 + a3 = 0,

XII : δ = b6 = 0, b5 = a5, a6 = 9b3b4 + 2a2
5 = a4 + a3 = 3a2 + b5 = b2 = 0,

XIII : δ = b6 = 0, b5 = a5, a6 = b4 + b3 = a4 + a3 = 3a2 + a5 = a2 − b2 = 0,

XIV : δ = b6 = 0, b5 = a5, a6 = a2 + b2 − a5 = 0, (2b2 − a2)a2
4 = (3a2 − 4b2)2a5,

(2a2 − b2)b2
4 = (3b2 − 4a2)2a5, (2b2 − a2)a2

3 = (b2 − a2)2a5 = (2a2 − b2)b2
3.

Note that through the perturbations of parameters in conditions I–XIV, we can get small-
amplitude limit cycles bifurcating from the origin of system (4.3). It is important to determine
the maximal number of small-amplitude limit cycles bifurcating from a center. Obviously, by
adding the extra condition, a1 = b1 = 0, to the conditions I–XIV in Theorem 4.1.1, the origin
is still a center of system (4.2).

Regarding the number of small-amplitude limit cycles in system (4.2), we obtain the
following new result, which is the best so far for quadratic switching systems.

Theorem 4.1.2 For system (4.2) under the condition X with a1 = b1 = 0, 10 limit cycles can
appear near the origin under small perturbations.

The proofs for the above two theorems will be given later in section 4.4.

4.2 Preliminary
Let r+(θ, ρ) and r−(θ, ρ) be the solutions of the upper and lower systems of (4.1) in polar
coordinates, respectively, with r+(0, ρ) = ρ and r−(π, ρ) = ρ. Then through the positive
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half-return map P+(ρ) = r+(π, ρ) and the negative half-return map P−(ρ) = r−(2π, ρ), we can
define the Poincaré map P(ρ) = P−(P+(ρ)), see Figure 4.1. Suppose the displacement
function d(ρ) = P(ρ) − ρ can be expanded as

d(ρ) = V1ρ + V2ρ
2 + V3ρ

3 + · · · , (4.4)

where Vk is called the kth-order Lyapunov constant of the switching system (4.1). It is easy
to see that the origin is a center of system (4.1) if and only if d(ρ) ≡ 0 for 0 < ρ � 1, which
means that all the Lyapunov constants in (4.4) vanish. The isolated zeros of d(ρ) = 0 near
ρ = 0 correspond to the limit cycles around the origin. It is easy to get V1 = e2δπ − 1 since
P±(ρ) = eδπρ + O(ρ2). Thus, V1 = 0 if and only if δ = 0. It is well known that for the first
nonzero Lyapunov constants Vk in a smooth system, k must be an odd number. While if Vk is
the first nonzero term in (4.4), k could be any positive integer. Because of this small difference,
the theorem used to determine the number of limit cycles by Lyapunov constants should take
some corresponding changes. We have the following lemma, which is based on Theorem 2.3.2
in [23]. The proof is omitted here.

Lemma 4.2.1 Assume that there exists a sequence of Lyapunov constants of system (4.1), Vi0 ,
Vi1 , · · · , Vik , such that V j = O(|Vi0 , · · · ,Vil |) for any il < j < il+1, where i0 = 1. If for system
(4.1) at the critical point µ = µ0, Vi0 = Vi1 = · · · = Vik−1 = 0, Vik , 0, and

rank
(
∂(Vi0 ,Vi1 , · · · ,Vik−1)
∂(µ1, µ2, · · · , µm)

(µ0)
)

= k,

then k limit cycles can appear near the origin of system (4.1) for |µ − µ0| small.

Based on Lemma 4.2.1, we remark that the expressions in this chapter for Vk, k = 2, 3, . . .,
are obtained by taking into account V1 = V2 = . . . = Vk−1 = 0. Then for any il < j < il+1,
V j = O(|Vi0 , · · · ,Vil |) in Lemma 4.2.1 becomes V j ≡ 0.

x

y

O
ρ

P+(ρ)

P−(P+(ρ))

Figure 4.1: Poincaré map of (4.1).

x

y

O
ρ

P+(ρ)

(P−)−1(ρ)

P+
−(ρ)

Figure 4.2: Half-return maps P+ and (P−)−1.

From now on, we assume that δ = 0 in system (4.1) and so V1 = 0. It is very difficult to
compute the remaining Lyapunov constants by using (4.4), since it involves the composition
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of two maps P+(ρ) and P−(ρ). To simplify the computation of Lyapunov constants, a new
function was introduced [12],

P+(ρ) − (P−)−1(ρ) = W1ρ + W2ρ
2 + W3ρ

3 + · · · , (4.5)

where (P−)−1(ρ) is the inverse map of P−(ρ). For (P−)−1(ρ), we have (P−)−1(ρ) = P+
−(ρ), where

P+
−(ρ) is the positive half-return map of the system obtained from the lower system with the

change of variables (x, y, t) → (x,−y,−t) (see Figure 4.2). Thus, to get (4.5) we only need to
compute two positive half-return maps P+(ρ) and P+

−(ρ). It is proved that for (4.4) and (4.5),
Vk , 0, V j = 0, 1 ≤ j ≤ k − 1 is equivalent to Wk , 0, W j = 0, 1 ≤ j ≤ k − 1. In Section 4.3,
we shall present a new method to compute Wks in (4.5). Because of the equivalence of Vk and
Wk, we still use Vk instead of Wk in the rest of the chapter.

Note that any Lyapunov constant Vk is a polynomial in terms of the coefficients of system
(4.1). Thus, having obtained the Lyapunov constants, we need to solve a sysem of multivariate
polynomial equations, and find the center conditions. We shall use the Maple built-in command
“resultant” to solve these polynomial equations and find their common zeros.

Denote by R[x1, x2, · · · , xr] the polynomial ring of multivariate polynomials in x1, x2, · · · ,
xr with coefficients in R. Let

p(x1, x2, · · · , xr) =

m∑
i=0

pi(x1, · · · , xr−1)xi
r,

q(x1, x2, · · · , xr) =

n∑
i=0

qi(x1, · · · , xr−1)xi
r,

(4.6)

be two polynomials in R[x1, x2, · · · , xr] of respective positive degrees m and n in xr. We call
the following matrix the Sylvester matrix of p and q with respect to xr,

Syl(p, q, xr) =



pm pm−1 · · · p0

pm pm−1 · · · p0
. . .

. . .
. . .

pm pm−1 · · · p0

qn qn−1 · · · q0

qn qn−1 · · · q0
. . .

. . .
. . .

qn qn−1 · · · q0



 n

 m

,

whose determinant is called the resultant of p and q with respect to xr, denoted by Res(p, q, xr).
We have the following lemma.

Lemma 4.2.2 [24, Chapter 7] Consider two multivariate polynomials p(x1, x2, · · · , xr) and
q(x1, x2, · · · , xr) in R[x1, x2, · · · , xr] given by (4.6). Let Res(p, q, xr) = h(x1, · · · , xr−1). Then

1. If real vector <α1, α2, · · · , αr> ∈Rr is a common zero of equations p(x1, x2, · · · , xr) = 0
and q(x1, x2, · · · ,xr) = 0, then h(α1, · · · , αr−1) = 0.

2. Conversely, if h(α1, · · · , αr−1) = 0, then at least one of the following four conditions
hold:
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(a) pm(α1, · · · , αr−1) = · · · = p0(α1, · · · , αr−1) = 0, or
(b) qn(α1, · · · , αr−1) = · · · = q0(α1, · · · , αr−1) = 0, or
(c) pm(α1, · · · , αr−1) = qn(α1, · · · , αr−1) = 0, or
(d) for some αr ∈ R, < α1, · · · , αr > is a common zero of both p(x1, · · · , xr) and

q(x1, · · · , xr).

From the first statement of Lemma 4.2.2, we know that if the resultant h does not have
zeros on the region D ⊂ Rr−1, then polynomials p and q do not have zeros in D × R.
According to the second statement, in order to solve p = q = 0, we first find the zeros of
h = 0, and then substitute them into p and q to solve for xr. In this way, no zeros should be
missed. For m multivariate polynomials with m variables, we can apply the command
“resultant” repeatedly. For instance, take m = 3. To solve F j(x1, x2, x3) = 0, j = 1, 2, 3,
suppose we compute Res(F1, F j, x1) to obtain Res(F1, F j, x1) = Fa(x2, x3)E j(x2, x3), j = 2, 3.
Then, we need to find the solutions for Fa(x2, x3) = 0 and E2(x2, x3) = E3(x2, x3) = 0. For
E2 = E3 = 0, we can use resultant again, like solving Res(E2, E3, x2) = 0.

4.3 Computation of Lyapunov constants
In this section, we consider a differential system of the form,

ẋ = −y +

+∞∑
i=2

Pi(x, y), ẏ = x +

+∞∑
i=2

Qi(x, y), (4.7)

where Pi(x, y) and Qi(x, y) are homogeneous polynomials in x and y of degree i. Obviously,
the origin is a Hopf singular point of system (4.7). Introducing the transformation x = r cos(θ)
and y = r sin(θ) into (4.7) yields

ṙ =

+∞∑
i=2

(cos(θ)Pi + sin(θ)Qi) =

+∞∑
i=2

Ai(θ)ri,

θ̇ = 1 +

+∞∑
i=2

(cos(θ)Qi − sin(θ)Pi)/r = 1 +

+∞∑
i=2

Bi(θ)ri−1,

(4.8)

where

Ai(θ) = cos(θ)Pi(cos(θ), sin(θ)) + sin(θ)Qi(cos(θ), sin(θ)),
Bi(θ) = cos(θ)Qi(cos(θ), sin(θ)) − sin(θ)Pi(cos(θ), sin(θ)).

(4.9)

Let r(θ, ρ) be the solution of system (4.8) with r(0, ρ) = ρ. Suppose that r(θ, ρ) can be expressed
as the power series of ρ in the form of

r(θ, ρ) = r1(θ)ρ + r2(θ)ρ2 + r3(θ)ρ3 + · · · , |ρ| � 1, (4.10)

where r1(0) = 1, ri(0) = 0, i ≥ 2. Then, we have the positive half-return map of system (4.7),
given by

P+(ρ) = r(π, ρ) = r1(π)ρ + r2(π)ρ2 + r3(π)ρ3 + · · · , |ρ| � 1.
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Hence, we need to compute r j(θ) in order to get Lyapunov constants.
Eliminating the time t from (4.8) we have

dr
dθ

=

∑+∞
i=2 Ai(θ)ri

1 +
∑+∞

i=2 Bi(θ)ri−1
, (4.11)

which can be rewritten in the power series of r as

dr
dθ

= R2(θ)r2 + R3(θ)r3 + R4(θ)r4 + · · · , (4.12)

where Ri(θ) is a polynomial in sin(θ) and cos(θ).

Lemma 4.3.1 For system (4.11), let (4.9) and (4.12) hold. Then deg(Ri(θ), {sin(θ), cos(θ)}) =

3(i − 1) and Ri(θ) is odd (even) in sin(θ) and cos(θ) if i is even (odd).

Proof It follows from (4.9) that Ai(θ) and Bi(θ) are homogenous polynomials of sin(θ) and
cos(θ) of degree i + 1. Also note that

1
1 +

∑+∞
i=2 Bi(θ)ri−1

= 1 +

+∞∑
j=1

(
−

+∞∑
i=2

Bi(θ)ri−1
) j

= 1 +

+∞∑
i=1

B̃i(θ)ri, |r| � 1.

Thus, B̃i(θ)ri is a linear combination of products of B2r, B3r2, · · · , Bi+1ri. Suppose that B̃i(θ) =∑
Bi1 Bi2 · · · Bim . Then

∑m
j=1(i j−1) = i. Since i j ≥ 2, the largest value for m should be i. Further,

we have

deg(Bi1 Bi2 · · · Bim , {sin(θ), cos(θ)}) =

m∑
j=1

(i j + 1) = i + 2m ≤ 3i. (4.13)

Therefore, deg(B̃i, {sin(θ), cos(θ)}) = 3i, and from (4.13), we see R̃i(θ) is odd (even) in sin(θ)
and cos(θ) if i is odd (even).

Clearly, we have ∑+∞
i=2 Ai(θ)ri

1 +
∑+∞

i=2 Bi(θ)ri−1
=

( +∞∑
i=2

Ai(θ)ri
)(

1 +

+∞∑
i=1

B̃i(θ)ri
)

Combining the above equation with (4.11) and (4.12) yields Ri(θ) =
∑i−1

j=2 A j(θ)B̃i− j(θ) + Ai(θ).
Finally, taking into account that A j(θ) is a homogeneous polynomial in sin(θ) and cos(θ) of
degree j + 1 for any j ≥ 2, the proof is complete.

Further, assume that r j(θ, ρ) =
∑+∞

i= j r j,i(θ)ρi for any j ≥ 2. Substituting equation (4.10) into
system (4.12) and comparing the coefficients yields r′1(θ) = 0 and

r′i (θ) = Ri(θ) + Ri−1(θ)ri−1,i(θ) + · · · + R2(θ)r2,i(θ), i ≥ 2. (4.14)

It is easy to get r1(θ) = 1, r2(θ) =
∫ θ

0
R2(θ)dθ and

r3(θ) =

∫ θ

0
(R3(θ) + 2R2(θ)r2(θ))dθ =

∫ θ

0
R3(θ)dθ + r2

2(θ).

But computation of ri(θ) becomes more and more involved by direct integration, as i grows. To
overcome this difficulty, we present a new method to compute ri(θ), which is closely related
the proof of the following theorem.



4.3. Computation of Lyapunov constants 71

Theorem 4.3.2 Suppose r(θ, ρ) is the solution of system (4.7) with r(0, ρ) = ρ, and let (4.10)
hold. Then for any i ≥ 1, we have

ri(θ) =

3i−3∑
j=1

(S i, j(θ) sin j(θ) + Ci, j(θ) sin j−1(θ) cos(θ)) + Ci,0(θ), (4.15)

where S i, j(θ) and Ci, j(θ) are polynomials in θ.

Proof We apply the method of mathematical induction to prove this lemma. It is easy to see
that the conclusion is true for i = 1, since r1(θ) = 1. Now, suppose (4.15) holds for i− 1. Then,
we prove that (4.15) also holds for i.

Firstly, we need to prove that for any 2 ≤ j ≤ i − 1, deg(r j,i(θ), {sin(θ), cos(θ)}) = 3(i − j).
Note that

r j(θ, ρ) = ρ j(1 + r2(θ)ρ + r3(θ)ρ2 + · · · ) j = ρ j(1 + r j, j+1(θ)ρ + r j, j+2(θ)ρ2 + · · · ).

Thus, r j,i(θ)ρi− j should be a linear combination of products of rk(θ)ρk−1, 2 ≤ k ≤ i− 1. Suppose
that r j,i(θ) =

∑
ri1ri2 · · · rin , where ik ≤ i − 1, k = 1, . . . , n. Then

∑n
k=1(ik − 1) = i − j. Since

deg(rik(θ), {sin(θ), cos(θ)}) = 3(ik − 1), we have

deg(r j,i(θ), {sin(θ), cos(θ)}) = max(
n∑

k=1

3(ik − 1)) = 3(i − j).

From Lemma 4.3.1, we know deg(R j(θ), {sin(θ), cos(θ)}) = 3( j − 1). Then, the right hand-
side of equation (4.14) has degree 3(i − 1) in sin(θ) and cos(θ). Applying sin2(θ) + cos2(θ) = 1
to equation (4.14) and decreasing the degree in cos(θ) gives

r′i (θ) =

3i−3∑
j=1

(Ti, j(θ) sin j(θ) + Di, j(θ) sin j−1(θ) cos(θ)) + Di,0(θ), (4.16)

where Ti, j(θ) and Di, j(θ) are polynomials in θ. Then,

ri(θ) =

3i−3∑
j=1

( ∫ θ

0
Ti, j(θ) sin j(θ)dθ +

∫ θ

0
Di, j(θ) sin j−1(θ) cos(θ)dθ

)
+

∫ θ

0
Di,0(θ)dθ,

On the other hand, for any polynomial f (θ) and number j we have∫
f (θ) sin j(θ) cos(θ)dθ =

1
j + 1

f (θ) sin j+1(θ) −
1

j + 1

∫
f ′(θ) sin j+1(θ)dθ, (4.17)

and ∫
f (θ) sin j+1(θ)dθ =

∫
f (θ) sin j(θ)d(− cos(θ))

= − f (θ) sin j(θ) cos(θ) +

∫
f ′(θ) sin j(θ) cos(θ)dθ + j

∫
f (θ) sin j−1(θ) cos2(θ)dθ

= − f (θ) sin j(θ) cos(θ) +
1

j + 1
f ′(θ) sin j+1(θ) −

1
j + 1

∫
f ′′(θ) sin j+1(θ)dθ

+ j
∫

f (θ) sin j−1(θ)dθ − j
∫

f (θ) sin j+1(θ)dθ.
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Hence,∫
f (θ) sin j+1(θ)dθ = −

1
j + 1

f (θ) sin j(θ) cos(θ) +
1

( j + 1)2 f ′(θ) sin j+1(θ)

−
1

( j + 1)2

∫
f ′′(θ) sin j+1(θ)dθ +

j
j + 1

∫
f (θ) sin j−1(θ)dθ.

(4.18)

It follows from equations (4.17) and (4.18) that the conclusion is true for i, and thus the proof
is complete.

In the above proof, the precedure of computing ri(θ) is present: (1) to compute r j,i(θ),
2 ≤ j ≤ i − 1; (2) to substitute r j,i(θ) into (4.14), and to apply cos2(θ) = 1 − sin2(θ) to
get (4.16); (3) for any j in descending order, to use (4.17) and (4.18) repeatedly to compute∫ θ

0
Ti, j(θ) sin j(θ)dθ and

∫ θ

0
Di, j(θ) sin j−1(θ) cos(θ)dθ by decreasing the degrees of polynomials

Ti, j(θ) and Di, j(θ); and (4) to compute
∫ θ

0
Di,0(θ)dθ.

4.4 Proofs of Theorems 4.1.1 and 4.1.2
Now, we are ready to prove Theorems 4.1.1 and 4.1.2.

Proof of Theorem 4.1.1 Without loss of any generality, we suppose b6 = 0 since a6b6 = 0.
Denote by C(E) the condition which is obtained from the condition C with the interchange of
variables E.

For system (4.3), we have δ = 0 due to V1 = 0, as we have discussed before. From the
second Lyapunov constant V2 = 2

3 (a5 − b5), we solove V2 = 0 to get b5 = a5. Then, we obtain
V3 = −π8 (a2 − a5)a6.

First, we assume a6 , 0. Then, V3 = 0 yields a2 = a5. Further, by linearly solving V4 = 0
for b4, we have

b4 =
1

a5b3

[
2a3

5 − b2a2
5 − (3a2

3 − a3a4 + 6a3a6 − 2a4a6 + b2
2)a5 + 3b2b2

3
]
, a5b3 , 0. (4.19)

In case a5 = 0, we have V4 = 2
5b2b2

3, which yields the center condition I by solving V4 = 0. If
a5 , 0 and b3 = 0, we obtain

a4 =
1

a3 + 2a6
(3a2

3 + 6a3a6 − 2a2
5 + a5b2 + b2

2), (4.20)

by solving V4 = 0 when a3 + 2a6 , 0. Under the condition (4.20), V5 is given by

V5 =
πa5a6

48(a3 + 2a6)2 (b2 + 2a5)(b2 − a5)(5a3a6 + 2a2
5 − a5b2 + 10a2

6 − b2
2).

From V5 = 0, we have condition II if (b2 + 2a5)(b2 − a5) = 0, or another equation

a3 = −
1

5a6
(2a2

5 − a5b2 + 10a2
6 − b2

2).
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When the above equation holds, V6 and V7 are given by V6 =
2a5

875a2
6
F11 and V7 =

πa5a6
64 F12, where

F11 = − 3b6
2 − 9a5b5

2 + (9a2
5 + 30a2

6)b4
2 + (33a3

5 + 60a5a2
6)b3

2 − (18a4
5 + 90a2

5a2
6 − 50a4

6)b2
2

− (36a5
5 + 120a3

5a2
6 − 50a5a4

6)b2 + 24a6
5 + 120a4

5a2
6 − 350a2

5a4
6,

F12 = b4
2 + 2a5b3

2 − (3a2
5 + 5a2

6)b2
2 − (4a3

5 + 5a5a2
6)b2 + 4a4

5 + 35a2
5a2

6.

Then Res(F11, F12, b2) = 244140625a12
6 a8

5(9a2
5 + 40a2

6)2 , 0 since a5a6 , 0, which means V6

and V7 do not have common solutions.
If b3 = a3 + 2a6 = 0, we have

V4 = −
2a5

15
(b2 + 2a5)(b2 − a5), V5 = −

πa5a6

48
(a4 + 6a6)(a4 + a6),

V6 =
4a5a6

315
(a4 + 6a6)

[
2(a4 + a6)(a4 − 4a6) + 9a2

5
]
.

Thus, V4 = V5 = V6 = 0 yields (b2 + 2a5)(b2 − a5) = a4 + 6a6 = 0, which are clearly included
in the condition II.

When (4.19) holds, we obtain

V5 = −
πa5a6

48
(3a3 − a4)(3a3 − a4 + 5a6). (4.21)

Taking a4 = 3a3 yields V5 = 0 and V6 = −
2b2

3
21 b2(a5 − b2)(4a5 + 3b2). Setting V6 = 0 yields

b2(a5 − b2) = 0, which gives the conditions III and IV, or b2 = −4
3a5 which results in V7 ≡ 0

but V8 = 448
2187a5

5b2
3 , 0 since a5b3 , 0.

For (4.21), if a4 = 3a3 + 5a6, we have V5 = 0 and

B3 =
3a5a6

b2D21
(3a3

3 + 12a2
3a6 + 10a3a2

6 + 2a2
5a6 − 4a3

6), b2D21 , 0, (4.22)

obtained by linearly solving V6 = 0, where B3 = b2
3 and D21 = 9a3a6 + 4a2

5 − a5b2 + 18a2
6 − 3b2

2.

If b2 = 0, we have V6 =
2a5a6

7 F21 and V7 =
25πa5a3

6
64 F22, where

F21 = 3a3
3 + 12a2

3a6 + 10a3a2
6 + 2a2

5a6 − 4a3
6, F22 = a2

3 + 3a3a6 + a2
5 + 2a2

6.

Then, Res(F21, F22, b2) = a4
5(9a2

5 + 40a2
6) , 0, which means that there are no center conditions

in this case. If D21 = 0, we have a3 = − 1
9a6

(4a2
5 − a5b2 + 18a2

6 − 3b2
2), and V6 = −

2a5
1701a2

6
F23, V7 =

25πa5a6
5184 F24, where F23 and F24 are polynomials in a5, a6 and b2. Similarly, it can be easily shown

that the two equations, V6 = V7 = 0, do not have solutions by verifying Res(F23, F24, b2) , 0.
Now suppose (4.22) holds, we have V7 =

25πa5a3
6

64 F31, V8 =
2a5a6
27D21

(F32a3 + D31), V9 ≡ 0 and
V10 =

2a5a6
18711D2

21
F33 with

F31 = a2
3 + 3a3a6 + a2

5 + 2a2
6,

F32 = a6[−a6
5 + b2a5

5 − (17a2
6 + 18b2

2)a4
5 − (13a2

6b2 − 9b3
2)a3

5

− (30a4
6 + 60a2

6b2
2 − 9b4

2)a2
5 + (−30a4

6b2 + 90a2
6b3

2)a5 + 90a2
6b4

2],

D31 = 16a6
5 + 14b2a5

5 + (16a2
6 + 24b2

2)a4
5 + (14a2

6b2 − 27b3
2)a3

5

+ (15a4
6 + 30a2

6b2
2 − 27b4

2)a2
5 + (15a4

6b2 − 45a2
6b3

2)a5 − 45a2
6b4

2.
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If D31 = 0, it follows from V8 = 0 that F32 = 0. Note that D31 and F32 are homogeneous
polynomials in a6, a5 and b2. Thus, by a variable scaling: a5 → a5a6 and b2 → b2a6, we can
eliminate a6. Without loss of any generality, we take a6 = 1, and then obtain Res(F32,D31, b2) =

−21870a24
5 (3862879a6

5 + 35074080a4
5 + 92750400a2

5 + 50112000) , 0 for nonzero a5. This
indicates that there are no zeros for the equations: D31 = F32 = 0. If D31 , 0, we have
a3 = − F32

D31
, and F31 =

a4
5

D2
31

F̃31, F33 =
a4

5a6

D8
31

F̃33, where F̃31 and F̃33 are homogeneous polynomials

in a6, a5 and b2. Similarly, by verifying Res(F̃31, F̃33, b2) , 0, we conclude that V7 = V10 = 0
do not have zeros when a5a6 , 0.

Now we consider the case a6 = 0, for which V3 = 0, and get

b4 =
1

a5b3
[(a2 − b2)a2

5 + (a2
2 + a3a4 − b2

2)a5 − 3a2a2
3 + 3b2b2

3], a5b3 , 0, (4.23)

by solving V4 = 0. If b3 = 0, V4 = 0 yields a4 = − 1
a3a5

[a5a2
2 − (3a2

3 + a2
5)a2 − b2a2

5 − b2
2a5]

provided a3a5 , 0. Further, we have V5 ≡ 0, V6 = −
2a2

3
105a2F41, V7 ≡ 0, and V8 = −

2a2
3

2835a5
a2F42,

where

F41 = 15a2
2 + 5a2a5 − 2a2

5 − 9a5b2 − 9b2
2,

F42 = 315a5a4
2 + (675a2

3 + 315a2
5)a3

2 + (225a2
3a5 + 1890a3

5 + 225a2
5b2 + 225a5b2

2)a2
2

− (90a2
3a2

5 + 405a2
3a5b2 + 405a2

3b2
2 − 602a4

5 − 54a3
5b2 − 54a2

5b2
2)a2

− 248a5
5 − 1176a4

5b2 − 1446a3
5b2

2 − 540a2
5b3

2 − 270a5b4
2.

Obviously, a2 = 0 is a solution of V6 = V8 = 0, resulting in condition V. For F41 = F42 = 0, we
have

Res(F41, F42, a2) = 2700a2
5 (a5 + 3b2)2(2a5 + 3b2)2(b2 − a5)(b2 + 2a5)

× (29a2
5 + 108a5b2 + 108b2

2).

Solving F41 = F42 = Res(F41, F42, a2) = 0, we obtain condition VI, derived from
(a5 + 3b2)(2a5 + 3b2) = 0, and other center conditions derived from (b2 − a5)(b2 + 2a5) = 0 are
already included in II. If b3 = a3 = 0, V4 = 2

15a5(a2 − b2)(a2 + a5 + b2). Solving V4 = 0 we get
VII and VIII. If b3 = a5 = 0, center conditions obtained from V4 = 0 are included in I or VII,
where V4 = −2

5a2a2
3. If b3 , 0 and a5 = 0, we get b2 = 1

b2
3
a2a2

3 from V4 = 0. Then V5 ≡ 0 and

V6 = 2
35b4

3
a2a2

3(8a2
2a4

3 − 8a2
2b4

3 − 3a3a4b4
3 + 3b5

3b4). When a2a3 = 0, we get subcases of I and
I(E). Otherwise, we linearly solve V6 = 0 using b4, for which V7 ≡ 0, and further obtain

V8 =
2a3

2a2
3

945b8
3

(a2
3 − b2

3)
[
− 75a3b4

3(a2
3 + b2

3)a4 + 105a4
3(a2

3 + b2
3)a2

2 − 95b4
3(a2

3 + b2
3)a2

2 + 21a2
3b6

3
]
.

When a2
3 − b2

3 = 0, we get subcases of X and XI. Otherwise, we linearly solve V8 = 0 using a4,
and get

V10 = −
4a3

2a2
3(a2

3 − b2
3)

37125b12
3 (a2

3 + b2
3)

F43, V12 = −
4a3

2a2
3(a2

3 − b2
3)

4021875b16
3 (a2

3 + b2
3)2

F44,

V14 = −
4a3

2a2
3(a2

3 − b2
3)

4524609375b20
3 (a2

3 + b2
3)3

F45, V9 = V11 = V13 ≡ 0,
(4.24)
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where F43, F44 and F45 are homogeneous polynomials in a3, a2 and b3. Thus, without loss of
generality, we take b3 = 1 and obtain

F43 = 150a4
2a12

3 + 300a4
2a10

3 − (50a4
2 − 465a2

2)a8
3 − (400a4

2 − 1240a2
2)a6

3 − (50a4
2 − 1240a2

2

+ 48)a4
3 + (300a4

2 + 465a2
2)a2

3 + 150a4
2,

F44 = 35250a6
2a18

3 + 105750a6
2a16

3 + (90250a6
2 + 111675a4

2)a14
3 − (11250a6

2 − 403975a4
2)a12

3

− (62000a6
2 − 675150a4

2 + 4335a2
2)a10

3 − (62000a6
2 − 765700a4

2 − 4165a2
2)a8

3

− (11250a6
2 − 675150a4

2 − 4165a2
2 + 2352)a6

3 + (90250a6
2 + 403975a4

2 − 4335a2
2)a4

3

+ (105750a6
2 + 111675a4

2)a2
3 + 35250a6

2,

F45 = 64267500a8
2a24

3 + 257070000a8
2a22

3 + (374412500a8
2 + 209282250a6

2)a20
3

+ (212300000a8
2 + 963353000a6

2)a18
3 − (5995000a8

2 + 2057488500a6
2 + 9179400a4

2)a16
3

− (57200000a8
2 − 2903448125a6

2 − 82855050a4
2)a14

3 − (41030000a8
2 − 3282832625a6

2

− 209672700a4
2 + 8036550a2

2)a12
3 − (57200000a8

2 + 3282832625a6
2 + 271994100a4

2

− 11441925a2
2)a10

3 − (5995000a8
2 + 2903448125a6

2 + 209672700a4
2 − 11441925a2

2

− 889056)a8
3 + (212300000a8

2 + 2057488500a6
2 + 82855050a4

2 − 8036550a2
2)a6

3

+ (374412500a8
2 + 963353000a6

2 + 9179400a4
2)a4

3 + (257070000a8
2 + 209282250a6

2)a2
3

+ 64267500a8
2,

from which we have

Res(F43, F44, a3) = 4.793776480822102166712284088134765625 × 1056a80
2 E2

c E2
41,

Res(F43, F45, a3) = 1.481231288706170179381160778575576841831207275390625 × 1077

× a104
2 E2

c E2
42,

where Ec = (5a2
2 + 1)2 + 5a2

2 , 0, and E41 and E42 are polynomials in a2 of degrees 16
and 24, respectively, satisfying Res(E41, E42, a2) , 0. Therefore, there are no solutions for
V10 = V12 = V14 = 0 in (4.24).

With (4.23) holding, we get V5 ≡ 0 and further obtain

a4 =
1

9a5a3E0

[
(−2a2a2

3 + 2b2b2
3)a3

5 + (−4a2
2a2

3 + 9a2b2b2
3 − 5b2

2b2
3)a2

5

+ (6a3
2a2

3 + 9a2
2b2b2

3 − 15b3
2b2

3)a5 + 27a2
2a4

3 − 27a2a2
3b2b2

3
]
,

(4.25)

by solving V6 = 0 provided a5a3E0 , 0, where E0 = a2a2
3 − b2b2

3. If a3E0 = 0, we obtain
conditions IX–XI, V(E), VI(E) and a subcase of II(E). Here, we omit the details of the
discussion for a5a3E0 , 0, since it is similar to the case a5b3 = 0 for V4 = 0.

When (4.23) and (4.25) hold, we have a3a5b3E0 , 0, V7 = V9 = V11 = V13 = V15 ≡ 0 and

V8 =
2F1

1701a5E0
, V10 =

2F2

56133a2
5E2

0

, V12 =
2F3

19702683a3
5E3

0

,

V14 =
2F4

6206345145a4
5E4

0

, V16 =
2F5

949570807185a5
5E5

0

,
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where F j, 1 ≤ j ≤ 5, is a homogeneous polynomial in a2, a3, a5, b2, b3, and also a polynomial
of a2

3 and b2
3. Taking a5 = 1, A3 = a2

3 and B3 = b2
3, we have

F1 = a2
2[135b2(3a2 + 3b2 + 1)(a2 − b2)B3 + 2a2(a2 − 1)(3a2 + 1)(6a2 + 1)]A2

3

+ a2b2[135b2(3a2 + 3b2 + 1)(a2 − b2)B3 − 189a4
2 + 450a2

2b2
2 − 189b4

2 − 189a3
2

+ 171a2
2b2 + 171a2b2

2 − 189b3
2 − 48a2

2 + 64a2b2 − 48b2
2 − 2a2 − 2b2)]B3A3

+ 2b3
2(b2 − 1)(3b2 + 1)(6b2 + 1)B2

3,

F2 = 63[135b2(3a2 + 3b2 + 1)(a2 − b2)B3 + 2a2(a2 − 1)(3a2 + 1)(6a2 + 1)]a4
2A4

3

− a3
2[8505b2

2(3a2 + 3b2 + 1)(a2 − b2)B2
3 − 18b2(2898a4

2 − 3150a2
2b2

2 + 2421a3
2

− 1050a2
2b2 − 1245a2b2

2 + 5387a2
2 − 415a2b2 − 4860b2

2 + 1634a2 − 1620b2)B3

− 2a2(a2 − 1)(3a2 + 1)(672a3
2 + 416a2

2 + 1349a2 + 216)]A3
3

− a2
2b2B3[8505b2

2(3a2 + 3b2 + 1)(a2 − b2)B2
3 + 18b2(a2 − b2)(3024a3

2 + 3024a2
2b2

+ 3024a2b2
2 + 3024b3

2 + 2358a2
2 + 2553a2b2 + 2358b2

2 + 10191a2 + 10191b2

+ 3247)B3 − 16821a6
2 + 40635a4

2b2
2 − 6615a2

2b4
2 − 5103b6

2 − 26397a5
2

+ 15495a4
2b2 + 28218a3

2b2
2 − 7182a2

2b3
2 − 2205a2b4

2 − 8505b5
2 − 47076a4

2

+ 10706a3
2b2 + 99634a2

2b2
2 − 2394a2b3

2 − 45612b4
2 − 47564a3

2 + 38500a2
2b2

+ 36100a2b2
2 − 41832b3

2 − 13986a2
2 + 13724a2b2 − 10424b2

2 − 864a2 − 432b2]A2
3

+ a2b2
2B2

3[8505b2
2(3a2 + 3b2 + 1)(a2 − b2)B2

3 + 18b2(3150a2
2b2

2 − 2898b4
2

+ 1245a2
2b2 + 1050a2b2

2 − 2421b3
2 + 4860a2

2 + 415a2b2 − 5387b2
2 + 1620a2

− 1634b2)B3 − 5103a6
2 − 6615a4

2b2
2 + 40635a2

2b4
2 − 16821b6

2 − 8505a5
2

− 2205a4
2b2 − 7182a3

2b2
2 + 28218a2

2b3
2 + 15495a2b4

2 − 26397b5
2 − 45612a4

2

− 2394a3
2b2 + 99634a2

2b2
2 + 10706a2b3

2 − 47076b4
2 − 41832a3

2 + 36100a2
2b2

+ 38500a2b2
2 − 47564b3

2 − 10424a2
2 + 13724a2b2 − 13986b2

2 − 432a2 − 864b2]A3

− 2b4
2(3b2 + 1)(b2 − 1)(378B3b2

2 + 672b3
2 + 63B3b2 + 416b2

2 + 1349b2 + 216)B3
3.

The other three lengthy polynomials F3, F4 and F5 are omitted here for brevity. In order to
solve F1 = F2 = F3 = F4 = F5 = 0, we compute the following resultants

Res(F1, F2, A3) = −5292FaE1, Res(F1, F3, A3) = −47628FaFbE2,

Res(F1, F4, A3) = −7001316FaF2
bE3, Res(F1, F5, A3) = −7001316FaF3

bE4,
(4.26)

where

Fa = B6
3a8

2b7
2(3b2 + 1)(b2 − 1)(3a2 + 3b2 + 1)2(a2 − b2)6

× (405B3a2
2b2 − 405B3b3

2 + 36a4
2 + 135B3a2b2 − 135B3b2

2 − 18a3
2 − 16a2

2 − 2a2),

Fb = B2
3a4

2b2
2(3a2 + 3b2 + 1)(a2 − b2)2,

and E j, 1 ≤ j ≤ 4, is a polynomial of B3, a2 and b2. Note that Fa contains all the common
factors of resultants Res(F1, F j, A3), j = 2, 3, 4, 5. Then conditions III(E), XII, XIII and XIII(E)
can be easily obtained if a2b2(a2 − b2) = 0, For example, taking a2 = 0 we have F1 = 2b3

2(b2 −
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1)(3b2 + 1)(6b2 + 1)B2
3, and then b2 , 0 since E0 , 0. We can get condtion III(E) if b2 = 1 and

condition XII if b2 = −1
3 . If b2 = −1

6 , then F2 = − 49
139968 B3

3 < 0. Note that E0 , 0, A3 > 0 and
B3 > 0 from (4.23) and (4.25). The rest factors in Fa can not lead to new center conditions.
Here, we only present the details for the case b2 − 1 = 0 with a2b2(a2 − b2) , 0. Similar
procedures can be applied to other cases.

Assume a2b2(a2 − b2) , 0. When b2 = 1, we have

F1 = a2A3(a2 − 1)G1, F2 = a2A3(a2 − 1)G2,

F3 = a2A3(a2 − 1)G3, F4 = a2A3(a2 − 1)G4,
(4.27)

where G j, 1 ≤ j ≤ 4, is a polynomial in a2, A3 and B3. For (4.27), a2 , 1 since b2 = 1 and
a2 − b2 , 0. Then

Res(G1,G2, B3) = − 714420A2
3a3

2(1 + 3a2)(3a2 + 4)3(a2 − 1)2G5,

Res(G1,G3, B3) = 173604060A3
3a4

2(1 + 3a2)(3a2 + 4)4(a2 − 1)3G6,

Res(G1,G4, B3) = − 2067103542420A4
3a5

2(1 + 3a2)(3a2 + 4)5(a2 − 1)4G7,

where G j, 5 ≤ j ≤ 7, is a polynomial in a2 and A3. We consider the common factor (1 +

3a2)(3a2 + 4) = 0 firstly. If a2 = −1
3 , then G1 = −B3I11 and G2 = 1

9 B3I12, where I11 =

135A3 + 405B3 + 328 and

I12 = 229635B3
3 + (76545A3 + 1499310)B2

3 − (25515A2
3 − 758700A3 − 1052136)B3

− 8505A3
3 + 86310A2

3 + 256312A3,

satisfying Res(I11, I12, B3) = 14696640(1080A3 + 42107) > 0. Thus, there are no solutions for
G1 = G2 = G3 = G4 = 0 if a2 = −1

3 . If a2 = −4
3 , then G1 = 56

3 (4A3 + 3B3) > 0. Next we
consider G5 = G6 = G7 = 0, and have

Res(G5,G6, A3) = 2789427520800a8
2(a2 − 8)(3a2 + 5)(3a2 − 8)(3a2 + 4)2GaG81G82,

Res(G5,G7, A3) = − 376572715308000a12
2 (a2 − 8)(3a2 + 5)(3a2 − 8)(3a2 + 4)3GaG91G92,

where Ga = 486a4
2 + 945a3

2−1227a2
2−2779a2−428, and G j1 and G j2, j = 8, 9 are polynomials

in a2. If a2 = 8, we have G5 = 12544(9A3 + 196)I21 and G6 = 39337984(9A3 + 196)I22, where
I21 = 244111680A3 − 240599605103 and

I22 = 672679027641600A3
3 + 95795633236828680A2

3 − 282894493179800916477A3

− 4376089823211446777789,

satisfying Res(I21, I22, A3) , 0. Thus, there are no solutions for G5 = G6 = G7 = 0 if a2 = 8. In
a similar way, it can be proved that no solutions exist for G5 = G6 = G7 = 0 if (3a2 + 5)(3a2 −

8)(3a2 + 4) = 0. If Ga = 0, we compute I31 = Res(Ga,G5, a2) and I32 = Res(Ga,G6, a2), with
Res(I31, I32, A3) , 0. Moreover, we get Res(G8i,G9 j, a2) , 0 for i, j = 1, 2, and then there are
no solutions for G8i = G9 j = 0. Therefore, if b2 = 1, no zeros exist for F1 = F2 = F3 = F4 = 0.

For (4.26), we consider E1 = E2 = E3 = E4 = 0 with a5A3E0Fa , 0, and get

Res(E1, E2, B3) = − 3050238993994800FcE5,

Res(E1, E3, B3) = − 900567811781994726000FcFdE6,

Res(E1, E4, B3) = − 387664913353600397935934460000FcF2
dE7,

(4.28)
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where

Fc = a3
2b19

2 (3a2 + 3b2 + 1)2(3a2 + 1)2(a2 − 1)2(3b2 + 2 + 3a2)(a2 + b2 − 1)EaEbEcEd,

Fd = a2b9
2(3a2 + 3b2 + 1)(3a2 + 1)(a2 − 1),

Ea = a2
2 − (7b2 + 1)a2 + b2

2 − b2, Eb = 3a2
2 − (6b2 + 2)a2 + 3b2

2 − 2b2 − 1,

Ec = 486a4
2 + (486b2 + 459)a3

2 − (1134b2
2 + 207b2 − 114)a2

2

− (1134b3
2 + 1323b2

2 + 321b2 + 1)a2 − 189b3
2 − 189b2

2 − 48b2 − 2,

Ed = (1134b2 + 189)a3
2 + (1134b2

2 + 1323b2 + 189)a2
2

− (486b3
2 − 207b2

2 − 321b2 − 48)a2 − 486b4
2 − 459b3

2 − 114b2
2 + b2 + 2.

Fc contains all the common factors of resultants Res(E1, E j, B3), j = 2, 3, 4.
If a2 + b2 − 1 = 0, we have a2 = −b2 + 1 and

E1 = 2b2IaI41, E2 = 4b2
2IaI42, E3 = 8b3

2IaI43,

where Ia = (3b2−2)B3+(2b2−1)2. Then Ia = 0 yields E1 = E2 = E3 = 0, i.e., Res(F1, F j, A3) =

0, j = 2, 3, 4, when a2 = −b2 + 1. We substitute a2 = −b2 + 1 into F j, and get F̃ j, j = 1, 2, 3.
Next, we need to solve Ia = F̃1 = F̃2 = F̃3 = 0. We have

Res(Ia, F̃1, B3) = 2b2(b2 − 1)IbI51, Res(Ia, F̃2, B3) = 2b2(b2 − 1)IbI52,

Res(Ia, F̃3, B3) = 2b2(b2 − 1)IbI53, with Ib = (3b2 − 1)A3 − (2b2 − 1)2.

Note that b2(b2 − 1) , 0 since Fa , 0. If Ia = Ib = 0, then F̃1 = F̃2 = F̃3 = 0, and we have
condition XIV. For I51 = I52 = I53 = 0, we have

Res(I51, I52, A3) = 7b3
2(3b2 + 1)(b2 − 1)3(3b2 − 2)5(2b2 − 1)6JaJ1,

Res(I51, I53, A3) = −21b4
2(3b2 + 1)(b2 − 1)5(3b2 − 2)8(2b2 − 1)9JaJ2,

where (3b2 + 1)(b2 − 1) , 0, and

Ja = 18b3
2 + 651b2

2 − 748b2 + 214,

J1 = 605304b4
2 − 2895060b3

2 + 2555877b2
2 − 373639b2 − 148730,

J2 = 378882563472b10
2 − 29071087999056b9

2 + 180968668598610b8
2 − 499455418644927b7

2

+ 1319463134471394b6
2 − 2296405188740916b5

2 + 2157213472303974b4
2

− 1020839133559269b3
2 + 181189011015338b2

2 + 20664548818076b2

− 8460097956280.

If 3b2 − 2 = 0, then Ia = 1
9 , 0. If 2b2 − 1 = 0, then Ia = −1

2 B3 , 0. Moreover, we get
Res(Ja, I51, b2) , 0 and Res(J1, J2, b2) , 0. Thus, there are no solutions for I51 = I52 = I53 = 0.
For I41 = I42 = I43 = 0, we have

Res(I41, I42, B3) = 18075490334784000b8
2(b2 − 1)2(3b2 − 4)2IcId J3,

Res(I41, I43, B3) = 10673396287786604160000b12
2 (b2 − 1)3(3b2 − 4)3IcId J4,
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where Ic = 186b2
2 + 235b2 − 528, Id = 186b2

2 − 607b2 − 107, and J3 and J4 are polynomials of
b2. It is easy to prove that there are no solutions for I41 = I42 = I43 = 0.

For the other factors in Fc, using similar procedures, we can show that no more center
conditions exist, and thus the details are omitted. Since E js in (4.28), j = 5, 6, 7, are
polynomials in a2 and b2, it is straightforward to prove that E5 = E6 = E7 = 0 can not result in
more center conditions. It should be pointed out that although the computations are
straightforward, it is really time-consuming and memory demanding.

Now we prove the sufficiency for the center conditions I-XIV by computing their
corresponding first integrals. We shall not discuss all the cases one by one. Actually, most of
cases belong to three special types of systems. We use the following notation: for any
C = I, . . . ,XIV, C+ denotes the upper system of system (4.3) under the condition C, C− the
lower system of (4.3) under the condition C.

Firstly, a quadratic Hamiltonian system is given by

ẋ = −y − Ax2 + 2Bxy + (C + A)y2, ẏ = x + Bx2 + 2Axy − By2

with the Hamilonian H = 1
2 (x2 + y2) + 1

3 Bx3 + Ax2y− Bxy2 − 1
3 (A + C)y3. Under the conditions

I–XIV, the upper systems of II+–IV+ are Hamiltonian systems. The general form for I+ and
I− (b2 = 0) is given by

ẋ = −y + Ax2 + By2, ẏ = x + Cxy,

with the first integral

H = (Cy + 1)−2 A
C

[
1
2

x2 +
B

2(A −C)
y2 −

A − B −C
(A −C)(2A −C)

y −
A − B −C

2A(A −C)(2A −C)

]
,

if C(A −C)(2A −C) , 0; or

H = e−2Ay
(1
2

x2 +
B

2A
y2 −

A − B
2A2 y −

A − B
4A3

)
, if C = 0, A , 0,

or H = −
C3x2 + B + C

2(Cy + 1)2 +
2B + C
Cy + 1

+ B ln(Cy + 1), if C , 0, A = C,

or H = −
4A3x2 + 2A + B
8A3(2Ay + 1)

−
A + B
4A3 ln(2Ay + 1) +

By
4A2 , if C , 0, C = 2A.

Systems VI+, XII+ (b3 , 0) and XIII± can be written in the form,

ẋ = −y − Ax2 + 2Bxy + Ay2, ẏ = x − Bx2 − 2Axy + By2,

with the first integral

H =
4A2x2 + 4A2y2 − 2Ay − 2Bx + 1

2Ay + 2Bx − 1
.

All the remaining upper systems and lower systems except X±, XI± and XIV± can be written
in the form,

ẋ = −y + Axy, ẏ = x + Bx2 + Cxy − By2, (4.29)
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with the first integral

H = (−Ax + 1)2Bω(Bx +
C
2

y −
ω

2
y + 1)(ω+C)A(Bx +

C
2

y +
ω

2
y + 1)(ω−C)A,

if AB(ω2 − C2)ω , 0, where ω =
√

4AB + 4B2 + C2. When B = 0, system (4.29) has the first
integral

H =
1
2

y2 −
1
A2 (Ax + ln(1 − Ax)), if A , 0,C = 0,

or H =
1

C2 (Cy − ln(Cy + 1)) −
1
A2 (Ax + ln(1 − Ax)), if AC , 0,

or H =
1

C2 (Cy − ln(Cy + 1)) +
1
2

x2, if A = 0, C , 0.

When B , 0, we have

H = 4 ln(2Bx + Cy + 2) −
16B2

4B2 + C2 ln(|(4B2 + C2)x + 4B|) +
8(Bx + 1)

2Bx + Cy + 2
, if ω = 0.

For Bω , 0, we obtain the first integral

H =
C − ω
2B2ω

ln(2Bx + Cy + ωy + 2) −
C + ω

2B2ω
ln(2Bx + Cy − ωy + 2) +

1
B

x, if A = 0,

or H = −
1

C2 ln(Bx + Cy + 1) +
B2 + C2

B2C2 ln(Bx + 1) +
B2y + C

B2C(Bx + 1)
, if ω2 = C2.

For the center condition XIV, we have the following first integrals,

H± =
1
2

x2 +
1
2

y2 +
a5

3
x3 ∓

a5(a5 − 2b2)
α±

x2y − (a5 − b2)xy2 ∓
α±
3

y3 +
b2(a5 − b2)

4
x4

∓
a5b2(a5 − 2b2)

α±
x3y −

3a5b2(α2
± − b2

2)
2α2
±

x2y2 ±
a5b2(a5 − b2)

α±
xy3 −

a2
5b2(a5 − 2b2)

4α2
±

y4,

where α+ =

√
−a2

5 + 3a5b2 , 0, α− =

√
2a2

5 − 3a5b2 , 0. XIV±(α+ = 0) and XIV±(α−= 0) are
in the form of I±. Under the center condition X, system (4.3) is smooth, and has a center at the
origin. Under the center condition XI, system (4.3) is symmetric with respect to the x-axis.

Therefore, for the fourteen center conditions we have obtained the first integrals H+(x, y)
and H−(x, y) for the upper system and the lower system in (4.3) near the origin. More
specifically, for any center conditions I, . . ., XIV, either both H+(x, 0) and H−(x, 0) are even
functions, or H+(x, 0) ≡ H−(x, 0), or H+(x, 0) = H+(ρ, 0) and H−(x, 0) = H−(ρ, 0) have
common zeros x(ρ) satisfying x(ρ)→ 0− as ρ→ 0+.

Proof of Theorem 4.1.2 For system (4.2), we add perturbations as ak = ak + εpk and bk =

bk + εqk, k = 1, · · · , 6, and δ = εp0, where 0 < ε � 1. Then we get V1 = e2p0πε − 1. Taking
p0 = 0, we get V1 = 0, and then compute the Lyapunov constants, which are polynomials
of ε. To prove the existence of 10 small-amplitude limit cycles, we need to solve the ε-order
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Lyapunov constants, i.e. the coefficient Vk,1 of ε in kth-order Lyapunov constant Vk for all
k > 1.

First, we get

V2,1 =
2
3

(2p1 + p5 − 2q1 − q5).

Setting p5 = −2p1 + 2q1 + q5 yields V2,1 = 0 and then we obatin

V3,1 = −
π

8
[
(a4 − 3)(p1 + q1) + (1 − a5)(p6 + q6)

]
.

Letting

p6 = −
1

1 − a5

[
(a4 − 3)(p1 + q1) + (1 − a5)q6

]
,

results in V3,1 = 0. Similarly, we can linearly solve the polynomial equations one by one, for
V4,1 = 0 using p4, for V5,1 = 0 using q1, for V6,1 = 0 using p2, for V8,1 = 0 using p3, for
V10,1 = 0 using q6, (V7,1 = V9,1 ≡ 0) and then obtain

V12,1 = −
32p1

125E0
FaFb, V14,1 = −

32p1

73125E0
FaFc, V11,1 = V13,1 ≡ 0,

where

Fa = − (a4 − a5 − 2)(a2
4a5 + a4a2

5 − 4a4a5 − 2a2
5 − 3a4 + a5 + 10),

Fb = 94623744a14
4 a6

5 + 930466816a15
4 a4

5 + 615054336a14
4 a5

5 − 275404800a13
4 a6

5

+ 1342162944a12
4 a7

5 + 2270969856a16
4 a2

5 + 5488177152a15
4 a3

5 − 2424275968a14
4 a4

5

+ 10977847296a13
4 a5

5 + 9213454848a12
4 a6

5 + 924797952a11
4 a7

5 + 70958592a10
4 a8

5 + · · · ,

Fc = 3643883520a16
4 a6

5 + 703622160384a14
4 a8

5 + 35831521280a17
4 a4

5 + 23685242880a16
4 a5

5

+ 7044986537984a15
4 a6

5 + 4776306345984a14
4 a7

5 − 2047910092800a13
4 a8

5

+ 9980323651584a12
4 a9

5 + 87453204480a18
4 a2

5 + 211345244160a17
4 a3

5

+ 18137210559488a16
4 a4

5 + 43606528505856a15
4 a5

5 − 16936192867328a14
4 a6

5

+ 83213921538048a13
4 a7

5 + 70628108476416a12
4 a8

5 + 6876797571072a11
4 a9

5

+ 527648090112a10
4 a10

5 + · · · ,

E0 = 436926698208a7
4a7

5 + 4296445865712a8
4a5

5 + 318301099644528a7
4a6

5

+ 436926698208a6
4a7

5 − 314587222709760a5
4a8

5 + 10486240756992a9
4a3

5

+ 3127375663540128a8
4a4

5 + 2056104220650480a7
4a5

5 − 4828695405245712a6
4a6

5

− 1589648559755256a5
4a7

5 + 509238066761424a4
4a8

5 − 520052002542072a3
4a9

5 · · · .

By solving Fb = Fc = 0, we obtain a solution pair,

a4 = 5.99434633716685356826649663127143786914031276530387 · · · ,
a5 = − 8.14861268316857869707181745161325145443180339888316 · · · ,

(4.30)

which satisfy

det
(
∂(V12,1,V14,1)
∂(a4, a5)

)
≈ −49.555 , 0.
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Setting the non-used parameters q2 = q3 = q4 = q5 = 0, and p1 = 1, we obtain the following
critical parameter values

p2 = 0.30002128428334381315440099372123751294081343627897 · · · ,
p3 = 0.82206321614615752048525081842048327803889387395765 · · · ,
p4 = 15.59292467796797586571633882108272157481790432063844 · · · ,
p6 = − 4.62428933063556296887439369633640629890000278932871 · · · ,
q6 = 4.62428933063556296887439369633640629890000278932871 · · · ,
p5 = − 4, q1 = −1,

(4.31)

under which the Lyaponov constants become

V2,1 = 0, V3,1 = 1.0 × 10−998, V4,1 = 0.6 × 10−996, V5,1 = −0.7 × 10−995,

V6,1 = 1.0 × 10−994, V7,1 = −0.8 × 10−993, V8,1 = 0.6 × 10−992, V9,1 = −0.6 × 10−991,

V10,1 = 0.5 × 10−990, V11,1 = −0.3 × 10−989, V12,1 = 0.5 × 10−988, V13,1 = −0.2 × 10−987,

V14,1 = 0.3 × 10−986, V15,1 = −0.4 × 10−985, V16,1 = 13.3.

Then with (4.30) and (4.31) holding, we have V j,1 ≈ 0, j = 2, . . . , 14, and V16,1 , 0. Therefore,
we can take perturbations in backward order on a5 for V14,1, on a4 for V12,1, on q6 for V10,1, on
p3 for V8,1, on p2 for V6,1, on q1 for V5,1, on p4 for V4,1, on p6 for V3,1, on p5 for V2,1, on p0 for
V1, to obtain 10 small-amplitude limit cycles bifurcating from the origin.

4.5 Conclusion
In this chapter, we have studied planar switching systems, in particular, a switching Bautin
system. We have developed a computationally efficient algorithm to compute the Lyapunov
constants for planar switching systems. With the help of this algorithm and Maple built-in
command ‘resultant’, we present, with rigorous proof, a complete classification on the center
problem for the Bautin switching system under the condition a6b6 = 0. Moreover, we have
selected one of the center conditions to construct a special integrable system and then
perturbed this system to obtain 10 small-amplitude limit cycles, which improves the existing
result. Future work includes the classification of the center problem under the condition
a6b6 , 0, and obtaining possible more limit cycles.



Bibliography

[1] A. F. Filippov, Differential Equation with Discontinuous Right-Hand Sides, Kluwer
Academic, Netherlands, 1988.

[2] M. Kunze, Non-Smooth Dynamical Systems, Springer-Verlag, Berlin, 2000.

[3] R. A. Ibrahim, Friction-Induced Vibration, Chatter, Squeal, and Chaos C Part II:
Dynamics and Modeling, ASME Applied Mechanics Reviews 47(7) (1994) 227–253.

[4] J. Badertscher K. A. Cunefare, A. A. Ferri, Braking impact of normal dither signals,
Journal of Vibration and Acoustics 129(1) (2007) 17–23.

[5] A. Kaplan, N. Friedman, M. Andersen, N. Davidson, Observation of Islands of Stability
in SoftWall Atom-Optics Billiards, Physical Review Letters 87(27) (2001) 27410114.

[6] T. Kinoshita, T. Wenger, D. S. Weiss, A quantum Newton’s cradle, Nature 440 (2006)
900–903.

[7] H. E. Nusse, J. A. Yorke, Border-collision bifurcations including “period two to period
three” for piecewise smooth systems, Physica D 57 (1992) 39–57.

[8] Y. Zou, T. Kupper, W.-J. Beyn, Generalized Hopf bifurcation for planar Filippov systems
continuous at the origin. J. Nonlinear Sci. 16(2) (2006) 159–177.

[9] D. J. W. Simpson, J. D. Meiss, Andronov-Hopf bifurcations in planar, piecewise-smooth,
continuous flows. Phys. Lett. A 371(3) (2007) 213–220.

[10] C. J. Budd, Non-smooth dynamical systems and the grazing bifurcation, in: Nonlinear
Mathematics and its Applications, Cambridge Univ. Press, Cambridge, 1996 219–235.

[11] M. D. Bernardo, C. J. Budd, A. R. Champneys, Grazing, skipping and sliding: analysis of
the nonsmooth dynamics of the DC/DC buck converter, Nonlinearity 11 (1998) 859–890.

[12] A. Gasull, J. Torregrosa, Center-focus problem for discontinuous planar differential
equations, International Journal of Bifurcation and Chaos, 13(7) (2003) 1755–1765.

[13] X. Liu, M. Han, Hopf bifurcation for non-smooth Liénard systems, Internat. J. Bifur.
Chaos Appl. Sci. Engrg. 19 (7) (2009) 2401–2415.

[14] Y. Tian, M. Han Hopf bifurcation for two types of Liénard systems, J. Differential
Equations 251(4-5) (2011) 834–859.

83



84 Chapter 4. Center conditions in a switching Bautin system

[15] X. Chen, Z. Du, Limit cycles bifurcate from centers of discontinuous quadratic systems,
Comput. Math. Appl. 59 (2010) 3836–3848.

[16] X. Chen, W. Zhang, Isochronicity of centers in a switching Bautin system, J. Differential
Equations 252 (2012) 2877–2899.

[17] J. Llibre, A. C. Mereu, Limit cycles for discontinuous quadratic differential systems with
two zones, J. Math. Anal. Appl. 413(2) (2014) 763–775.

[18] B. Coll, R. Prohens, A. Gasull, The center problem for discontinuous Liénard differential
equation, Internat. J. Bifur. Chaos 9 (1999) 1751–1761.

[19] B. Coll, A. Gasull, R. Prohens, Degenerate Hopf bifurcation in discontinuous planar
systems, J. Math. Anal. Appl. 253 (2001) 671–690.

[20] M. Han, W. Zhang, On Hopf bifurcation in non-smooth planar systems, J. Differential
Equations 248 (2010) 2399–2416.

[21] N. Bautin, On the number of limit cycles appearing from an equilibrium point of the focus
or center type under varying coefficients, Matem. Sb. 30 (1952) 181–196.

[22] P. Yu, Y. Tian, Twelve limit cycles around a singular point in a planar cubic-degree
polynomial system, Commun. Nonlinear Sci. Numer. Simul. 19 (2014) 2690–2705.

[23] M. Han, Bifurcation theory of limit cycles, Science Press, Beijing, 2013.

[24] B. Mishra, Algorithmic algebra, Springer-Verlag, New York 1993.



Chapter 5

An explicit recursive formula for
computing the normal form and center
manifold of general n-dimensional
differential systems associated with Hopf
bifurcation

5.1 Introduction
Two of the useful tools in the study of stability and bifurcations near singular points are center
manifold theory and normal form theory. The center manifold theory can be applied to reduce
the dimension of the state spaces which need to be considered when some eigenvalues of the
linearization have zero real part. The basic idea of normal form theory is to transform the
original system to a simpler one which keeps the topological structure of the original system
around the singular point. Most developments in this direction for the past three decades can
be found in [1, 2, 3].

Since computation of normal forms is very involved and time consuming, in particular, for
higher-order normal forms, computer algebra systems such as Maple, Mathematica, must be
used. Several efficient methodologies for computing normal forms have been developed in the
past decade (e.g. see [4, 5, 6]). Recently, researchers have also paid attention to computation
of the simplest normal forms (e.g. see [7, 8, 9, 10]). Yu et al. applied the method of multiple
time scales combined with a perturbation technique to obtain normal forms of differential
equations for a number of different singularities such as Hopf [4], Hopf-zero [11], double
Hopf [12, 13], etc. This method does not need solving differential equations, nor involve
integration, but only needs algebraic calculations, which greatly facilitates implementation
using computer algebra systems such as Maple. For Hopf bifurcation, this method only
requires solving two-dimensional matrix systems for any higher-order normal forms of
general n-dimensional systems. Giné and Santallusia [6] obtained a recursive formula for the
Poincaré-Lyapunov constants of Hopf bifurcation for general two-dimensional systems,

A version of this chapter has been published in the International Journal of Bifurcation and Chaos.
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which can be computed recursively in terms of the coefficients of the original system. Yu [5]
computed the center manifold of differential equations with a proper nonlinear transformation
which is incorporated with normal form computation to develop a unified procedure for
computing normal forms of general n-dimensional systems. The formulas developed in [4, 5]
are in recursive format, but not explicit, which may involve some repetitive computations, and
so may demand more memory in a computer to obtain higher-order normal forms or focus
values. Since practical problems often have Hopf bifurcation in high-dimensional systems,
and thus the recursive formula in [6], which only computes focus values, can not be directly
applied to such systems. Moreover, for Hopf bifurcation, one may also need to determine the
frequency of motion, implying that normal form, rather than just focus values, need be
computed.

In this chapter, based on the result of Yu [5], we will develop an efficient method to
compute the normal form for Hopf bifurcation in general n-dimensional dynamical systems.
We shall present explicit recursive formulas for simultaneously computing the center manifold
and normal form of a given general system, which is the first time available in the literature.

5.2 Main result
Consider a system of differential equations of the form,

ẏ = Ay + G(y), y ∈ Rn, G(y) : Rn → Rn, (5.1)

where G(0) = 0, DyG(0) = 0, and it is assumed, without loss of generality, that the matrix A
has eigenvalues i, −i, λ1, · · · , λk1 , λk1+1, λ̄k1+1, · · · , λk1+k2 , λ̄k1+k2 . Here λ1, · · · , λk1 are non-
zero real numbers, and λk1+1, · · · , λk1+k2 are complex numbers with non-zero real part, and
2 + k1 + 2k2 = n.

Then, there exists a linear transformation,

y = T x,

such that (5.1) can be transformed into

ẋ = Jx + f (x), (5.2)

with x2 = x̄1, where

J = diag(i,−i, λ1, · · · , λk1+k2 , λ̄k1+1, · · · , λ̄k1+k2),

f (x) =
∑
m≥2

f m(x) =
∑
m≥2

∑
m̃

am̃xm1
1 xm2

2 · · · x
mn
n ,

and m̃ , m1m2 · · ·mn, denoting a choice of the values of m1, m2, · · · , mn which satisfies
n∑

j=1
m j =

m with m j ≥ 0.
Let x = (x1, x̄1, xT

r )T and J = diag(i,−i, Jr). Then, Eq.(5.2) can be written as

ẋ1 = ix1 + f1(x1, x̄1, xr),
˙̄x1 = −ix̄1 + f̄1(x1, x̄1, xr),
ẋr = Jr xr + f r(x1, x̄1, xr).

(5.3)
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Note that the second equation of (5.3) is a complex conjugate of the first equation.
The center manifold of (5.3) may be defined in the form of

xr = H(x1, x̄1) =
∑
m≥2

Hm(x1, x̄1) with Hm(x1, x̄1) =

m∑
j=0

hm
j x j

1 x̄m− j
1 , (5.4)

which satisfies

Hx1(x1, x̄1)ẋ1 + H x̄1(x1, x̄1) ˙̄x1 = Jr H(x1, x̄1) + f r(x1, x̄1,H(x1, x̄1)).

Then, the differential equations describing the dynamics on the center manifold are given by

ẋ1 = ix1 + f1(x1, x̄1,H(x1, x̄1)),
˙̄x1 = −ix̄1 + f̄1(x1, x̄1,H(x1, x̄1)).

(5.5)

Next, introduce the transformation, given by

x1 = u + Q(u, ū) = u +
∑
m≥2

Qm(u, ū) ≡ q(u, ū)

with Qm(u, ū) =
m∑

j=0
qm

j u jūm− j, into (5.5) to obtain the normal form,

u̇ = iu + C(u, ū) where C(u, ū) =
∑
m≥1

amum+1ūm. (5.6)

Let h(u, ū) = H(q(u, ū), q̄(u, ū)) and

F1(u, ū) = f1(q(u, ū), q̄(u, ū), h(u, ū)), Fr(u, ū) = f r(q(u, ū), q̄(u, ū), h(u, ū)).

Then we have the following equations(
Qu(u, ū) Qū(u, ū)
hu(u, ū) hū(u, ū)

) (
iu
−iū

)
−

(
iQ(u, ū)
Jr h(u, ū)

)
=

(
F1(u, ū)
Fr(u, ū)

)
−

(
Qu(u, ū) Qū(u, ū)
hu(u, ū) hū(u, ū)

) (
C(u, ū)
C̄(u, ū)

)
−

(
C(u, ū)

0

)
.

(5.7)

Solving (5.7) order by order, we obtain the center manifold and the normal form as well as the
associated nonlinear transformation.

Suppose for k ≥ 0,

qk(u, ū) =
∞∑

m=k

m∑
j=0

qk,m
j u jūm− j,

hk(u, ū) =
∞∑

m=2k

m∑
j=0

h̃
k,m
j u jūm− j.

(5.8)

We have the following result.
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Theorem 5.2.1 For the differential system (5.3), the recursive formulas for the coefficients of
the center manifold (5.4) and the normal form (5.6) are given as follows: for s ≥ 2, 0 ≤ j ≤ s,

(1) if s is even, then

i(2 j − s − 1)qs
j = as

j −C s
1, j, i(2 j − s)h̃

s
j − Jr h̃

s
j = bs

j − Cs
r, j;

(2) if s is odd, then

i(2 j − s − 1)qs
j = as

j −C s
1, j, for j ,

s + 1
2

, a s−1
2

= as
s+1
2
−C s

1, s+1
2
,

i(2 j − s)h̃
s
j − Jr h̃

s
j = bs

j − Cs
r, j;

where h̃
m,s
j = (̃hm,s

j,1 , h̃
m,s
j,2 , · · · , h̃

m,s
j,n−2)T and as

j = (as
j, ā

s
j, b

sT
j )T ,

as
j =

s∑
m=2

∑
m̃

∑
s̃

∑
j̃

am̃qm1,s1
j1

q̄m2,s2
s2− j2

h̃m3,s3
j3,1

h̃m4,s4
j4,2
· · · h̃mn−1,sn−1

jn−1,n−3 h̃mn,sn
jn,n−2

h̃
s
j = hs

j +

s−1∑
m=2

m∑
k=0

s+k−m∑
l1=k

min(l1, j)∑
j1=max(0,l1+ j−s)

hm
k qk,l1

j1
q̄m−k,s−l1

s+ j1−l1− j,

C s
1, j =

min([ s−2
2 ], j,s− j)∑

m=1

(( j − m)am + (s − j − m)ām)qs−2m
j−m ,

Cs
r, j =

min([ s−2
2 ], j,s− j)∑

m=1

(( j − m)am + (s − j − m)ām)h̃
s−2m
j−m ,

qm,s
j =

s−1∑
l=m−1

min(l, j)∑
j1=max(0,l+ j−s)

qm−1,l
j1

qs−l
j− j1 , m ≥ 2,

h̃
m,s
j =

s−1∑
l=m−1

min(l, j)∑
j1=max(0,l+ j−s)

h̃
m−1,l
j1 h̃

s−l
j− j1 , m ≥ 2.

Proof For any given integer s ≥ 2, suppose that we have obtained qn
j and hn

j for n < s,
0 ≤ j ≤ n and am, m ≤ [ s−2

2 ]. Now, we want to derive the formulas for qs
j and hs

j for 0 ≤ j ≤ s
and a[ s−1

2 ]. We divide the proof in three steps, which can also serve as guidelines for developing
programs using a computer algebra system.

Step 1. Denote

H(x1, x̄1) = h(u, ū) =

s∑
m=2

m∑
k=0

h̃
m
k ukūm−k + o(|u, ū|s).

In this step, we derive the formula for h̃
s
k, 0 ≤ k ≤ s. First of all, we need to compute
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xk
1 = qk(u, ū), where 2 ≤ k ≤ s. Since qk(u, ū) = q(u, ū)qk−1(u, ū), we have

qk(u, ū) =
( s∑

m=1

m∑
j=0

qm
j u jūm− j + o(|u, ū|s)

)( s∑
m=k−1

m∑
j=0

qk−1,m
j u jūm− j + o(|u, ū|s)

)
=

s∑
m=k

m∑
j=0

m−1∑
l=k−1

min(l, j)∑
j1=max(0,l+ j−m)

qk−1,l
j1

qm−l
j− j1u

jūm− j + o(|u, ū|s).

Then, for 2 ≤ k ≤ s, 0 ≤ j ≤ s, we obtain

qk,s
j =

s−1∑
l=k−1

min(l, j)∑
j1=max(0,l+ j−s)

qk−1,l
j1

qs−l
j− j1 .

For 2 ≤ m ≤ s,

Hm(x1, x̄1) =

m∑
k=0

hm
k xk

1 x̄m−k
1 =

m∑
k=0

hm
k qk(u, ū)q̄m−k(u, ū)

=

m∑
k=0

hm
k
( s∑

l=k

l∑
j=0

qk,l
j u jūl− j + o(|u, ū|s)

)( s∑
l=m−k

l∑
j=0

q̄m−k,l
j ū jul− j + o(|u, ū|s)

)
=

m∑
k=0

hm
k
( s∑

l=m

l∑
j=0

l+k−m∑
l1=k

min(l1, j)∑
j1=max(0,l1+ j−l)

qk,l1
j1

q̄m−k,l−l1
l+ j1−l1− ju

jūl− j + o(|u, ū|s)
)

=

s∑
l=m

l∑
j=0

m∑
k=0

l+k−m∑
l1=k

min(l1, j)∑
j1=max(0,l1+ j−l)

hm
k qk,l1

j1
q̄m−k,l−l1

l+ j1−l1− ju
jūl− j + o(|u, ū|s),

where q0,0
j = 1 and q0,l

j = 0 if l ≥ 1. In particular,

Hs(x1, x̄1) =

s∑
j=0

hs
ju

jūs− j + o(|u, ū|s).

Since h(u, ū) = H(x1, x̄1) =
∑

m≥2
Hm(x1, x̄1) and Hm(q(u, ū), q̄(u, ū)) = O(|u, ū|m), we obtain

h̃
s
j = hs

j +

s−1∑
m=2

m∑
k=0

s+k−m∑
l1=k

min(l1, j)∑
j1=max(0,l1+ j−s)

hm
k qk,l1

j1
q̄m−k,s−l1

s+ j1−l1− j.

Step 2. Denote F(u, ū) = (F1(u, ū), F̄1(u, ū), FT
r (u, ū))T ,

F(u, ū) =

s∑
m=2

m∑
j=0

am
j u jūm− j + o(|u, ū|s). (5.9)

In this step, we derive the formula for as
j, 0 ≤ j ≤ s.
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Let hk(u, ū) =
s∑

m=2k

m∑
j=0

h̃
k,m
j u jūm− j + o(|u, ū|s), k ≥ 0, where h̃

1,m
j = h̃

m
j , h̃

0,0
0 = 1 and h̃

0,m
j = 0

if m ≥ 1. Using the same method for computing qk,s
j , s ≥ 2k, 0 ≤ j ≤ s, we have

h̃
k,s
j =

s−2∑
l=2k−2

min(l, j)∑
j1=max(0, j+l−s)

h̃
k−1,l
j1 h̃

s−l
j− j1 .

Let h̃
m,l
j = (̃hm,l

j,1 , h̃
m,l
j,2 , · · · , h̃

m,l
j,n−2)T . For 2 ≤ m ≤ s, substituting q(u, ū) and h̃(u, ū) into f m(x)

yields

f m(x) =
∑

m̃

am̃xm1
1 xm2

2 · · · x
mn
n =

∑
m̃

am̃qm1(u, ū)q̄m2(u, ū)hm3
1 (u, ū) · · · hmn

n−2(u, ū)

=
∑

m̃

am̃
( s∑

l=m1

l∑
j=0

qm1,l
j u jūl− j + o(|u, ū|s)

)( s∑
l=m2

l∑
j=0

q̄m2,l
j ū jul− j + o(|u, ū|s)

)
( s∑

l=2m3

l∑
j=0

h̃m3,l
j,1 u jūl− j + o(|u, ū|s)

)
· · ·

( s∑
l=2mn

l∑
j=0

h̃mn,l
j,n−2u jūl− j + o(|u, ū|s)

)
=

∑
m̃

am̃
( s∑

l=m

l∑
j=0

l∑
l1=m1

l∑
l2=m2

l∑
l2=2m3

· · ·

l∑
ln=2mn

l1∑
j1=0

l2∑
j2=0

l3∑
j3=0

· · ·

ln∑
jn=0

qm1,l1
j1

q̄m2,l2
j2

h̃m3,l3
j3,1

h̃m4,l4
j4,2
· · · h̃mn−1,ln−1

jn−1,n−3 h̃mn,ln
jn,n−2u jūl− j + o(|u, ū|s)

)
=

s∑
l=m

l∑
j=0

∑
m̃

∑
l̃

∑
j̃

am̃qm1,l1
j1

q̄m2,l2
j2

h̃m3,l3
j3,1

h̃m4,l4
j4,2
· · · h̃mn−1,ln−1

jn−1,n−3 h̃mn,ln
jn,n−2u jūl− j + o(|u, ū|s)

Since F(u, ū) = f (x) =
∑

m≥2
f m(x), for 0 ≤ j ≤ s, we consequently obtain

as
j =

s∑
m=2

∑
m̃

∑
s̃

∑
j̃

am̃qm1,s1
j1

q̄m2,s2
j2

h̃m3,s3
j3,1

h̃m4,s4
j4,2
· · · h̃mn−1,sn−1

jn−1,n−3 h̃mn,sn
jn,n−2,

where 0 ≤ jk ≤ sk, for any 1 ≤ k ≤ n, and the index s̃ satisfies that

sk


= 0 if mk = 0,
≥ mk for k = 1, 2
≥ 2mk for 3 ≤ k ≤ n

}
if mk , 0.

Step 3. Denote

(
Qu(u, ū) Qū(u, ū)
hu(u, ū) hū(u, ū)

) (
C(u, ū)
C̄(u, ū)

)
=


s∑

m=4

m∑
j=1

Cm
1, ju

jūm− j + o(|u, ū|s)
s∑

m=4

m∑
j=1

Cm
r, ju

jūm− j + o(|u, ū|s)

 . (5.10)

In this step, we derive the formulas for C s
1, j and Cs

r, j, 0 ≤ j ≤ s.
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Note that

Qu(u, ū)C(u, ū) + Qū(u, ū)C̄(u, ū)

=(
s∑

m=2

m∑
j=0

jqm
j u j−1ūm− j + o(|u, ū|s−1))(

[ s−1
2 ]∑

m=1

amum+1ūm + o(|u, ū|s))

+ (
s∑

m=2

m∑
j=0

(m − j)qm
j u jūm− j−1 + o(|u, ū|s−1))(

[ s−1
2 ]∑

m=1

āmūm+1um + o(|u, ū|s))

=

s∑
l=4

l∑
j=2

min([ l−2
2 ], j,l− j)∑

m=1

am( j − m)ql−2m
j−m u jūl− j

+

s∑
l=4

l∑
j=1

min([ l−2
2 ], j,l− j)∑

m=1

ām(l − m − j)ql−2m
j−m u jūl− j + o(|u, ū|s).

For the first term in the last expression above, if j = 1, then m = 1 and j−m = 0. So we obtain

Qu(u, ū)C(u, ū) + Qū(u, ū)C̄(u, ū)

=

s∑
l=4

l∑
j=1

min([ l−2
2 ], j,l− j)∑

m=1

(( j − m)am + (l − j − m)ām)ql−2m
j−m u jūl− j + o(|u, ū|s).

Therefore, for s ≥ 4, 0 ≤ j ≤ s, comparing the above equation with (5.10) we have

C s
1, j =

min([ s−2
2 ], j,s− j)∑

m=1

(( j − m)am + (s − j − m)ām)qs−2m
j−m .

Similarly,

Cs
r, j =

min([ s−2
2 ], j,s− j)∑

m=1

(( j − m)am + (s − j − m)ām)h̃
s−2m
j−m .

Finally, from the left-hand side of (5.7), we obtain

iuhu(u.ū) − iūhū(u, ū) − Jr h(u, ū)

= iu
s∑

m=2

m∑
j=0

jh̃
m
ju

j−1ūm− j−iū
s∑

m=2

m∑
j=0

(m− j)h̃
m
ju

jūm− j−1−Jr

s∑
m=2

m∑
j=0

h̃
m
j u jūm− j+o(|u, ū|s)

=

s∑
m=2

m∑
j=0

(i(2 j − m)h̃
m
j − Jr h̃

m
j )u jūm− j + o(|u, ū|s),

(5.11)

and similarly,

iuQu(u.ū) − iūQū(u, ū) − iQ(u, ū) =

s∑
m=2

m∑
j=0

i(2 j − m − 1)qm
j u jūm− j + o(|u, ū|s). (5.12)

Substituting (5.6), (5.9), (5.10), (5.11) and (5.12) into (5.7) completes the proof of Theorem
5.2.1.
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The Maple program developed using the above formulas is given in Appendix B for the
convenience of readers.

5.3 Application
In this section, we present two examples to demonstrate the computational efficiency of the
method developed in the previous section. We apply the obtained formulas to compute the
normal forms for these two examples, and compare the computational efficiency with existing
programs. The Maple program developed in this chapter (see the source code in Appendix B)
and the Maple program given in [4] are executed on a desktop machine with CPU 3.4 GHZ and
32 G RAM memory for a comparison. We have tested a number of systems and found that in
general (in particular, more terms involved in the system) the method and program developed
in this chapter are better than the perturbation method as well as the program developed in [4].
Only in some special cases is the situation reversed.

In the following, for the first example, we show how to use the normal form to determine the
maximum number of small amplitude limit cycles bifurcating from a focus point, as well as the
maximum number of critical periods of periodic solutions in the neighborhood of the critical
point. For the second example, we focus on the comparison of computational efficiency with
existing programs, and show that the recursive formulas and Maple program obtained in this
chapter are superior than other methods.

5.3.1 A 5-dimensional dynamical system
The first example is a general 5-dimensional dynamical system involving a number of constant
parameters, given by

ẋ1 = a0 x1 + x2 + a1 x3
1 + a2 x2

1 x2,

ẋ2 = − x1 + a0 x2 + a3 x3
2 + a4 x2

3 + a5 x4 x5,

ẋ3 = − x3 + a6 x1 x2,

ẋ4 = − x4 + x5 + a7 x2
1,

ẋ5 = − x4 − x5 + a8 x2
2,

(5.13)

where the ai, i = 0, 1, 2, . . . , 8 are real numbers. The system has an equilibrium at the origin,
and its linear part is in the Jordan canonical form, with eigenvalues, a0 ± i, −1 and −1 ± i,
indicating that the origin undergoes a Hopf bifurcation at the critical point a0 = 0. For system
(5.13), we compute the normal form up to 17th order, given in polar coordinates as follows:

ṙ = r (v0 + v2 r2 + · · · + v16 r16) + · · · ,

θ̇ = 1 + t0 + t2 r2 + · · · + t16 r16 + · · · ,
(5.14)

where r and θ represent the amplitude and phase of motion, respectively; v2k is usually called
the kth order focus value. The coefficients v0 and t0 are obtained from the linear analysis.
For system (5.13), v0 = a0 and t0 = 0. The first equation of (5.14) can be used to determine
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bifurcation of limit cycles near the origin and their stability, while the second equation of (5.14)
can be used to determine the frequency of the limit cycles. The coefficients obtained from the
output of the computer program are

v2 = 1
8 a1,

v4 = − 1
32 a1 a2 −

1
100 a4a6 (a7 + 3 a8),

v6 = 1
226304000 a1

[
359125 a2

1 + 5442125 a2
2 − 16 a4a6 (35509 a7 + 74168 a8)

]
− 1

2176000 a5
[
2 a5 (10075 a4

7 + 11603 a3
7 a8 − 5643 a2

7 a2
8 − 4423 a7 a3

8 + 8300 a4
8)

− a3a6(7413a2
7 + 2664a7a8 + 1891a2

8)
]

+ 1
14144000 a6

[
2210 a2

3 a6 − a2 a4(105928 a7 + 22921 a8)
]
,

...

v16 = 1474726741229822691517588834545902683
4446754340426377862456770560000000000000 a2 a3 a2

4 a5 a3
6 a3

7 a8 + · · · ,

t2 = 3
8 a2,

t4 = − 11
256 a2

1 −
51
256 a2

2 −
1

160 a4 a6 (a7 + a8),

t6 = 1
45260800 a1

[
2845375 a1 a2 − 16 a4 a6 (16738 a7 + 101 a8)

]
+ 1

45260800 a2
[
7839975 a2

2 − 16 a4 a6 (11566 a7 − 7399 a8)
]
− 3

1280 a2
3 a2

6

− 1
10880000 a5

[
40 a5 (4800 a4

7 + 1708 a3
7 a8 − 5713 a2

7 a2
8 + 1907 a7 a3

8 − 820 a4
8)

− a3 a6 (121649 a2
7 + 9416 a7 a8 − 77889 a2

8)
]
,

...

t16 = − 112390166138349550268314971775544497279
640332625021398412193774960640000000000000 a2 a3 a2

4 a5 a3
6 a3

7 a8 + · · · ,
(5.15)

where the lengthy expressions for v8, t8, etc. are omitted here for brevity.
To determine the maximum number of small amplitude limit cycles bifurcating from the

origin, one may solve the polynomial equations v2 = v4 = · · · = 0 for the parameters ai.
Suppose one can obtain v0 = a0 = 0, v2(ai) = v4(ai) = · · · = v2(k−1)(ai) = 0, but v2k(ai) , 0,
then one can conclude that at most k limit cycles may bifurcate from the origin. Moreover,
by properly perturbing the parameters ai, one can obtain k small amplitude limit cycles in the
vicinity of the origin.

Now, suppose under certain conditions the origin of system (5.13), restricted to the center
manifold, becomes a center, we can then study the critical periods of the periodical solutions
around the origin. The procedure is similar to that of finding the maximum number of limit
cycles, as described as follows. Let

h = r2 > 0 and p(h) = t2 h + t4 h2 + · · · + t2k hk + · · · . (5.16)

Then, the second equation of (5.14) can be written as dθ = ( 1 + p(h) ) dt. Let the period of
motion be T (h). Then, integrating this equation on both sides from 0 to 2 π yields 2 π =

( 1 + p(h) ) T (h), which in turn results in

T (h) =
2 π

1 + p(h)
for 0 < h � 1 (and so 1 + p(h) ≈ 1). (5.17)
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Now, the local critical periods are determined by T ′(h) =
− 2 π p′(h)
(1+p(h))2 = 0. Thus, for 0 < h � 1

(meaning that we consider small limit cycles), the local critical periods are determined by

p′(h) = t2 + 2 t4 h + · · · + k t2k hk−1 + · · · = 0. (5.18)

Then, similar to the above discussion in determining the maximum number of limit cycles, we
can find the sufficient conditions for the polynomial p′(h) to have maximal number of zeros.
If t2 = t4 = · · · = t2(k−1) = 0, but t2k , 0, then equation p′(h) = 0 can have at most k − 1
real roots. Hence, t2, t4, · · · , t2(k−1) can be perturbed to have k − 1 real roots, and thus system
(5.13) can have k − 1 critical periods.

Next, we use (5.15) to determine the maximum number of small amplitude limit cycles
bifurcation from the origin of system (5.13). To find the critical parameter values, letting
a1 = 0 yields v2 = 0. Then, setting a8 = −4

3 a7, we have v4 = 0. With these parameter values,
solving v6 = 0 for a4 yields

a4 =
13

2441880 a2 a6 a7

[
5508 a2

3 a2
6 + a5 a2

7(117009 a3 a6 − 689750 a5 a2
7)
]
, (a2 a6 a7 , 0).

Further solving v8 = 0 for a2 results in

a2 =

{
231361[9a3a6(612a3a6+13001a5a2

7)(5508a2
3a2

6+a5a2
7(117009a3a6−1379500a5a2

7))+475755062500a4
5a8

7]
167580[ 299559536604 a2

3a2
6−a5a2

7(206823894568700a5a2
7+4779756148743a3a6) ]

}1/3
,

and then v10 and v12 are simplified to

v10 =−
481[5508a2

3a2
6−a5a2

7(689750a5a2
7−117009a3a6)]

299559536604a2
3a2

6−a5a2
7(206823894568700a5a2

7+4779756148743a3a6)

×
{
13117140119171757150379152 a4

3 a4
6

− a5 a2
7
[
3964521095122924744342256808 a3

3 a3
6

− a5 a2
7
(
50237329268678519391542393913 a2

3 a2
6

+ 10 a5 a2
7 (287295418808429080540146201219 a3 a6

+ 509170724293870725274253763100 a5 a2
7)
)]}
,

v12 =−
6015386[5508a2

3a2
6−a5a2

7(689750a5a2
7−117009a3a6)]2

343[299559536604a2
3a2

6−a5a2
7(206823894568700a5a2

7+4779756148743a3a6)]
×
{
4369100288210241965165567410201975915584 a6

3a6
6

+a5 a2
7
[
48714467325624956765186957094776399777904 a5

3 a5
6

−a5 a2
7
(
3845973325800546252799748753542377356118852 a4

3a4
6

+a5a2
7
[
103213562801159168000556264482023982522738583 a3

3a3
6

+4a5a2
7
(
197025074518409040487257210142206321678001863a2

3a2
6

−25a5a2
7(16558651465224677787932424690182456471021097a3a6

+196414263618794085309604077817625129955519500a5a2
7)
)])]}

.

It can be shown that besides the common factor in v10 and v12, the only possible parameter
values for v10 = v12 = 0 are a5 a7 = a3 a6 = 0, which are obviously not allowed. This suggests
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that there exist parameter values such that vi = 0, i = 0, 2, . . . , 10, but v12 , 0. Therefore, for
system (5.13), we can at most have 6 small amplitude limit cycles bifurcating from the origin.
To find the parameter values such that v10 = 0, we may set a5 = a6 = a7 = 1 and then solve
an equation from v10 = 0 for a3, yielding 4 real solutions. Choosing one of them, we have the
following set of critical values:

a5 = a6 = a7 = 1, a0 = a1 = 0, a8 = −4
3 ,

a3 = −1.8401519905 · · · , a2 = −0.1765825495 · · · , a4 = 26.7243747795 · · · ,

under which vi = 0, i = 0, 2, . . . , 10, v12 = 0.0573817846 · · · . Then making proper
perturbations in backwards order, on a3 for v10, on a2 for v8, on a4 for v6, on a8 for v4, and
then on a1 for v2, and finally on a0 for v0 such that

0 < v0 � −v2 � v4 � −v6 � v8 � −v10 � v12,

leading to 6 small limit cycles.
Next, we consider critical periods of periodic solutions near the origin. To do this, we first

need to find the conditions under which the origin is a center, restricted to the center manifold.
There are a number of such conditions. Here, we consider one satisfying

a1 = a5 = a6 = 0, (5.19)

under which

t2 = 3
8 a2, t4 = − 51

256 a2
2, t6 = 1419

8192 a3
2, t8 = − 47505

262144 a4
2, t10 = 438825

2097152 a5
2, · · ·

Therefore, under the condition (5.19), system (5.13) does not have critical periods near the
origin; it is either monotonically decreasing (increasing) for a2 > 0 (a2 < 0). When a2 = 0,
the origin is a isochronous center.

5.3.2 A 3-dimensional competitive Lotka-Volterra system
In this section, we consider a 3-dimensional competitive Lotka-Volterra system, described by
the following differential equations:

ẋi = xi

(
ri −

3∑
j=1

ai jx j

)
, i = 1, 2, 3, (5.20)

where xi represents the population of ith species, and the coefficients take positive real values,
ri > 0, ai j > 0, i, j = 1, 2, 3. Over the last twenty years, a number of articles concerning
about bifurcation of limit cycles for system (5.20) have been published (e.g., see [14, 15, 16,
17]). Particularly, for system (5.20) four limit cycles were found by Gyllenberg and Yan [17],
using appropriate parameter values. These four limit cycles include three small amplitude
limit cycles, proved by using focus value computation, and one large limit cycle, shown by
constructing a heteroclinic cycle. In this section, we consider the Hopf bifurcation emerging
from an interior singular point and use the normal form (or focus values) to study the maximum
number of limit cycles bifurcating from this point.
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It is noted that system (5.20) has a total of 12 parameters. Since we are interested in the
limit cycles bifurcating from an interior equilibrium solution of system (5.20), we, without
loss of generality, may assume that E = (1, 1, 1) is the equilibrium solution, which yields
ri =

∑3
j=1 ai j and reduce the number of parameters to 9. Taking the translation xi → xi + 1 such

that the equilibrium solution is moved to the origin, we have

ẋi = −(1 + xi)
( 3∑

j=1

ai jx j

)
. (5.21)

The Jacobian of system (5.21) at x = 0 is the matrix A = (−ai j), which has the characteristic
polynomial P(λ) = λ3 − Tλ2 + Mλ − D, where

T = −(a11 + a22 + a33),

M = a11a22 − a12a21 + a11a33 − a13a31 + a22a33 − a23a32,

D = det(A).

(5.22)

When T M = D and M > 0, there exist a pair of purely imaginary eigenvalues ±i
√

M and a
negative eigenvalue T , and Hopf bifurcation occurs.

It needs a parameter, say a31, to satisfy T M = D. Moreover, one may apply a time scaling
to set M = 1, using a parameter, say a32. Finally, we may use a parameterization so that a33 = 1.
Solving equations T M = D and M = 1 yields

a31 = (a2
11a22a23 + a2

11a23 − a11a13a22a21 − a11a21a13

−a11a23a21a12 + a13a2
21a12 − a13a22a21 + a21a13 + a22a23

+a23 + a23a21a12)/(a2
23a12 − a2

13a21 − a13a22a23 + a23a11a13),

a32 = (−a13 − a11a13 − a12a23 + a11a22a12a23 − a21a2
12a23

−a13a2
22 − a13a11a2

22 − a13a21a12 + a22a12a23 + a11a12a23

+a22a21a12a13)/(a2
23a12 − a2

13a21 − a13a22a23 + a23a11a13).

Thus, only 6 parameters ai j, i = 1, 2, j = 1, 2, 3 are left for determining the focus values. In
general, we might be able to find the parameter values satisfying v1 = v2 = · · · = v6 = 0, but
v7 , 0, and thus 7 small limit cycles may be found in the vicinity of the equilibrium solution.
If, in addition, there exists an additional large limit cycle near the heteroclinic loop, then the
maximum number of limit cycles becomes 8.

To apply the Maple program, we first need to put the linear part of system (5.20) in Jordan
canonical form. To achieve this, introducing the linear variable transformation x→ Tx, where

T =


a13a22 − a12a23 a13 a13(a11 + 1) + a12a23

a11a23 − a13a21 a23 a23(a22 + 1) + a13a21

a12a21 − a11a22 + 1 −(a11 + a22) (a11 + 1)(a22 + 1) − a12a21


into system (5.21) yields the following system:

ẋ1 = x2 + q1(x),

ẋ2 = −x1 + q2(x),

ẋ3 = T x3 + q3(x),

(5.23)
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where T = −(a11 + a22 + 1) and qi(x), i = 1, 2, 3 are quadratic homogenenous polynomials,
given in the form of

qi = bi200x2
1 − bi200x2

2 + bi002x2
3 + bi110x1x2 + bi102x1x3 + bi011x2x3, i = 1, 2, 3,

where the coefficients bi jkl’s are lengthy expressions in terms of the original 6 coefficients
ai j, i = 1, 2; j = 1, 2, 3. We have executed the Maple program developed in this chapter
and that given in [4] on the desktop machine to obtain the following results. For the Maple
program given in [4], it took 251 minutes CPU time and 12.35 GB Ram memory to get the
focus values up to 3rd order; while for the program developed in this chapter, it only took 31
minutes CPU time and 3.86 GB Ram memory to get the focus values up to 4th order. This
clearly shows that the recursive formulas derived and Maple program developed in this chapter
are more computationally efficient for higher-order normal forms than that given in [4], though
the program in [4] was proved computationally efficient, in particular, for lower-order normal
forms. In order to get higher-order focus values of system (5.23), we need a more powerful
machine with higher memory.

The first focus value obtained from the computer output is

v1 = 1
8(4+T 2)

{
2
[
(b2011 − b1101)T − 2(b1011 + b2101)

]
b3200 −

[
(b1011 + b2101)T + 2(b2011 − b1101)

]
b3110

}
.

The focus values starting from the second one have very long expressions. The number of
terms in each of the focus values are given below:

Focus value Number of terms
v1 8
v2 1036
v3 24088
v4 261401

It can be seen that the number of terms increases very rapidly as the order of the focus values
increases. Moreover, when the original parameters ai j are substituted into these expression,
they even have more terms. Thus, finding possible values of the 6 parameters ai j > 0, i =

1, 2; j = 1, 2, 3 such that v j = 0, j = 1, 2, . . . , 6, but v7 , 0, is very difficult and challenging.
It not only needs power computer systems (high speed with large memory), but also needs
efficient polynomial solvers implemented with a computer algebra system such as Maple.

5.4 Conclusion

In this chapter, we have derived explicit recursive formulas for computing normal forms and
center manifold of general n-dimensional dynamical systems associated with Hopf bifurcation.
Maple program has also been developed, which is convenient in application. Two examples are
presented to show that the method and program developed in this chapter are computationally
efficient.
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Appendix B
This symbolic Maple script is developed on the basis of the formulas in Theorem 5.2.1, which
can be used to find the normal forms of Hopf bifurcations of general n-dimensional systems.
Here, the input is for the second example in the section of application.

with(LinearAlgebra):

M1 := 1: # No. of non-zero real eigenvalues

M2 := 0: # No. of complex conjugate eigenvalues

N := 2: # the highest degree of the vector field

Ord := 13:

M := 2 + M1 + M2*2:

L := 1 + M1 + M2:

f[1]:= x[2]+b1200*x[1]ˆ2-b1200*x[2]ˆ2+b1002*x[3]ˆ2

+b1110*x[1]*x[2]+b1101*x[1]*x[3]+b1011*x[2]*x[3]:

f[2]:=-x[1]+b2200*x[1]ˆ2-b2200*x[2]ˆ2+b2002*x[3]ˆ2

+b2110*x[1]*x[2]+b2101*x[1]*x[3]+b2011*x[2]*x[3]:

f[3]:=-L*x[3]+b3200*x[1]ˆ2-b3200*x[2]ˆ2+b3002*x[3]ˆ2

+b3110*x[1]*x[2]+b3101*x[1]*x[3]+b3011*x[2]*x[3]:

x[1]:= v[1]+v[L+1]:

x[2]:= I*(v[1]-v[L+1]):

f[1]:= simplify(f[1]-I*f[2])/2:

IEf[1]:= diff(f[1],v[1]):

j := 3:

for n from 2 to M1+1 do

x[j] := v[n]:

f[n] := simplify(f[j]):

IEf[n]:= diff(f[n],v[n]):

j := j+1:

od:

k := L+2:

for n from M1+2 to L do

x[j] := v[n]+v[k]:

x[j+1]:= I*(v[n]-v[k]):

f[n] := simplify(f[j]-I*f[j+1])/2:

IEf[n]:= diff(f[n],v[n]):

j := j+2:

k := k+1:

od:

for j to L do

for k from 1 to M do

IEf[j] := subs(v[k]=0,IEf[j]):

od:

REf[j] := subs(I=0,IEf[j]):

IEf[j] := (IEf[j]-REf[j])/I:

od:

SizeIndex := Array(1..L,2..N):

Mr := seq(1,i=1..M):

for m from 2 to N do

i := 1:

Mv := [seq(0,j=1..M)]:

temp := 1:

Mv[1]:= m+1:
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Mv[2]:= -1:

while i < M do

Mv[i+1] := 1+Mv[i+1]:

Mv[1] := Mv[i]-1:

if i<>1 then Mv[i]:=0: fi:

if Mv[i+1]=1 then temp:=temp+1: fi:

if Mv[1]=0 then temp:=temp-1: i := i+1:

else i:=1: fi:

Mcv := [[seq(0,j=1..temp+2)],[seq(0,j=1..temp+2)]]:

Mcv[1,1] := temp:

Mcv[2,1] := m+add(Mv[n],n=2..L)+add(Mv[n],n=L+2..M):

j := 2:

for k from i to M do

if Mv[k]<>0 then

Mcv[1,j] := k:

Mcv[2,j] := Mv[k]:

j := j+1:

fi:

od:

for j from 1 to L do

coef := f[j]:

for k to M do

if Mv[k]=0 then

coef := subs(v[k]=0,coef):

else

coef := subs(v[k]=0,diff(coef,‘$‘(v[k],Mv[k])))

/factorial(Mv[k]):

fi:

od:

if coef<>0 then

SizeIndex[j,m] := SizeIndex[j,m]+1:

Mcv[1,-1] := subs(I=0,coef):

Mcv[2,-1] := subs(I=1,coef-Mcv[1,-1]):

Index[j,m,SizeIndex[j,m]] := Mcv:

Mr:=seq(max(Mr[n],Mv[n]),n=1..M):

fi:

od:

od:

od:

Mr := [max(Mr[1],Mr[1+L]),seq(Mr[n],n=2..M1+1),seq(max(Mr[n],Mr[n+M2+1]),n=M1+2..L)]:

Rh[1,1,1,1] := 1:

Ih[1,1,1,1] := 0:

Rh[1,1,1,0] := 0:

Ih[1,1,1,0] := 0:

si := 1/2:

for s from 2 to Ord do

print(‘order =‘,s):

si := si+1/2:

Ms := min(Mr[1],s):

for k from 2 to Ms do

for i from 0 to s do

Ih[1,k,s,i] := 0:

Rh[1,k,s,i] := 0:

for m from k-1 to s-1 do
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for l from max(0,i+m-s) to min(m,i) do

Rh[1,k,s,i] := Rh[1,k,s,i] + Rh[1,k-1,m,l]*Rh[1,1,s-m,i-l]

- Ih[1,k-1,m,l]*Ih[1,1,s-m,i-l]:

Ih[1,k,s,i] := Ih[1,k,s,i] + Ih[1,k-1,m,l]*Rh[1,1,s-m,i-l]

+ Rh[1,k-1,m,l]*Ih[1,1,s-m,i-l]:

od:

od:

od:

od:

for j from 2 to L do

Ms := min(Mr[j],si):

for k from 2 to Ms do

for i from 0 to s do

Ih[j,k,s,i] := 0:

Rh[j,k,s,i] := 0:

for m from 2*k-2 to s-2 do

for l from max(0,i+m-s) to min(m,i) do

Rh[j,k,s,i] := Rh[j,k,s,i] + Rh[j,k-1,m,l]*Rh[j,1,s-m,i-l]

- Ih[j,k-1,m,l]*Ih[j,1,s-m,i-l]:

Ih[j,k,s,i] := Ih[j,k,s,i] + Ih[j,k-1,m,l]*Rh[j,1,s-m,i-l]

+ Rh[j,k-1,m,l]*Ih[j,1,s-m,i-l]:

od:

od:

od:

od:

od:

for j from 1 to L do

for k from 0 to si do

if s=Ord then k:=iquo(s+1,2): fi:

if k<si then nk:=2: else nk := 1: fi:

temp := min(s-k, k, si-1):

sk := k:

for t from 1 to nk do

Ra[t] := 0:

Ia[t] := 0:

for m from 1 to temp do

Ra[t] := Ra[t] - (s-2*m)*Ren[m]*Rh[j,1,s-2*m,sk-m]

+ (2*sk-s)*Imn[m]*Ih[j,1,s-2*m,sk-m]:

Ia[t] := Ia[t] - (2*sk-s)*Imn[m]*Rh[j,1,s-2*m,sk-m]

- (s-2*m)*Ren[m]*Ih[j,1,s-2*m,sk-m]:

od:

sk := s-sk:

od:

for m from 2 to min(s,N) do

Size := SizeIndex[j,m]:

for i from 1 to Size do

Mv := Index[j,m,i]:

Nonzero := Mv[1,1]:

Sleft := s-Mv[2,1]:

if Sleft>=0 then

NIs:= binomial(Sleft+Nonzero-1,Sleft):

S := Vector(Nonzero):

for l to NIs do

if l=1 then
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S[1]:= Sleft:

p := 1:

else

S[p+1]:= S[p+1]+1:

S[1] := S[p]-1:

if p <> 1 then

S[p] := 0:

fi:

if S[1]=0 then

p := p+1:

else

p := 1:

fi:

fi:

for r from 1 to Nonzero do

if Mv[1,r+1]=1 or Mv[1,r+1]=L+1 then

Sv[r] := S[r]+Mv[2,r+1]:

else

Sv[r] := S[r]+2*Mv[2,r+1]:

fi:

od:

Sv[r]:= k:

Ks := k+1:

q := Nonzero:

Kv[q]:= -1:

while q <= Nonzero do

Kv[q]:= Kv[q]+1:

Ks := Ks-1:

temp := Ks:

qq := 1:

while temp >= Sv[qq] do

Kv[qq] := Sv[qq]:

temp := temp-Sv[qq]:

qq := qq+1:

od:

Kv[qq] := temp:

for n from qq+1 to q-1 do

Kv[n] := 0:

od:

for t from 1 to nk do

Rei := Mv[1,-1]:

Imi := Mv[2,-1]:

for n from 2 to Nonzero+1 do

teR := Rei:

if Mv[1,n]<L+1 then

Rei := teR*Rh[Mv[1,n],Mv[2,n],Sv[n-1],Kv[n-1]]

-Imi*Ih[Mv[1,n],Mv[2,n],Sv[n-1],Kv[n-1]]:

Imi := teR*Ih[Mv[1,n],Mv[2,n],Sv[n-1],Kv[n-1]]

+Imi*Rh[Mv[1,n],Mv[2,n],Sv[n-1],Kv[n-1]]:

Kv[n-1] := Sv[n-1]-Kv[n-1]:

else

Kv[n-1] := Sv[n-1]-Kv[n-1]:

if Mv[1,n]=L+1 then

T := 1:
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else

T := Mv[1,n]-M2-1:

fi:

Rei := teR*Rh[T,Mv[2,n],Sv[n-1],Kv[n-1]]

+Imi*Ih[T,Mv[2,n],Sv[n-1],Kv[n-1]]:

Imi := Imi*Rh[T,Mv[2,n],Sv[n-1],Kv[n-1]]

-teR*Ih[T,Mv[2,n],Sv[n-1],Kv[n-1]]:

fi:

od:

Ra[t] := Ra[t]+Rei:

Ia[t] := Ia[t]+Imi:

od:

if t=2 then

for n from 1 to Nonzero do

Kv[n] := Sv[n]-Kv[n]:

od:

fi:

if Nonzero=1 or k = 0 then

break:

fi:

if qq>1 then

q := qq:

Ks:= Ks-temp:

else

if Kv[1]=0 then

Ks:= Kv[q]:

q := q+1:

else

Ks:= Kv[1]:

q := 2:

fi:

while Sv[q]=Kv[q] do

Ks:= Ks+Kv[q]:

q := q+1:

od:

fi:

od:

od:

fi:

od:

for t from 1 to nk do

Ra[t] := factor(Ra[t]):

Ia[t] := factor(Ia[t]):

od:

od:

for t from 1 to nk do

if j=1 then

if k=(s+1)/2 then

Ren[k-1] := Ra[t]:

Imn[k-1] := Ia[t]:

Rh[1,1,s,k] := 0:

Ih[1,1,s,k] := 0:

else

Rh[1,1,s,k] := Ia[t]/(2*k-s-1):
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Ih[1,1,s,k] := -Ra[t]/(2*k-s-1):

fi:

else

temp := 2*k-s-IEf[j]:

Rh[j,1,s,k] := (-REf[j]*Ra[t]+temp*Ia[t])/(REf[j]ˆ2+tempˆ2):

Ih[j,1,s,k] := (-REf[j]*Ia[t]-temp*Ra[t])/(REf[j]ˆ2+tempˆ2):

fi:

k := s-k:

od:

od:

if s=Ord then

break:

fi:

od:

od:

save Ren, Imn, ‘output‘:
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Chapter 6

Computing the normal forms associated
with semisimple cases

6.1 Introduction
Normal form theory has been used for several decades as one of the important tools in
simplifying the study of nonlinear differential systems. Its basic idea is to introduce a
near-identity transformation into a given differential system to eliminate as many of nonlinear
terms as possible, which are usually called non-resonant terms. The terms retained in the
resulting system are normal form terms, called resonant terms. Since normal forms keep the
fundamental dynamical characteristics of the original system in the vicinity of a singular
point, it can be used to study the local bifurcations and properties of stability/instability for
the original system. There are various books which have extensive discussions on normal
form theory, for example, see [1, 2, 3]. More recent progress can be found in the article [4].

For higher-dimensional dynamical systems, normal form theory is usually applied together
with center manifold theory, see [5, 6, 7, 8, 9]. If the Jacobian matrix of a differential system
evaluated at a singular point contains eigenvalues with zero real part and non-zero real part,
then center manifold theory should be considered in the study of the local dynamics of the
system, and the dimension of the center manifold is equal to the number of eigenvalues with
zero real part. Center manifold theory plays an important role in simplifying the analysis of
local dynamical behavior of nonlinear differential systems near a singular point, because it
allows us to determine the behavior by studying the flow on a lower dimensional manifold.

Several computer algebra systems such as Maple, Mathematica, Macsyma, etc., have been
widely used for the computation of normal forms. Even with the help of these computer
algebra systems, it is still not easy to obtain higher-order normal forms since considerably
more computer memory and computational time are demanded as the order of normal forms
increases. Therefore, in the past two decades, various methods have been developed to
compute normal forms for general n-dimensional differential systems. However, many
methods are not computationally efficient because lots of unnecessary computations are
involved, for example, see [6, 10, 11]. To be precise, in order to get an expression for the
kth-order normal form computation, (k − 1)th-order normal forms, center manifolds and

A version of this chapter has been published in the International Journal of Bifurcation and Chaos.

106



6.2. Main result 107

near-identity transformation are substituted into the original system. Thus, besides the
kth-order terms, the obtained expression also contains lower-order (< k) and higher-order
(> k) terms, which are not desirable for efficient computation. To overcome this problem,
Yu [7, 12] developed a recursive formula for computing the coefficients of normal forms and
center manifolds, which avoid those lower-order (< k) and higher-order (> k) terms in the
kth-order computation. However, these formulas are not given in explicit recursive
expressions and may be not so efficient in computation. For general planar systems, [13]
obtained an explicit recursive formula for computing Poincaré-Lyapunov constants, and the
computation based on this formula is efficient.

In this chapter, we consider general n-dimensional differential systems associated with
semisimple cases, i.e., the Jacobian matrix of the linearized system evaluated at a singular
point can be transformed into a diagonal Jordan canonical form. Around semisimple
singularities, a rich variety of bifurcations, such as Hopf, double-zero, Hopf-zero,
double-Hopf, etc., may occur. A detailed study for some types of these bifurcations can be
found in [14, Chapter 7] by applying normal form theory to simplifying the systems.
Particularly, for some special bifurcations like Hopf-zero, double-Hopf without resonance, the
normal forms are symmetric with respect to rotation in the direction associated with the
imaginary eigenvalues. In this case, the normal forms can be decoupled, and the systems are
further simplified. Many methods have been developed and used to compute the normal forms
of systems with semisimple singularities, not only for the particular cases like
Hopf [9, 12, 13], Hopf-zero [15] and double-Hopf [16, 17], but also for general semisimple
cases involving center manifold [6, 7]. In order to provide a good algorithm to compute the
normal forms of general cases, in this chapter we will develop a computationally efficient
method and a Maple program without restriction on the dimension of the center manifold.
This chapter is an extension of our recent work [9], which focuses on general differential
systems associated with Hopf bifurcation.

In the next section, an explicit, computationally efficient, recursive formula is derived for
computing the normal forms and center manifolds of dynamical systems associated with
semisimple singularities. The explicit formula is given in terms of the system coefficients of
the original differential system, which is easily used for developing a Maple program. In
Section 6.3, several examples are presented to demonstrate the computational efficiency of the
method and the Maple program. Finally, conclusion is drawn in Section 6.4.

6.2 Main result
Consider a system of differential equations in the general form,

ẏ = Ay + G(y), y ∈ Rn, G(y) : Rn → Rn, (6.1)

where the dot represents differentiation with respect to time, t, the matrix A is diagonalizable,
G(0) = 0 and DyG(0) = 0. Denote by λi, i = 1, · · · , n, the eigenvalues of A. Without loss
of generality, it is assumed that there are only k eigenvalues λ j, j = 1, · · · , k, having zero real
part, implying that system (6.1) has a k-dimensional center manifold.

Then, through a proper linear transformation, system (6.1) can be transformed into

ẋ = Jx + f (x), (6.2)
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where J is a diagonal matrix, and f (x) is expanded as

f (x) =
∑
m≥2

f m(x), where f m(x) =
∑
{m(n)}

f m(n)x
m1
1 xm2

2 · · · x
mn
n ,

and m(n) denotes a vector (m1,m2, · · · ,mn) of n nonnegative integers, which satisfies
∑n

j=1 m j =

m.
Suppose that the matrix J has the form J = diag(Jo, Jr), where

Jo = diag(λ1, λ2, · · · , λk), Jr = diag(λk+1, λk+2, · · · , λn).

Let x = (xT
o , xT

r )T , where xo = (x1, x2, · · · , xk)T and xr = (xk+1, xk+2, · · · , xn)T . Then, system
(6.2) can be written as

ẋo = Joxo + f o(xo, xr),
ẋr = Jr xr + f r(xo, xr).

(6.3)

The center manifold of (6.3) may be defined as xr = H(xo), which satisfies H(0) = 0,
DH(0) = 0. Then, the differential equation describing the dynamics on the center manifold is
given by

ẋo = Joxo + f o(xo,H(xo)). (6.4)

Next, introduce a near-identity nonlinear transformation, given by

xo = u + Q(u) = u +
∑
m≥2

∑
{m(k)}

qm(k)u
m1
1 um2

2 · · · u
mk
k ≡ q(u), (6.5)

into (6.4) to obtain the normal form,

u̇ = Jou + C(u), where C(u) =
∑
m≥2

∑
{m(k)}

cm(k)u
m1
1 um2

2 · · · u
mk
k . (6.6)

Now the center manifold can be expressed in the new variable u, as follows:

xr = H(q(u)) =
∑
m≥2

∑
{m(k)}

hm(k)u
m1
1 um2

2 · · · u
mk
k ≡ h(u). (6.7)

Combining the above steps yields the following equations

Du

(
Q(u)
h(u)

)
Jou −

(
JoQ(u)
Jr h(u)

)
=

(
Fo(u)
Fr(u)

)
− Du

(
Q(u)
h(u)

)
C(u) −

(
C(u)

0

)
, (6.8)

where Fo(u) = f o(q(u), h(u)), Fr(u) = f r(q(u), h(u)). Comparing the coefficients on both
sides of (6.8), we obtain the recursive formulas for the coefficients of the center manifold and
the normal form as well as the associated nonlinear transformation.

For convenience, we first introduce some notations. Suppose the powers of q(u) and h(u)
can be expressed, for j ≥ 0, as

q j(u) =
∞∑

m= j

∑
{m(k)}

q j
m(k)u

m1
1 um2

2 · · · u
mk
k ,

h j(u) =
∞∑

m=2 j

∑
{m(k)}

h j
m(k)u

m1
1 um2

2 · · · u
mk
k .

(6.9)

We have the following main result.
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Theorem 6.2.1 For any fixed s(k), s ≥ 2, let Λ =
k∑

i=1
λisi. Then the recursive formulas for

the coefficients of the nonlinear transformation (6.5), the normal form (6.6) and the center
manifold (6.7) of system (6.3), i.e., qs(k), cs(k) and hs(k), are given below.

(1) For qs(k) and cs(k), if Λ − λ j = 0, j = 1, · · · , k, then

qs(k), j = 0, cs(k), j = as(k), j − bs(k), j,

otherwise,
qs(k), j = (as(k), j − bs(k), j)/(Λ − λ j), cs(k), j = 0.

(2) For hs(k), we have

hs(k), j−k = (as(k), j − bs(k), j)/(Λ − λ j), j = k + 1, · · · , n;

where

as(k) =

s∑
m=2

∑
{m(n)}

j=s∑
{ j(n)}

∑
{ j1(k)}

∑
{ j2(k)}

· · ·
∑
{ jn(k)}

f m(n)q
m1
j1(k),1 · · · q

mk
jk(k),kh

mk+1
jk+1(k),1 · · · h

mn
jn(k),n−k,

bs(k) =

k∑
i=1

s−1∑
l=2

∑
{l(k)}

(si + 1 − li)
(

qs(k)−l(k)+ei(k)
hs(k)−l(k)+ei(k)

)
cl(k),i,

q j
s(k) =

s−1∑
l= j−1

∑
l(k)≤s(k)

q j−1
l(k) qs(k)−l(k),

h j
s(k) =

s−2∑
l=2 j−2

∑
l(k)≤s(k)

h j−1
l(k) hs(k)−l(k).

Proof For any given integer s ≥ 2, suppose that we have obtained qm(k), hm(k) and cm(k) for
m < s. Now, we want to derive the formulas for qs(k), hs(k) and cs(k). We divide the proof
in three steps, which can also be served as the guidelines for developing programs using a
computer algebra system.

Step 1. First of all, we need to compute all the coefficients of terms with degree s for
x j

o = q j(u), 2 ≤ j ≤ s. Since q j(u) = q(u)q j−1(u), we have

q j(u) =
( ∞∑

m=1

∑
{m(k)}

qm(k)u
m1
1 um2

2 · · · u
mk
k

)( ∞∑
m= j−1

∑
{m(k)}

q j−1
m(k)u

m1
1 um2

2 · · · u
mk
k

)
=

s∑
m= j

∑
{m(k)}

m−1∑
l= j−1

∑
l(k)≤m(k)

q j−1
l(k) qm(k)−l(k)u

m1
1 um2

2 · · · u
mk
k + o(|u|s),

where l(k) ≤ m(k) means li ≤ mi for i = 1, · · · , k. Then, we obtain

q j
s(k) =

s−1∑
l= j−1

∑
l(k)≤s(k)

q j−1
l(k) qs(k)−l(k), 2 ≤ j ≤ s.
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Similarly, for x j
r = h j(u), we have

h j
s(k) =

s−2∑
l=2 j−2

∑
l(k)≤s(k)

h j−1
l(k) hs(k)−l(k), 2 ≤ j ≤ s.

Step 2. Denote (
Fo(u)
Fr(u)

)
=

s∑
m=2

∑
m(k)

a{m(k)}u
m1
1 um2

2 · · · u
mk
k + o(|u|s). (6.10)

In this step, we derive the formula for as(k). Let qm
l(k) = (qm

l(k),1, q
m
l(k),2, · · · , q

m
l(k),k)

T and hm
l(k) =

(hm
l(k),1, h

m
l(k),2, · · · , h

m
l(k),n−k)

T . For 2 ≤ m ≤ s, substituting q(u) and h(u) into f m(x) yields

f m(x) =
∑
{m(n)}

f m(n)x
m1
1 xm2

2 · · · x
mn
n =

∑
{m(n)}

f m(n)

k∏
i=1

qmi
i (u)

n−k∏
i=1

hmk+i
i (u)

=
∑
{m(n)}

f m(n)

k∏
i=1

( ∞∑
l=mi

∑
{l(k)}

qmi
l(k),iu

l1
1 ul2

2 · · · u
lk
k

) n−k∏
i=1

( ∞∑
l=2mk+i

∑
{l(k)}

hmk+i
l(k),iu

l1
1 ul2

2 · · · u
lk
k

)
=

∑
{m(n)}

f m(n)
( s∑

l=m

∑
{l(k)}

l∑
j1=m1

· · ·

l∑
jk=mk

l∑
jk+1=2mk+1

· · ·

l∑
jn=2mn

∑
{ j1(k)}

∑
{ j2(k)}

· · ·
∑
{ jn(k)}

qm1
j1(k),1qm2

j2(k),2 · · · q
mk
jk(k),kh

mk+1
jk+1(k),1hmk+2

jk+2(k),2 · · · h
mn
jn(k),n−ku

l1
1 ul2

2 · · · u
lk
k + o(|u|s)

)
=

s∑
l=m

∑
{l(k)}

∑
{m(n)}

j=l∑
{ j(n)}

∑
{ j1(k)}

∑
{ j2(k)}

· · ·
∑
{ jn(k)}

f m(n)q
m1
j1(k),1 · · · q

mk
jk(k),kh

mk+1
jk+1(k),1 · · · h

mn
jn(k),n−ku

l1
1 ul2

2 · · · u
lk
k + o(|u|s),

where
n∑

i=1
ji(k) = l(k).

Since f (x) =
∑

m≥2
f m(x), we consequently obtain

as(k) =

s∑
m=2

∑
{m(n)}

j=s∑
{ j(n)}

∑
{ j1(k)}

∑
{ j2(k)}

· · ·
∑
{ jn(k)}

f m(n)q
m1
j1(k),1 · · · q

mk
jk(k),kh

mk+1
jk+1(k),1 · · · h

mn
jn(k),n−k,

where the vector j(n) satisfies

ji


= 0 if mi = 0,
≥ mi for 1 ≤ i ≤ k
≥ 2mi for k + 1 ≤ i ≤ n

}
if mi , 0.

Step 3. Denote

Du

(
Q(u)
h(u)

)
C(u) =

s∑
m=3

∑
{m(k)}

bm(k)u
m1
1 um2

2 · · · u
mk
k + o(|u|s). (6.11)
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In this step, we derive the formula for bs(k). Note that

Du

(
Q(u)
h(u)

)
C(u) =

k∑
i=1

(
Qui

(u)
hui(u)

)
Ci(u)

=

k∑
i=1

(∑
m=2

∑
{m(k)}

mi

(
qm(k)
hm(k)

)
um1

1 um2
2 · · · u

mk
k u−1

i
)(∑

m=2

∑
{m(k)}

cm(k),iu
m1
1 um2

2 · · · u
mk
k

)
=

s∑
m=3

∑
{m(k)}

k∑
i=1

m−1∑
l=2

∑
l

(mi + 1 − li)
(

qm(k)−l(k)+ei(k)
hm(k)−l(k)+ei(k)

)
cl(k),iu

m1
1 um2

2 · · · u
mk
k ,

where ei(k) is a unit vector with a 1 in the ith place. Therefore, comparing the above equation
with (6.11) we have

bs(k) =

k∑
i=1

s−1∑
l=2

∑
{l(k)}

(si + 1 − li)
(

qs(k)−l(k)+ei(k)
hs(k)−l(k)+ei(k)

)
cl(k),i.

Finally, from the left-hand side of (6.8), we obtain

DuQ(u)Jou − JoQ(u) =

k∑
i=1

λiuiQui
− JoQ(u)

=

k∑
i=1

∑
m=2

∑
{m(k)}

λimiqm(k)u
m1
1 um2

2 · · · u
mk
k −

∑
m=2

∑
{m(k)}

Joqm(k)u
m1
1 um2

2 · · · u
mk
k

=

s∑
m=2

∑
{m(k)}

(
k∑

i=1

λimiIk − Jo)qm(k)u
m1
1 um2

2 · · · u
mk
k + o(|u|s),

(6.12)

and similarly,

Duh(u)Jou − Jr h(u)

=

s∑
m=2

∑
{m(k)}

(
k∑

i=1

λimiIn−k − Jr)hm(k)u
m1
1 um2

2 · · · u
mk
k + o(|u|s).

(6.13)

Substituting (6.6) and (6.10)-(6.13) into (6.8) and comparing the coefficients of the same order
results in the formulas in Theorem 6.2.1, and we thus complete the proof.

The source code of the Maple program developed using the formulas in Theorem 6.2.1 is given
in Appendix C for the convenience of readers.

6.3 Application
In this section, we present several examples to demonstrate the applicability and the
computational efficiency of the Maple program (see the source code in Appendix C)
developed in this chapter. We show three examples associated with Hopf, Hopf-zero and



112 Chapter 6. Computing the normal forms associated with semisimple cases

double Hopf singularities, and compute their normal forms and center manifolds, as well as
the corresponding nonlinear transformations. We have tested a number of systems for
comparing the algorithm developed in this chapter with that given in [6]. It is shown that for
most cases the method developed in this chapter is better than that given in [6]. Only in some
special cases, the situation is reversed. The program given in [6] can only deal with the cases
where the dimension of the center manifold is less than seven. All the Maple programs are
executed on a desktop machine with CPU 3.4 GHZ and 32G RAM memory to generate the
normal forms as needed.

Example 1. We consider a 5-dimensional system:

ẋ1 = x2 + x2
1 − x1x3 + x2

5,

ẋ2 = −x1 + x2
2 + x1x4 + x3

2,

ẋ3 = −x3 + x2
1,

ẋ4 = −x4 + x5 + x2
1 + x4x5,

ẋ5 = −x4 − x5 + x2
2 − 2x2

4.

(6.14)

The Jacobian matrix of this system evaluated at the origin has eigenvalues ±i, −1 and −1 ± i.
So the origin is a Hopf singularity and system (6.14) has a 2-dimensional center manifold. The
normal form given in polar coordinates up to 5th order is given as follows:

ṙ =
3

40
r3 −

25633
102000

r5 −
163441769

2663424000
r7 + · · · ,

θ̇ =1 −
7

12
r2 +

6692923
14688000

r4 −
47098141289

299635200000
r6 + · · · .

(6.15)

The lengthy expressions for the center manifold and nonlinear transformation are omitted here
for brevity.

Remark 1. The coefficients of the terms r3 and r5, etc., in the first equation of (6.15) are called
the first, second, etc., focus values. In general, the normal form of system (6.3), given in polar
coordinates, is in the form of

ṙ =r (v0 + v1 r2 + v2 r4 + · · · vk r2k + · · · ),

θ̇ =1 + t0 + t1 r2 + t2 r4 + · · · tk r2k + · · · ,
(6.16)

where vk is called the kth-order focus value, which is a function of the system parameters
of (6.3). Small limit cycles bifurcating from the origin and their stability can be determined
from the first equation of (6.16). The second equation of (6.16) can be used to determine the
frequency of the bifurcating periodic motion (limit cycle).

Example 2. The second example is a 6-dimensional differential system, described by

ẋ1 = −x2
1 + 2x1x2 + 3x1x4 − x1x5 − x2

2 + x2x4,

ẋ2 = x3 − x2
1 + 2x1x3 + 8x1x4 + x3x5,

ẋ3 = −x2 − x2
3 + 3x1x6 − x3x4 − 6x2

4 − x4x6 + 2x2
5,

ẋ4 = −x4 − x2
1 + 2x1x2 + 3x1x4 − x1x5 − x2

2,

ẋ5 = −x5 + x6 − 7x2
1 + 2x1x3 + 3x1x6 − x3x4 − x4x6,

ẋ6 = −x5 − x6 + x1x4 − 5x2
3 + x3x5 − 4x2

4 + x2
5.

(6.17)



6.3. Application 113

This system has a singular point at the origin, with its Jacobian matrix evaluated at the origin
having three eigenvalues, 0 and ±i, with zero real part, and three eigenvalues, −1 and −1 ± i,
with negative real part, implying that system (6.17) contains a 3-dimensional center manifold
associated with a Hopf-zero singularity at the origin. Executing our Maple program gives the
normal form (in cylindrical coordinates) up to 5th order,

ẏ = − y2 −
1
2

r2 +
1
2

y3 −
5
4

yr2 +
59
4

y4 −
259
40

y2r2 +
1

36
r4

+ 84y5 +
18509
400

y3r2 +
11483
4800

yr4 + · · · ,

ṙ =
29
10

y2r +
9

40
r3 −

1171
25

y3r −
1371
200

yr3

−
19331

80
y4r −

263299
2250

y2r3 −
576761

1224000
r5 + · · · ,

θ̇ = 1 + y −
61
20

y2 −
163
240

r2 +
4501
200

y3 −
1357
800

yr2

+
4579
160

y4 +
123833
2250

y2r2 −
102206489
58752000

r4 + · · · .

Example 3. The last example is a 7-dimensional differential system,

ẋ1 = x2 + x3
1 − x2

1x5 + x2
1x7,

ẋ2 = −x1 − 2x1x2
3,

ẋ3 =
√

2x4 + x2
1x3 − 4x3

5,

ẋ4 = −
√

2x3,

ẋ5 = −x5 + (x1 − x5)2,

ẋ6 = −x6 + x7 + (x1 − x4)2,

ẋ7 = −x6 − x7 + (x2 − x6)2,

(6.18)

whose Jacobian matrix evaluated at the origin has eigenvalues ±i, ±
√

2i, −1 and −1 ± i, and
four of them have zero real part. So the center manifold of system (6.18) is four dimensional.
System (6.18) was studied by [6] and the normal form in polar coordinates up to 5th order
was also given. We executed the Maple programs developed in this chapter as well as that
given in [6] on the desktop machine. We have found that the Maple program given in [6]
failed when it was executing to find the 9th-order normal form, because Maple was unable to
allocate enough memory to complete the computation. While the program developed in this
chapter only took 122 seconds and 13938 MB memory to finish the 9th-order normal form
computation. The normal form up to 7th order given in polar coordinates is listed below.

ṙ1 =
3
8

r3
1 +

157
1360

r5
1 −

9
40

r3
1r2

2 −
428923841

3847168000
r7

1 −
433291
832320

r5
1r2

2 −
612973

8921600
r3

1r4
2 + · · · ,

θ̇1 =1 +
1
2

r2
2 −

5543
21760

r4
1 −

3
80

r2
1r2

2 −
1

16
r4

2

−
888039

9617920
r6

1 +
1744833
5178880

r4
1r2

2 −
1448249

93676800
r2

1r4
2 +

3
32

r6
2 + · · · ,
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ṙ2 =
1
4

r2
1r2

2 −
1

16
r2

1r3
2 +

10213
348160

r6
1r2 −

3457
446080

r4
1r3

2 +
27

256
r2

1r5
2 + · · · ,

θ̇2 =
√

2 −
1

32

√
2r4

1 +
125

89216

√
2r4

1r2
2 + · · · .

6.4 Conclusion
In this chapter, we have derived an explicit, recursive formula for computing the normal
forms, center manifolds and nonlinear transformations for general n-dimensional systems,
associated with semisimple singularities. A Maple program is also developed on the basis of
the formula, which is very convenient for practical applicants who may not be familiar with
normal form theory. It only needs users to prepare an input file and the Maple program will be
“automatically” executed to generate the desired result. Three examples are presented to show
the applicability of the new method and new program, and in particular, one of the examples
demonstrates the advantage of the new method over the existing methods and programs.

Appendix C
In this appendix, for the convenience of readers, we list the symbolic Maple program developed
in this chapter using the recursive formulas in Theorem 6.2.1, which can be used for computing
the normal forms of general n-dimensional systems associated with semisimple cases. The
input here takes the third example in the section of application.

with(LinearAlgebra):

M1 := 0: # No. of zero eigenvalues

M2 := 2: # No. of pairs of purely imaginary eigenvalues

M3 := 1: # No. of non-zero real eigenvalues

M4 := 1: # No. of pairs of complex conjugate eigenvalues

N := 3: # Highest order in the system

Ord := 5:

Mc := M1 + 2*M2:

M := Mc + M3 + 2*M4:

L := M1 + M2 + M3 + M4:

f[1] := x[2] + x[1]ˆ3 - x[1]ˆ2*x[5] + x[1]ˆ2*x[7]:

f[2] := - x[1] - 2*x[1]*x[3]ˆ2:

f[3] := sqrt(2)*x[4] + x[1]ˆ2*x[3] - 4*x[5]ˆ3:

f[4] := - sqrt(2)*x[3]:

f[5] := - x[5] + (x[1] - x[5])ˆ2:

f[6] := - x[6] + x[7] + (x[1] - x[4])ˆ2:

f[7] := - x[6] - x[7] + (x[2] - x[6])ˆ2:

L3seq := proc()

global l12,S3,p:

if l12 = 0 then

S3[p+1] := S3[p+1]+1: l12 := S3[p]-1:

S3[p] := 0: p := max(0,sign(-l12))*p+1:

else S3[1] := S3[1]+1: l12 := l12-1: fi:

end:

L3product := proc(sl,sr,q2r,q2i)

local l3rmx,qpmx,qpr,qpi,ctpo,l12,l12r,p,pr,ctl,ctr,ctp,l3,l3r,sb,
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sp,S3,S3r,i,temp:

l3rmx := binomial(sr+Mc-2,Mc-2): ctpo := 1:

qpmx := binomial(sl+sr+Mc-1,Mc-1):

qpr := Array(1..qpmx): qpi := Array(1..qpmx):

S3 := [seq(0,i=1..Mc-1)]:

p := 1: ctl := 1: l12 := sl:

for l3 to binomial(sl+Mc-2,Mc-2) do

S3r := [seq(0,i=1..Mc-1)]:

pr := 1: ctr := 1: l12r := sr: ctp := ctpo:

for l3r to l3rmx do

for i from ctp to ctp+l12+l12r do

sb := max(0,i-ctp-l12): sp := min(l12r,i-ctp):

qpr[i] := qpr[i]+add(q2r[ctr+j]*q1r[ctl+i-ctp-j]

-q2i[j+ctr]*q1i[ctl+i-ctp-j],j=sb..sp):

qpi[i] := qpi[i]+add(q2r[ctr+j]*q1i[ctl+i-ctp-j]

+q2i[j+ctr]*q1r[ctl+i-ctp-j],j=sb..sp):

od:

ctp := i: ctr := ctr+l12r+1:

if l12r = 0 then

ctp := ctp-binomial(S3r[pr]+1,2)-S3r[pr]*l12:

temp := l12+S3[1]:

for i from 2 to pr do

ctp := ctp+binomial(temp+i,i+1)

-binomial(temp+S3r[pr]+i-1,i+1):

temp := temp+S3[i]:

od:

ctp := ctp+binomial(temp+S3r[pr]+i-1,i):

S3r[pr+1] := S3r[pr+1]+1: l12r := S3r[pr]-1:

S3r[pr] := 0: pr := max(0,sign(-l12r))*pr+1:

else S3r[1] := S3r[1]+1: l12r := l12r-1: fi:

od:

ctl := ctl+l12+1:

if l12 = 0 then

ctpo := ctpo+binomial(sr+p+1,p+1):

S3[p+1] := S3[p+1]+1: l12 := S3[p]-1:

S3[p] := 0: p := max(0,sign(-l12))*p+1:

else ctpo := ctpo+l12+sr+1: S3[1] := S3[1]+1: l12 := l12-1: fi:

od:

return [qpr,qpi]:

end:

for i to M1 do x[i] := v[i]: od:

j := M1+1: k := L+1:

for i from M1+1 to M1+M2 do

x[j] := (v[i]+v[k])/2:

x[j+1] := I*(v[i]-v[k])/2:

f[i] := simplify(f[j]-I*f[j+1]):

j := j+2: k := k+1:

od:

for i from M1+M2+1 to L-M4 do

x[j] := v[i]:

f[i] := simplify(f[j]):

j := j+1:

od:

for i from L-M4+1 to L do
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x[j] := (v[i]+v[k])/2:

x[j+1] := I*(v[i]-v[k])/2:

f[i] := simplify(f[j]-I*f[j+1]):

j := j+2: k := k+1:

od:

for j to L do

f[j] := simplify(f[j]):

IEf[j] := diff(f[j],v[j]):

for k to M do IEf[j] := subs(v[k]=0,IEf[j]): od:

REf[j] := subs(I=0,IEf[j]):

IEf[j] := subs(I=1,IEf[j]-REf[j]):

od:

Qd := [seq(1,j=1..M1+M2),seq(2,j=1..M3+M4),seq(1,j=1..M2),seq(2,j=1..M4)]:

Qc := [seq(j,j=1..M1),seq(L+j,j=1..M2),seq(M1+M2+j,j=1..M3),

seq(M-M4+j,j=1..M4),seq(M1+j,j=1..M2),seq(L-M4+j,j=1..M4)]:

Qb := [seq(j,j=1..M1),seq(seq(M1+i*M2+j,i=0..1),j=1..M2)]:

SizeIndex := Array(1..2*N): Mr := [seq(1,i=1..L)]:

vecf := Vector([seq(f[j],j=1..L)]):

for m from 2 to N do

Ml := [m+1,-1,seq(0,i=1..M-2)]: i := 1:

while Ml[M] <> m do

Ml[i+1] := 1 + Ml[i+1]: Ml[1] := Ml[i]-1:

if i <> 1 then Ml[i] := 0: fi:

if Ml[1] = 0 then i := i+1: else i := 1: fi:

Mlc := Ml: ji := 0:

for l to 2 do

coef[l] := vecf: cterm := 1:

for k to M do

coef[l] := coeff(coef[l],v[k],Mlc[k]):

cterm := cterm*v[k]ˆMlc[k]:

od:

if coef[l] = 0 then coef[l] := Vector(L): fi:

vecf := vecf-cterm*coef[l]:

if Norm(coef[l],2) <> 0 then

ji := ji+1:

if ji = 1 then

Mlc := [seq(Mlc[Qc[k]],k=1..M)]:

mlmx := max(Mlc-Ml):

if mlmx = 0 then l := l+1: fi:

fi:

else l := l+1: fi:

od:

if ji > 0 then

Mr := [seq(max(Mr[n],Ml[n]),n=1..L)]:

qdg := m+add(Ml[n],n=M1+M2+1..L)+add(Ml[n],n=L+M2+1..M):

jr := 0: jc := 0:

for k from i to M do

if Ml[k] <> 0 then

if k < M1+1 or (k < L-M4 and k > M1+M2) then

jr := jr+1: j := -jr:

else jc := jc+1: j := jc: fi:

Kvt[j] := Ml[k]: Ivt[j] := k: Qvt[j] := Qd[k]*Ml[k]:

fi:

od:
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Kv := [seq(Kvt[j],j=1..jc),seq(Kvt[-j],j=1..jr)]:

Iv := [seq(Ivt[j],j=1..jc),seq(Ivt[-j],j=1..jr)]:

Qv := [seq(Qvt[j],j=1..jc),seq(Qvt[-j],j=1..jr)]:

SizeIndex[qdg] := SizeIndex[qdg]+1:

N := max(N,qdg): sqdg := SizeIndex[qdg]:

Index[qdg,sqdg] := [Kv,Iv,Qv,jc,jr,ji]:

fi:

for l to ji do

eql := []:

for k to L do

if coef[l][k] <> 0 then eql := [op(eql),k]: fi:

od:

coefi := [seq(coef[l][eql[k]],k=1..nops(eql))]:

coefr := subs(I=0,coefi):

coefi := subs(I=1,coefi-coefr):

sqdgn := (-1)ˆ(l-1)*sqdg:

Coef[qdg,sqdgn] := [eql,coefr,coefi]:

od:

od:

od:

for j to M do

Ih[j,1,1] := Array(1..Mc): Rh[j,1,1] := Array(1..Mc):

od:

for j to M1 do Rh[j,1,1][j] := 1: od:

for j to M2 do

Rh[M1+j,1,1][M1+2*j-1] := 1:

Rh[L+j,1,1][M1+2*j] := 1:

od:

for s from 2 to Ord do

print(‘order=‘,s):

smx := binomial(s+Mc-1,Mc-1):

Ku := [seq(min(Mr[j],s),j=1..L)]:

for j to L do

for k from 2 to Ku[j] do

Rh[j,k,s] := Array(1..smx): Ih[j,k,s] := Array(1..smx):

od:

od:

for sl to s-1 do

l12 := sl: sr := s-sl: l3rmx := binomial(sr+Mc-2,Mc-2):

S3 := [seq(0,i=1..Mc-1)]: p := 1: ctl := 1: ctpo := 1:

for l3 to binomial(sl+Mc-2,Mc-2) do

for j to L do

Lslr[j] := [seq(Rh[j,1,sl][i],i=ctl..ctl+l12)]:

Lsli[j] := [seq(Ih[j,1,sl][i],i=ctl..ctl+l12)]:

od:

S3r := [seq(0,i=1..Mc-1)]:

pr := 1: ctr := 1: l12r := sr: ctp := ctpo:

for l3r to l3rmx do

for l to L do

for k to min(Ku[l]-1,sr) do

Lsrr := [seq(Rh[l,k,sr][i],i=ctr..ctr+l12r)]:

Lsri := [seq(Ih[l,k,sr][i],i=ctr..ctr+l12r)]:

for i from ctp to ctp+l12+l12r do

sb := max(0,i-ctp-l12): sp := min(l12r,i-ctp):
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Rh[l,k+1,s][i] := Rh[l,k+1,s][i]

+add(Lsrr[j+1]*Lslr[l][i-ctp+1-j]

-Lsri[j+1]*Lsli[l][i-ctp+1-j], j=sb..sp):

Ih[l,k+1,s][i] := Ih[l,k+1,s][i]

+add(Lsri[j+1]*Lslr[l][i-ctp+1-j]

+Lsrr[j+1]*Lsli[l][i-ctp+1-j], j=sb..sp):

od:

od:

od:

ctp := i: ctr := ctr+l12r+1:

if l12r = 0 then

ctp := ctp-binomial(S3r[pr]+1,2)-S3r[pr]*l12:

temp := l12+S3[1]:

for i from 2 to pr do

ctp := ctp+binomial(temp+i,1+i)

-binomial(temp+S3r[pr]+i-1,1+i):

temp := temp+S3[i]:

od:

ctp := ctp+binomial(temp+S3r[pr]+i-1,i):

S3r[pr+1] := S3r[pr+1]+1: l12r := S3r[pr]-1:

S3r[pr] := 0: pr := max(0,sign(-l12r))*pr+1:

else S3r[1] := S3r[1]+1: l12r := l12r-1: fi:

od:

ctpo := ctpo+binomial(sr+l12+p+max(0,sign(-l12)),sr+l12):

ctl := ctl+l12+1: L3seq():

od:

od:

Tt := Array([seq(j,j=1..smx)]):

Lm := M1:

for L5t from 2*M2-2 by -2 to 0 do

S5 := [seq(0,j=1..L5t+1)]:

ct := 1: l14 := s: p := 1:

for l5 to binomial(s+L5t,L5t) do

for lm2 from 0 to iquo(l14-1,2) do

ct := ct+binomial(l14+Lm,Lm)-binomial(l14-lm2-1+Lm,Lm):

dml := binomial(l14+Lm,Lm+1):

for lm1 from l14-lm2-1 by -1 to 0 do

lmmx := binomial(lm1+Lm-1,Lm-1):

dmcm := dml-binomial(lm1+lm2+Lm,Lm+1):

for j from ct to ct+lmmx-1 do

temp := Tt[j]: Tt[j] := Tt[j+dmcm]:

Tt[j+dmcm] := temp:

od: ct := ct+lmmx:

od: l14 := l14-1:

od:

ct := ct+binomial(l14+Lm+1,Lm+1):

l14 := l14+lm2-1:

if l14 = 0 then

l5 := l5+p: ct := ct+p: S5[p+1] := S5[p+1]+1: l14 := S5[p]:

S5[p] := 0: p := max(0,sign(1-l14)*p)+1:

else S5[1] := S5[1]+1: fi:

od: Lm := Lm+2:

od:

for j from 1 to M2 do
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for k from 2 to Ku[M1+j] do

Rh[L+j,k,s] := Array([seq(Rh[M1+j,k,s][Tt[i]],i=1..smx)]):

Ih[L+j,k,s] := Array([seq(-Ih[M1+j,k,s][Tt[i]],i=1..smx)]):

od:

od:

for j from 1 to M4 do

for k from 2 to Ku[L-M4+j] do

Rh[M-M4+j,k,s] := Array([seq(Rh[L-M4+j,k,s][Tt[i]],i=1..smx)]):

Ih[M-M4+j,k,s] := Array([seq(-Ih[L-M4+j,k,s][Tt[i]],i=1..smx)]):

od:

od:

T[s] := copy(Tt):

if s = Ord then L := M1+M2: fi:

for j to L do Rht[j] := Array(1..smx): Iht[j] := Array(1..smx): od:

for m from 2 to min(s,N) do

sm := s-m:

for mi to SizeIndex[m] do

Kv := Index[m,mi][1]: Iv := Index[m,mi][2]: Qv := Index[m,mi][3]:

jc := Index[m,mi][4]: jr := Index[m,mi][5]: ji := Index[m,mi][6]:

slg := jc+jr: l3mx := binomial(sm+slg-1,slg-1):

l12 := sm: p := 1: S3 := [seq(0,i=1..slg+1)]:

for l3 to l3mx do

Sv := [l12+Qv[1],seq(S3[j]+Qv[j+1],j=1..slg-1)]:

q1r := copy(Rh[Iv[1],Kv[1],Sv[1]]):

q1i := copy(Ih[Iv[1],Kv[1],Sv[1]]):

sl := Sv[1]:

for j from 2 to jc do

qp := L3product(sl,Sv[j],

Rh[Iv[j],Kv[j],Sv[j]],Ih[Iv[j],Kv[j],Sv[j]]):

q1r := copy(qp[1]): q1i := copy(qp[2]): sl := sl+Sv[j]:

od:

slmx := binomial(sl+Mc-1,Mc-1):

if ji = 2 then

if jc > 1 then

q3r := Array([seq(q1r[T[sl][i]],i=1..slmx)]):

q3i := Array([seq(-q1i[T[sl][i]],i=1..slmx)]):

else ivc := Qc[Iv[1]]:

q3r := copy(Rh[ivc,Kv[1],Sv[1]]):

q3i := copy(Ih[ivc,Kv[1],Sv[1]]):

fi:

fi:

for i to ji do

slc := sl:

for j from max(jc,1)+1 to slg do

qp := L3product(slc,Sv[j],

Rh[Iv[j],Kv[j],Sv[j]],Ih[Iv[j],Kv[j],Sv[j]]):

q1r := copy(qp[1]): q1i := copy(qp[2]):

slc := slc+Sv[j]:

od:

lfa := Coef[m,(-1)ˆ(i-1)*mi]:

for l to nops(lfa[1]) do

jl := lfa[1,l]:

if jl > L then break: fi:

Rht[jl] := Array([seq(Rht[jl][j]+lfa[2,l]*q1r[j]
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-lfa[3,l]*q1i[j],j=1..smx)]):

Iht[jl] := Array([seq(Iht[jl][j]+lfa[2,l]*q1i[j]

+lfa[3,l]*q1r[j],j=1..smx)]):

od:

if ji = 2 then q1r := copy(q3r): q1i := copy(q3i): fi:

od: L3seq():

od:

od:

od:

for sl from 2 to s-1 do

l12 := sl: sr := s-sl: l3rmx := binomial(sr+Mc-2,Mc-2):

S3 := [seq(0,i=1..Mc-1)]: ctpo := 1: p := 1: ctl := 1:

for l3 to binomial(sl+Mc-2,Mc-2) do

for j to Mc do

Lslr[j] := [seq(Ren[j,sl][i],i=ctl..ctl+l12)]:

Lsli[j] := [seq(Imn[j,sl][i],i=ctl..ctl+l12)]:

od:

S3r := [seq(0,i=1..Mc-1)]:

l12r := sr: ctp := ctpo: pr := 1: ctr := 1:

for l3r to l3rmx do

for j to L do

for wri to Mc do

jw := Qb[wri]:

Lsrr := [seq(dRh[j,sr+1,wri][i],i=ctr..ctr+l12r)]:

Lsri := [seq(dIh[j,sr+1,wri][i],i=ctr..ctr+l12r)]:

for jl to l12+l12r+1 do

sb := max(1,jl-l12): sp := min(l12r+1,jl):

Lsrt[wri][jl] := add(Lsrr[i]*Lslr[jw][jl+1-i]

-Lsri[i]*Lsli[jw][jl+1-i],i=sb..sp):

Lsit[wri][jl] := add(Lsrr[i]*Lsli[jw][jl+1-i]

+Lsri[i]*Lslr[jw][jl+1-i],i=sb..sp):

od:

od:

for i from ctp to ctp+l12+l12r do

Rht[j][i] := Rht[j][i]-add(Lsrt[wri][i-ctp+1],wri=1..Mc):

Iht[j][i] := Iht[j][i]-add(Lsit[wri][i-ctp+1],wri=1..Mc):

od:

od:

ctp := i: ctr := ctr+l12r+1:

if l12r = 0 then

ctp := ctp-binomial(S3r[pr]+1,2)-S3r[pr]*l12:

temp := l12+S3[1]:

for i from 2 to pr do

ctp := ctp+binomial(temp+i,1+i)

-binomial(temp+S3r[pr]+i-1,1+i):

temp := temp+S3[i]:

od:

ctp := ctp+binomial(temp+S3r[pr]+i-1,i):

S3r[pr+1] := S3r[pr+1]+1: l12r := S3r[pr]-1:

S3r[pr] := 0: pr := max(0,sign(-l12r))*pr+1:

else S3r[1] := S3r[1]+1: l12r := l12r-1: fi:

od:

ctpo := ctpo+binomial(sr+l12+p+max(0,sign(-l12)),sr+l12):

ctl := ctl+l12+1: L3seq():
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od:

od:

lic := Array(1..smx):

S3 := [seq(0,i=1..Mc)]: p := 1: l12 := s:

for l5 to smx do

S5 := [l12,op(S3)]:

lic[l5] := add(IEf[i]*(S5[2*i-M1-1]-S5[2*i-M1]),i=M1+1..M1+M2):

L3seq():

od:

for j to M1+M2 do

Ren[j,s] := Array(1..smx): Imn[j,s] := Array(1..smx):

Rh[j,1,s] := Array(1..smx): Ih[j,1,s] := Array(1..smx):

Iy := -IEf[j]:

for l5 to smx do

Il := Iy+lic[l5]:

if Il <> 0 then

Rh[j,1,s][l5] := factor(Iht[j][l5]/Il):

Ih[j,1,s][l5] := -factor(Rht[j][l5]/Il):

else Ren[j,s][l5] := factor(Rht[j][l5]):

Imn[j,s][l5] := factor(Iht[j][l5]): fi:

od:

od:

if s < Ord then

for j from M1+M2+1 to L do

Rh[j,1,s] := Array(1..smx): Ih[j,1,s] := Array(1..smx):

Ry := -REf[j]: Iy := -IEf[j]:

for l5 to smx do

Il := Iy+lic[l5]: temp := Ry*Ry+Il*Il:

Rh[j,1,s][l5] := factor((Rht[j][l5]*Ry+Iht[j][l5]*Il)/temp):

Ih[j,1,s][l5] := factor((Iht[j][l5]*Ry-Rht[j][l5]*Il)/temp):

od:

od:

for j from M1+1 to M1+M2 do

Ren[M2+j,s] := Array([seq(Ren[j,s][Tt[i]],i=1..smx)]):

Imn[M2+j,s] := Array([seq(-Imn[j,s][Tt[i]],i=1..smx)]):

Rh[L-M1+j,1,s] := Array([seq(Rh[j,1,s][Tt[i]],i=1..smx)]):

Ih[L-M1+j,1,s] := Array([seq(-Ih[j,1,s][Tt[i]],i=1..smx)]):

od:

for j from L-M4+1 to L do

Rh[M2+M4+j,1,s] := Array([seq(Rh[j,1,s][Tt[i]],i=1..smx)]):

Ih[M2+M4+j,1,s] := Array([seq(-Ih[j,1,s][Tt[i]],i=1..smx)]):

od:

qdemx := binomial(s+Mc-2,Mc-1):

for wri to Mc do

for j to L do

dRh[j,s,wri] := Array(1..qdemx):

dIh[j,s,wri] := Array(1..qdemx):

od:

temp := Mc-wri:

Si1 := [seq(0,j=1..temp+2)]:

lsimx := binomial(s+temp,temp);

l1i := s: kst := 1: oml := 0: po := 1:

for lsi from 1 to lsimx do

if wri > 1 then
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oml := oml+binomial(l1i+wri-2,wri-2):

for li from 1 to l1i do

limx := binomial(l1i-li+wri-2,wri-2):

for j from kst to kst+limx-1 do

for jl to L do

dRh[jl,s,wri][j] := li*Rh[jl,1,s][j+oml]:

dIh[jl,s,wri][j] := li*Ih[jl,1,s][j+oml]:

od:

od: kst := kst+limx:

od:

else

for jl to L do

dRh[jl,s,wri][kst] := l1i*Rh[jl,1,s][kst+oml]:

dIh[jl,s,wri][kst] := l1i*Ih[jl,1,s][kst+oml]:

od: kst := kst+1:

fi:

if l1i = 1 then

oml := oml+po: Si1[po+1] := Si1[po+1]+1: l1i := Si1[po]:

Si1[po] := 0: lsi := lsi+po: po := max(0,sign(1-l1i)*po)+1:

else Si1[1] := Si1[1]+1: l1i := l1i-1: fi:

od:

od:

fi:

od:

ZC := [seq(0,j=1..M1)]:

RC := [seq(0,j=1..M2)]:

IC := [seq(IEf[M1+j],j=1..M2)]:

for s from 2 to Ord do

l12 := s: p := 1: l3mx := binomial(s+Mc-1,Mc-1):

S3 := [seq(0,i=1..Mc)]:

for l3 to l3mx do

Sl := [l12,op(S3)]: term := 1:

for j from 1 to M1 do term := term*y[j]ˆSl[j]: od:

thetan := 0:

for j from M1+1 to M1+M2 do

term := term*r[j-M1]ˆ(Sl[2*j-M1-1]+Sl[2*j-M1]):

thetan := thetan+theta[j-M1]*(Sl[2*j-M1-1]-Sl[2*j-M1]):

od:

for j from 1 to M1 do

ZC[j] := ZC[j]+term*(factor(Ren[j,s][l3])*cos(thetan)

-factor(Imn[j,s][l3])*sin(thetan)):

od:

for j from 1 to M2 do

RC[j] := RC[j]+term*(factor(Ren[j+M1,s][l3])*cos(thetan-theta[j])

-factor(Imn[j+M1,s][l3])*sin(thetan-theta[j])):

IC[j] := IC[j]+term/r[j]*(factor(Ren[j+M1,s][l3])*sin(thetan-theta[j])

+factor(Imn[j+M1,s][l3])*cos(thetan-theta[j])):

od:

L3seq():

od:

od:

for i from 1 to M1 do

ZC[i] := combine(ZC[i],trig): print("y",i,ZC[i]):

od:
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for i from 1 to M2 do

RC[i] := combine(RC[i],trig): print("r",i,RC[i]):

IC[i] := combine(IC[i],trig): print("theta",i,IC[i]):

od:

save M1,M2,ZC,RC,IC, output:
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Chapter 7

Seven limit cycles around a focus point in
a simple 3-dimensional quadratic vector
field

7.1 Introduction

Limit cycle theory has been playing a very important role in the study of dynamical behavior of
nonlinear systems, emerging from many physical and engineering models, and recently even
from financial systems and social system. In mathematics, for a two-dimensional phase space,
a limit cycle is a closed trajectory in the phase space having the property that at least one
other trajectory spirals into it either as time approaches infinity or as time approaches negative
infinity. Higher-dimensional vector fields often exhibit limit cycles which may co-exits with
more complex dynamical behaviors such as chaos.

The study of limit cycles was initiated by [1]. He built a new branch of mathematics, called
“qualitative theory of differential equations”, and introduced the concept of limit cycles. Later,
in the past more than 100 years, the development of limit cycle theory was perhaps motivated
by the well-known Hilbert’s 16th problem. The second part of this problem is to find the upper
bound, called Hilbert number H(n), on the number of limit cycles that planar polynomial
systems of degree n can have. In early 1990’s, [2] and [3] proved that H(n) is finite for given
planar polynomial vector fields. For general quadratic polynomial systems, the best result is
4 with (3, 1) distribution, obtained more than 30 years ago [4, 5]. Recently, this result was
also obtained for near-integrable quadratic systems [6]. However, whether H(2) = 4 is still
open. In other words, the finiteness problem remains unsolved even for quadratic polynomial
systems. For cubic polynomial systems, many results have been obtained on the low bound of
the Hilbert number. So far, the best result for cubic systems is H(3) ≥ 13 [7, 8]. Note that the
13 limit cycles are distributed around several singular points. This number is believed to be
below the maximal number which can be obtained for generic cubic systems.

Suppose we consider Hilbert’s 16th problem with limit cycles bifurcating from isolated
fixed points, then the question becomes studying degenerate Hopf bifurcations, giving rise to

A version of this chapter has been published in the Communications in Nonlinear Science and Numerical
Simulation.
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weak (fine) focus points. This local problem has been completely solved only for generic
quadratic systems [9], which can have 3 limit cycles in the vicinity of such a singular point.
For cubic systems, [10] obtained a formal construction, via symbolic computation, of a special
cubic system with 8 limit cycles. In 2009, Yu and Corless [11] showed the existence of 9 limit
cycles with the help of a numerical method for another special cubic system. Recently, this
special system was reconsidered using purely symbolic computation with the regular chains
method to confirm the existence of 9 limit cycles, and find all the possible real solutions [12].

Due to the importance of limit cycle theory and frequently appearing in higher-dimensional
dynamical systems, we want to study bifurcation of limit cycles in higher-dimensional vector
fields. In this chapter, particular attention will be focused on 3-dimensional systems with a
Hopf singular point. We would like to investigate what is the maximal number of limit cycles
which may exist in the vicinity of a singular point of 3-dimensional systems. This is certainly a
very challenge problem. There are very few results in the literature. Over the last twenty years,
a 3-dimensional competitive Lotka-Volterra model has been studied extensively. The model is
described by a 3-dimensional differential system:

ẋi = xi

(
bi −

3∑
j=1

ai jx j

)
, i = 1, 2, 3, (7.1)

where the dot indicates differentiation with respect to time, t, xi represents the population of
ith species, and the coefficients take positive real values, bi > 0, ai j > 0, i, j = 1, 2, 3. This
is a special case of general 3-dimensional quadratic systems. In the past two decades, several
researchers have paid attention to system (7.1) and particularly studied bifurcation of limit
cycles (e.g., see [13, 14, 15, 16]). So far, the best result is 4 limit cycles, obtained by [16], using
appropriate parameter values. These 4 limit cycles include 3 small-amplitude limit cycles,
proved by using focus value computation, and one large limit cycle, shown by constructing
a heteroclinic cycle. Recently, Tian and Yu revisited this problem [17] and showed that this
system might have maximal 8 limit cycles, but it is very difficult to prove using the existing
methodology.

In this chapter, we turn to consider general 3-dimensional quadratic system, given by

ẋ1 = α x1 + x2 + f1(x1, x2, x3),
ẋ2 = −x1 + α x2 + f2(x1, x2, x3),
ẋ3 = − β x3 + f3(x1, x2, x3),

(7.2)

where α and β > 0 are parameters, and fi’s are quadratic polynomials. This system has a Hopf
singularity at the origin when α = 0. For general quadratic polynomials fi and β , 1, the
highest order of the focus value obtained from a desktop machine with CPU 3.4 GHZ and 32G
RAM memory is 4. Moreover, even just solving these four polynomial equations is not an easy
job. Therefore, we make a number of simplifications in (7.2) so that we can manage to obtain
higher-order focus values, at least up to 8th order, and then try to apply the modular regular
chains [12] to obtain 7 limit cycles in the vicinity of the origin. Compared to the Bautin’s result
for quadratic planar vector fields which can only have 3 small-amplitude limit cycles around
a focus or center, this result is quite surprising. The description of the simple 3-dimensional
quadratic vector filed and proof of the existence of 7 limit cycles around the origin will be
given in the next section.
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7.2 Main result
We start from the general 3-dimensional quadratic systems (7.2). Without loss of generality,
the system can be written in the following form, with its linear part in Jordan canonical form,

ẋ1 = α x1 + x2 + a11x2
1 + (2b11 + a12)x1x2 + a22x2

2 + a33x2
3 + a13x1x3 + a23x2x3,

ẋ2 = −x1 + α x2 + b11x2
1 + (2a11 + b12)x1x2 − b11x2

2 + b33x2
3 + b13x1x3 + b23x2x3,

ẋ3 = − β x3 + c11x2
1 + c12x1x2 + c22x2

2 + c33x2
3 + c13x1x3 + c23x2x3,

(7.3)

where α, β > 0 and ai j, bi j, ci j are parameters, and the formula in Bautin’s equation [Bautin,
1952] has been used in the first two equations of (7.3), which can be achieved by a proper
rotation around the x3 axis. It is easy to see that the origin is an equilibrium point for any
values of parameters, and a Hopf bifurcation occurs from the origin when α crosses the critical
value α = αc = 0.

Thus, we can use the formulas and Maple program developed in [17] to compute the normal
form, which can then be used to determine small-amplitude limit cycles bifurcating from the
origin. It is obvious that the zero-order focus value v0 = α, and at the critical point: α = αc = 0,
v0 = 0. Then under the condition α = αc = 0, the Maple program is executed on the desktop
machine to obtain the focus values v1, v2, . . . . It should be noted that for the general system
(7.2), the computation of the higher-order normal form is very time consuming and memory
demanding. Moreover, even we can obtain higher-order normal forms by using the Maple
program, it is almost impossible to find the solutions of the multivariate polynomial system of
focus values. Thus, in order to simplify the computation, we make some simplifications. First,
we suppose b11 , 0 and c12 , 0. Then, we can use parameter scaling and state variable scaling
in (7.2) so that b11 = c12 = 1. In order to make the computation of focus values manageable,
we further set a13 = a23 = a33 = b13 = b23 = b12 = c11 = c22 = c23 = 0 and β = 1, resulting the
following simple 3-dimensional quadratic system,

ẋ1 = x2 + a11x2
1 + (2 + a12)x1x2 + a22x2

2,

ẋ2 = −x1 + x2
1 + 2a11x1x2 − x2

2 + b33x2
3,

ẋ3 = − x3 + x1x2 + c33x2
3 + c13x1x3.

(7.4)

This is perhaps the simplest 3-dimensional quadratic system since it has only one coupling
coefficient b33 between the first two equations and the third equation. When b33 = 0, the first
two equations are decoupled from the third equation, and the problem becomes finding the
limit cycles of the planar system, described by the first two equations of (7.4), and it is easy
to show that this planar system has three small limit cycles around the origin, as expected. In
fact, when b33 = 0, we can use the Maple program to find the first focus value v1, given by
v1 = − 1

8 a12(a11 + a22). Letting a12 = 0 yields v1 = 0 and then executing the Maple program
produces v2 = − 1

12a11(a11 + a22)(a11 + 5a22). Further, letting a11 = −5a22 results in v2 = 0 and
finally executing the Maple program yields

v3 = 25a3
22(1 − 3a2

22), v4 =
140
9

a3
22(1 − 3a2

22)(7 − 38a2
22), v5 = · · · ,

and all the vi’s contain the factor a22(1 − 3a2
22), clearly indicating that maximal three small-

amplitude limit cycles can be obtained around the origin when b33 = 0.
Now, suppose b33 , 0. We have the following main result.
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Theorem 7.2.1 Suppose the parameters, a11, a12, a22, b33, c33 and c13, in system (7.3) are
arbitrary non-zero constants. Then system (7.3) can have at least 7 small-amplitude limit
cycles around the origin.

In order to prove Theorem 7.2.1, we need the following lemma [18].

Lemma 7.2.2 Suppose the focus values obtained from a general dynamical system are
functions of k independent system parameters p1, p2, . . . , pk. Further, assume that at a
critical point, pc defined by (p1, p2, . . . , pk) = (p1c, p2c, . . . , pkc), the focus values satisfy

v j(pc) = 0, j = 0, 1, . . . , k − 1, vk(pc) , 0;

and
det

[∂(v0, v1, . . . , vk−1)
∂(p1, p2, . . . , pk)

]
pc
, 0.

Then, proper perturbations can be made to the parameters p1, p2, . . . , pk around the critical
point pc to generate k small-amplitude limit cycles in the vicinity of the Hopf critical point.

Proof By using the Maple program [17], we can obtain the first seven focus values in terms of
the system coefficients:

v1 = v1(a11, a12, a22, b33, c13, c33),
v2 = v2(a11, a12, a22, b33, c13, c33),

...
v7 = v7(a11, a12, a22, b33, c13, c33),

(7.5)

and via them we can estimate the number of small-amplitude limit cycles around the origin,
which are embedded in the center manifold (which is also obtained from the Maple program),
described by

x3 =
1
5

(
x2

1 + x1x2 − x2
2
)
−

1
5
(
2 a11 − c13 + 1

)
x3

1 −
1
5

(
3 a11 + 2 a12 − c13 + 2

)
x2

1x2

+
1
5

(
4 a11 − a12 − 2 a22 − c13 − 1

)
x1x2

2 −
1
5

(
a22 + 2)x3

2 −
1
5

(
c13 −

1
5

c33 + 2a11c13 − c2
13

)
x4

1

−
1
5

(
2c13 −

2
5

c33 + 3a11c13 + 2a12c13 − c2
13

)
x3

1x2 +
1
5

(
−

2
5

c33 − 2c13 − c13a22

)
x1x3

2

−
1
5

(
c13 +

1
5

c33 − 4a11c13 + a12c13 + 2a22c13 + c2
13

)
x2

1x2
2 +

1
25

c33x4
2 + · · ·

(7.6)

It is obvious to see from (7.6) that the center manifold near the origin is approximated by a
hyperbolic parabolid, as shown in Figure 7.1.

To obtain the maximal number of small-amplitude limit cycles bifurcating from the origin,
we solve the parameters a11, a12, a22, b33, c13, c33 from the six polynomial equations v1 = v2 =

· · · = v6 = 0. Alternatively, we may solve these six polynomial equations one by one, with one
parameter at each time. We start from the first focus value v1, which is the same as that for the
case b33 = 0, i.e., v1 = −a12(a11 + a22)/8. Letting

a22 = − a11 (7.7)
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Figure 7.1: The second-order approximation of the center manifold described by (7.6).

yields v1 = 0, and then executing the Maple program we have

v2 =
1

1200
b33(a12 + 3c13 + 18a11 + 10).

Setting
a12 = −(3c13 + 18a11 + 10) (7.8)

results in v2 = 0 and then executing the Maple program gives

v3 =
b33

272000
[
− 187b33 + (695c13 + 2070a11 − 790)c33 + (92290a2

11 + 74582a11 + 15384)c13

+ (3342a11 − 45)c2
13 − 666c3

13 + 228172a3
11 + 220428a2

11 + 57028a11 + 2020
]
.

Thus, we may solve for b33 from the equation v3 = 0 to obtain

b33 =
1

187
[
(695c13 + 2070a11 − 790)c33 + (92290a2

11 + 74582a11 + 15384)c13

+ (3342a11 − 45)c2
13 − 666c3

13 + 228172a3
11 + 220428a2

11 + 57028a11 + 2020
]
.

(7.9)

Now, under the conditions given in (7.7)-(7.9), we have v1 = v2 = v3 = 0, and further execute
the Maple program to obtain

v4 =
F0F1

1483804608000
, v6 =

F0F3

16134271099762131283968000000
,

v5 =
F0F2

16015652769093120000
, v7 =

F0F4

158315921739305937010807603200000000
,
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where
F0 = 5(414a11 + 139c13 − 158)c33 + (15384 + 74582a11 + 92290a2

11)c13

+ 3(1114a11 − 15)c2
13 − 666c3

13 + 4(505 + 14257a11 + 55107a2
11 + 57043a3

11),

F1 = 4
(
4078333c13 + 14139153a11 − 2787647

)
c2

33

+ 2
[
2
(
373041446a2

11 + 500749565a11 + 111353261
)
c13 −

(
98445579a11 + 52751465

)
c2

13

− 16677015c3
13 + 4

(
856767634a3

11 + 967186323a2
11 + 181154724a11 − 11713817

)]
c33

+ 29601792c5
13 + 4

(
5370668262a3

11 + 4204559671a2
11 + 34389389a11 − 252727446

)
c2

13

+ 9
(
86303536a11+25802705

)
c4

13 + 6
(
882002754a2

11+437785405a11+14608506
)
c3

13

+ 8
(
13079993487a4

11 + 24728477022a3
11 + 15158560637a2

11 + 3657980072a11

+ 287618390
)
c13 + 16

(
16499286495a5

11 + 37837627784a4
11 + 29685004857a3

11

+ 9784662107a2
11 + 1218699212a11 + 2203887

)
,

F2 = − 350064(144902698c13 + 366576733a11 − 142697703)c3
33

+ 4
[
132287548607492c3

13 +
(
1587431095048589a11 + 371135538912053

)
c2

13

+ 2
(
1985595066771294a2

11 + 332568076619189a11 − 167986412567563
)
c13

+ 4(832557288593889a3
11 + 343973807357514a2

11 − 129381390471427a11

− 22505970396248)
]
c2

33

− 4
[
213711424998672c5

13 + 9
(
311807824390159a11 + 148318218680889

)
c4

13

−
(
1180924979804906a2

11 + 5452054185589939a11 + 352322443563555
)
c3

13

− 4
(
42788477935364425a3

11 + 67363587215176597a2
11 + 24044781463740170a11

+ 2314226039107142
)
c2

13 − 4(27591776267013391a11 + 173646715268323199a4
11

+ 321001980070626737a3
11 + 162732256648660003a2

11 + 879991334108382)c13

− 8
(
116707360013076057a5

11 + 257051474918548297a4
11

+ 171010776019582988a3
11 + 42694054908035380a2

11

+ 2402049457670883a11 − 250745335036453
)]

c33

+ 630912865266000c7
13 + 9(2964712669290231a11 + 782392810580879)c6

13

+ 6
(
73541596962729056a2

11 + 38427258756511039a11 + 3606485585632344
)
c5

13

+ 12
(
322411353706968259a3

11 + 280026912237356567a2
11 + 58525009028373887a11

+ 366306838658389
)
c4

13 + 8
(
2731040674800736927a4

11 + 3810289896228085498a3
11

+ 1688659169110635940a2
11 + 239657009603682009a11 − 731762510421390

)
c3

13

+ 16
(
5442580446106842105a5

11 + 11332299759177700061a4
11

+ 8435369673472740199a3
11 + 2768383347832399342a2

11

+ 372489286490816132a11 + 11783278257257817
)
c2

13

+ 32
(
6397426172395771554a6

11 + 17484633288012047816a5
11

+ 17729148621051130479a4
11 + 8645141995434202821a3

11

+ 2101633085727469205a2
11 + 225196488860266879a11

+ 6078244989652798
)
c13 + 64

(
3335635549859104292a7

11
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+ 11004977896310477071a6
11 + 13758987325223239501a5

11

+ 8649165820899777993a4
11 + 2937263004217804984a3

11

+ 518248503098891291a2
11 + 38482349044241143a11 + 320434896140845

)
,

F3 = 15197445120
(
1295313405565c13 + 4841990370990a11 − 974241807866

)
c4

33

− 1664
[
24752566511047772643c3

13 + 2
(
81606533150962260337a11

+ 206630065005504758855
)
c2

13 + 4
(
23784869920766047140a2

11

+ 456247687686341245921a11 − 32067190881129442123
)
c13

− 4
(
718015199110540951179a3

11 + 164083276954411890501a2
11

+ 497187713917569014161a11 + 116882338879114660895
)]

c3
33

+ 4
[
135516201497462967471977c5

13

+
(
3652599114285837536632677a11 + 1372118809839451388158717

)
c4

13

+ 8
(
4521694474249202984154340a2

11 + 3422357624141089273121095a11

+ 551772823682912535119127
)
c3

13 + 8
(
23001454127003267087701629a3

11

+ 22632657768411737154856217a2
11 + 4175449582577115578189071a11

− 144592603169129179152061
)
c2

13 + 16
(
25197277762204780005004103a4

11

+ 23591855696103476578045814a3
11 − 1339991489632296089393848a2

11

− 3368285960479851576060286a11 − 423709293782930794542471
)
c13

+ 16
(
23833261557825482972806401a5

11 + 23605088260502022606031673a4
11

− 1929258359888813266977358a3
11 − 3852803639369438088651366a2

11

− 273354786339018249164467a11 + 72135305352486339433005
)]

c2
33

−
[
708959378346946555769814c7

13 + 6
(
1664554809177510639166637a11

+ 1468549573192142753107527
)
c6

13 − 4
(
10142472888611771695397006a2

11

− 8093351702071968321732515a11 − 8797678108504067116393611
)
c5

13

− 8
(
270318138190309436211164404a3

11 + 374866914730687250030694433a2
11

+ 94857726635504393832071718a11 + 1611714501224953912649461
)
c4

13

− 32
(
727020887416660748411417149a4

11 + 1495840229622491117284675129a3
11

+ 842849659975318266816558199a2
11 + 175620020144274765161496311a11

+ 11157942239036269527525724
)
c3

13 − 32
(
3815035076500245513656904529a5

11

+ 9507605546464302764041140761a4
11 + 7368167729908292445287343410a3

11

+ 2417690260166455114448121506a2
11 + 327924924088386289070880621a11

+ 12481403710220223481605845
)
c2

13 − 64
(
4623365964881386828206541934a6

11

+ 12873274210089905549397428201a5
11 + 11847721961389382224450162225a4

11

+ 4848749975836708041755541250a3
11 + 879679758844271910169231560a2

11

+ 47359781290947171771497733a11 − 1993655132477530259763543
)
c13

− 128
(
2182688317704910216101782722a7

11 + 6650367630130223948338676851a6
11

+ 7055523579922110839931549040a5
11 + 3531962564650152984423497445a4

11



7.2. Main result 133

+ 876158343574723264099830730a3
11 + 91867822030408479430764349a2

11

+ 93074881175678687047012a11 − 404530676080894666989045
)]

c33

+ 523779830429499928376064c9
13

+ 9
(
4711878525758830961908464a11+999345350877766901978141

)
c8

13

+ 6
(
225876452729015835356342234a2

11 + 110846523885056357949977533a11

+ 10253305691653840091798898
)
c7

13

+ 12
(
1833345264819475165936627778a3

11 + 1565971064556600537110067163a2
11

+ 366397091618786153387840171a11 + 16051590214691783803149352
)
c6

13

+ 8
(
26086580583552734554940584951a4

11 + 33532903248572391712065771052a3
11

+ 14238018150683934981297945709a2
11 + 2074540224393451069061108526a11

+ 27861686142403760251746546
)
c5

13

+ 16
(
78548659777326308787336671659a5

11 + 141138363502453983994692297539a4
11

+ 92813909971704479331226525567a3
11 + 26717320570403893049039935251a2

11

+ 2890106674925225565999192218a11 + 14630542556546467684436742
)
c4

13

+ 32
(
158056462633238785803151049168a6

11 + 379261013704349272339224196655a5
11

+ 351155334849581032033712611590a4
11 + 159226588640254021019516857610a3

11

+ 36006057259210021488914610840a2
11 + 3443427334420574893921441871a11

+ 53348711666072696845705930
)
c3

13

+ 64
(
213934489231668821736726105776a7

11 + 653860206996441311651858729543a6
11

+ 787930912766941335180880197069a5
11 + 489789605387889313586662661710a4

11

+ 168372810485883167250927940970a3
11 + 31052460989227661080767094867a2

11

+ 2595121581266887210220232361a11 + 47677864066744036593911688
)
c2

13

+ 128
(
175795180541454878327994323627a8

11 + 646069392177506577189809704414a7
11

+ 943974632974823926628515523427a6
11 + 730811516906412079242497471216a5

11

+ 328721576130872118296329634775a4
11 + 86861820610588450810846403654a3

11

+ 12669250522915877666530948173a2
11 + 828317972353063952969598924a11

+ 8430485593584154810200302
)
c13

+ 256
(
65489078114939885475729056623a9

11 + 276207783896081023026631595440a8
11

+ 467148550007619228316050778351a7
11 + 427474964552370509561272719651a6

11

+ 235261518648158313822481113745a5
11 + 80473535394907792966346350991a4

11

+ 16803980816127953612017002885a3
11 + 1967923782290897527897320937a2

11

+ 100256044517078058643496652a11 + 235738171481448869001845
)
.

Now in order to obtain limit cycles bifurcating from the origin (the Hopf critical point)
as many as possible, we need to find critical parameter values of a11, c13 and c33 such that
v4 = v5 = v6 = 0 (i.e. F1 = F2 = F3 = 0), but v7 , 0. In this case, we can conclude that
there exist at most 7 small-amplitude limit cycles bifurcating from the origin. Then, proper
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perturbations may be applied to the four parameters to generate 7 small-amplitude limit cycles,
or we can apply Lemma 7.2.2 to prove the existence of 7 limit cycles. Since we set α = 0
to get v0 = 0, a22 = − a11 to get v1 = 0, a12 = −(18a11 + 3c13 + c23 + 10) to obtain v2 = 0,
and b33 = 1

187 [(2070a11 + 695c13 − 95c23 − 790)c33 + · · · ] (given in (7.9)) to obtain v3 = 0,
perturbations on b33, a12, a22 and α can be made one by one. Thus, we only need to consider
v4 = v5 = v6 = 0, i.e. F1 = F2 = F3 = 0, but v7 , 0, at some critical values a11c, c13c, c33c, and
further

det
[ ∂(v4, v5, v6)
∂(a11, c13, c33)

]
(a11c,c13c,c33c)

, 0.

To find the critical values a11c, c13c, c33c such that F1 = F2 = F3 = 0, we apply the Regular
Chain method [12]. We use (7.7)-(7.9) to simplify v4 to v6 to obtain polynomial equations
F1 = F2 = F3 = 0. Then execute the Maple program (see [12]) on the same desktop machine
to obtain the following results by using the modular regular chains method: the formulas of c13

and c33 expressed in terms of a11,

c13 = −
c13N(a11)

12 c13D(a11)
, c33 = −

c33N(a11)
N c33D(a11)

, (7.10)

where N is an integer, and c13N(a11), c13D(a11), c33N(a11) and c33D(a11) are 156th-degree
polynomials of a11; and a resultant equation, given by a 157th-degree polynomial g(a11) = 0,
which in turn gives a total of 19 real solutions. We solve a11 from this polynomial equation up
to 1000 digit points, with the results listed below (only show the first 50 digits).

a1
11 = − 4.11276888495705654624708808345078873211396249503460 · · · ,

a2
11 = − 1.82010942866258004577090611868371605998764973794356 · · · ,

a3
11 = − 0.76440311387403968219929953842967589771581114232615 · · · ,

a4
11 = − 0.75410520646463776589886974547597729068673851680993 · · · ,

a5
11 = − 0.46061934131364857055550286413352190906564989377128 · · · ,

a6
11 = − 0.44754772090870942476035011043695763950789559075632 · · · ,

a7
11 = − 0.38187937918219584496343813228246930627419322177798 · · · ,

a8
11 = − 0.31428920280160160469525336903289260600817103833470 · · · ,

a9
11 = − 0.28314729830779529882213773988148784486261517488513 · · · ,

a10
11 = − 0.13330838515576413592119147947119785761283975388044 · · · ,

a11
11 = − 0.02861803346154083192185648912224434468926816974799 · · · ,

a12
11 = − 0.01129618883353299940696424356394530075959246381228 · · · ,

a13
11 = 0.00003261862103285667320075873891685629773802493465 · · · ,

a14
11 = 0.01557965760324882734099653888501403592680477722409 · · · ,

a15
11 = 0.02629936725348609926921580980768242470782868685459 · · · ,

a16
11 = 0.04674224356461493450786328894470060987403146438352 · · · ,

a17
11 = 0.56032275926806357270588556057116717906044592783859 · · · ,

a18
11 = 5.38438918903427504185594454194797573037902064705802 · · · ,

a19
11 = 26.01492173704774508843595793963653547777807547320274 · · · .
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We take a11 = a7
11, which yields

c13 = −0.41261102816606685288914232443213702004650348278544 · · · ,

c33 = −0.33160576682318949987643286719692488957369961896560 · · · ,

and use (7.7)-(7.9) to obtain a22 = −a7
11 and

a12 = −1.88833809022227423199068664561914142692501155964000 · · · ,

b33 = −0.14679339349579488722266912282493720766001218127019 · · · .

For these critical parameter values, the focus values become

v1 = 0.0, v2 = −0.1 × 10−1000, v3 = −0.6847 × 10−1000,

v4 = −0.13219256310383786756022068742997222535380219931004 · · · × 10−942,

v5 = −0.31762418358601926533300695679923261099352343009257 · · · × 10−942,

v6 = −0.46950935768785676094927172098325782856331763210221 · · · × 10−942,

v7 = −0.83776339081446765262795751469808290872469085804425 · · · × 10−5.

The errors are due to numerical computation in the final step of solving the 157th-degree
polynomial of a11. In fact, we can perform the interval computation in Maple to identity the
interval for each of parameters up to any accuracy, which proves that there exist solutions such
that v1 = v2 = · · · = v6 = 0, but v7 , 0. Therefore, we can conclude that there exist at most 7
small-amplitude limit cycles around the origin. Moreover, a direct calculation shows that

det
[ ∂(v4, v5, v6)
∂(a11, c13, c33)

]
(a11c,c13c,c33c)

≈ −0.00000000333723796304 , 0,

implying that there exist 7 small-amplitude limit cycles around the origin.

7.3 Conclusion
In this chapter, we have shown that a simple 3-dimensional quadratic vector field can exhibit 7
small-amplitude limit cycles in the vicinity of a Hopf critical point. The method of normal
forms is applied to compute the focus values associated with Hopf bifurcation, while the
modular regular chains method is used to solve higher-degree multivariate polynomial
equations. This result may be further improved in future by developing more powerful
computational tools.
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Chapter 8

Conclusion and future work

8.1 Conclusion

In this thesis, bifurcation of limit cycles is investigated for smooth and non-smooth systems
by computing Melnikov functions or focus values. In particular, we obtain new results about
the lower bounds on the maximal number of small-amplitude limit cycles bifurcating from a
center in planar cubic polynomial vector fields and in switching Bautin systems. A new
algorithm for computing Lyapunov constants has been developed for switching systems.
Moreover, two efficient and recursive formulae are derived for computing the normal forms
and center manifolds of high-dimensional systems associated with Hopf and semisimple
singularities, respectively.

In Chapter 2, it is showed that the cubic system in [1] can not have 11 small-amplitude
limit cycles near the origin, and proved that there are actually only 9 limit cycles when
(first-order) Melnikov function or the second-order Melnikov function is used. Further, a
quadratic Hamiltonian system is perturbed by cubic polynomial functions for the study of
bifurcation of limit cycles by using higher-order Melnikov functions and focus values
computation. Decomposition of one-forms is introduced to express higher-order Melnikov
functions and simplify the computation of focus values. It is showed that the cyclicityies of
the system for the first five Melnikov functions Mk are given by [ 4k

3 ] + 4, k = 1, . . . , 5, and thus
10 small-amplitude limit cycles are obtained around the origin for k = 5. This demonstrates
an efficient approach of using higher-order Melnikov functions combined with the method of
focus value computation to obtain more limit cycles.

Two existing systems taken from [2, 3] are re-investigated in Chapter 3, by applying the
method of focus value computation. We have not only confirmed the existence of 11
small-amplitude limit cycles around a center in these two systems, but also obtained 12
small-amplitude limit cycles from one of the two systems by using a free parameter from the
unperturbed system. This is the best result so far obtained from cubic planar vector fields
around a singular point.

Chapter 4 is devoted to the study of Hopf bifurcation in switching systems. A new method
with an efficient algorithm has been developed for computing Lyapunov constants, and then
applied to study bifurcation of limit cycles in a switching Bautin system. A complete
classification on the conditions of a singular point being a center in this Bautin system is

138



8.2. Future work 139

obtained. Further, an example of switching systems is constructed to show the existence of 10
small-amplitude limit cycles bifurcating from a center. This is a new lower bound of the
maximal number of small-amplitude limit cycles near a singular point in quadratic switching
systems.

In Chapter 5, explicit recursive formulae are derived for computing the normal forms and
center manifolds of general n-dimensional dynamical systems associated with Hopf
bifurcation. A Maple program is developed based on these formulae, which is very convenient
in real applications. Two examples, including a 3-dimensional competitive Lotka-Volterra
system, are present to show that the method and the Maple program are computationally
efficient.

In Chapter 6, the method and formulae developed in Chapter 5 for Hopf bifurcation are
generalized to general n-dimensional systems, associated with semisimple singularities. A
Maple program is also developed on the basis of the formulae, which is very convenient for
practical applicants who may not be familiar with normal form theory. Three examples are
present to show the applicability of the new method and new program, and in particular, one
of the examples demonstrates the advantage of the new method over the existing methods and
programs.

In Chapter 7, we have applied the normal form and the Maple program developed in
Chapter 5 to compute the focus values for a simple 3-dimensional quadratic vector field
associated with a Hopf singularity. It is shown that 7 small-amplitude limit cycles can exist in
the vicinity of a Hopf critical point. The modular regular chains method is applied to solve
higher-degree multivariate polynomial equations. This result may be further improved in
future by developing more powerful computational tools.

8.2 Future work
For future works, there exist many interesting but also challenging problems that remain open
and are worth exploring.

In Chapter 2, a general quadratic Hamiltonian system is perturbed by cubic polynomial
functions, to obtain the maximal number of small-amplitude limit cycles bifurcating from the
origin for the first five Melnikov functions by the method of computing focus values. Because
of the complexity of solving focus values, it has not been possible to get more than 10 limit
cycles. Thus, our first question is: can we find a way to overcome the difficulty and obtain more
limit cycles? We may prove the independency of Abelian integrals and then determine the
number of limit cycles. On the other hand, the limit cycles bifurcating from the origin should
be finite. Next question is: can we give an upper bound for the number of small-amplitude
limit cycles?

For switching systems, we have used approximation of the solutions to compute Lyapunov
constants. We may develop a new algorithm to compute the normal forms of switching systems,
and then apply the normal forms to calculate the Lyapunov constants, just like that for smooth
systems. This way, the computation may be more systematic and efficient. Note that in Chapter
4 we only obtain the center conditions for the Bautin system under the condition a6b6 = 0.
Future study will be focused on the case a6b6 , 0. Also note that the existence of 10 small-
amplitude limit cycles in a perturbed switching Bautin system is proved by using only first-
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order Lyapunov constants. It is interesting to investigate how many limit cycles which can be
obtained under cubic perturbations, by using higher-order Lyapunov constants.
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