58,194 research outputs found

    Semidefinite programming and eigenvalue bounds for the graph partition problem

    Full text link
    The graph partition problem is the problem of partitioning the vertex set of a graph into a fixed number of sets of given sizes such that the sum of weights of edges joining different sets is optimized. In this paper we simplify a known matrix-lifting semidefinite programming relaxation of the graph partition problem for several classes of graphs and also show how to aggregate additional triangle and independent set constraints for graphs with symmetry. We present an eigenvalue bound for the graph partition problem of a strongly regular graph, extending a similar result for the equipartition problem. We also derive a linear programming bound of the graph partition problem for certain Johnson and Kneser graphs. Using what we call the Laplacian algebra of a graph, we derive an eigenvalue bound for the graph partition problem that is the first known closed form bound that is applicable to any graph, thereby extending a well-known result in spectral graph theory. Finally, we strengthen a known semidefinite programming relaxation of a specific quadratic assignment problem and the above-mentioned matrix-lifting semidefinite programming relaxation by adding two constraints that correspond to assigning two vertices of the graph to different parts of the partition. This strengthening performs well on highly symmetric graphs when other relaxations provide weak or trivial bounds

    New bounds for the max-kk-cut and chromatic number of a graph

    Full text link
    We consider several semidefinite programming relaxations for the max-kk-cut problem, with increasing complexity. The optimal solution of the weakest presented semidefinite programming relaxation has a closed form expression that includes the largest Laplacian eigenvalue of the graph under consideration. This is the first known eigenvalue bound for the max-kk-cut when k>2k>2 that is applicable to any graph. This bound is exploited to derive a new eigenvalue bound on the chromatic number of a graph. For regular graphs, the new bound on the chromatic number is the same as the well-known Hoffman bound; however, the two bounds are incomparable in general. We prove that the eigenvalue bound for the max-kk-cut is tight for several classes of graphs. We investigate the presented bounds for specific classes of graphs, such as walk-regular graphs, strongly regular graphs, and graphs from the Hamming association scheme

    Learning curves for Gaussian process regression: Approximations and bounds

    Full text link
    We consider the problem of calculating learning curves (i.e., average generalization performance) of Gaussian processes used for regression. On the basis of a simple expression for the generalization error, in terms of the eigenvalue decomposition of the covariance function, we derive a number of approximation schemes. We identify where these become exact, and compare with existing bounds on learning curves; the new approximations, which can be used for any input space dimension, generally get substantially closer to the truth. We also study possible improvements to our approximations. Finally, we use a simple exactly solvable learning scenario to show that there are limits of principle on the quality of approximations and bounds expressible solely in terms of the eigenvalue spectrum of the covariance function.Comment: 25 pages, 10 figure

    Correlation bounds for fields and matroids

    Full text link
    Let GG be a finite connected graph, and let TT be a spanning tree of GG chosen uniformly at random. The work of Kirchhoff on electrical networks can be used to show that the events e1∈Te_1 \in T and e2∈Te_2 \in T are negatively correlated for any distinct edges e1e_1 and e2e_2. What can be said for such events when the underlying matroid is not necessarily graphic? We use Hodge theory for matroids to bound the correlation between the events e∈Be \in B, where BB is a randomly chosen basis of a matroid. As an application, we prove Mason's conjecture that the number of kk-element independent sets of a matroid forms an ultra-log-concave sequence in kk.Comment: 16 pages. Supersedes arXiv:1804.0307

    Estimation with Norm Regularization

    Full text link
    Analysis of non-asymptotic estimation error and structured statistical recovery based on norm regularized regression, such as Lasso, needs to consider four aspects: the norm, the loss function, the design matrix, and the noise model. This paper presents generalizations of such estimation error analysis on all four aspects compared to the existing literature. We characterize the restricted error set where the estimation error vector lies, establish relations between error sets for the constrained and regularized problems, and present an estimation error bound applicable to any norm. Precise characterizations of the bound is presented for isotropic as well as anisotropic subGaussian design matrices, subGaussian noise models, and convex loss functions, including least squares and generalized linear models. Generic chaining and associated results play an important role in the analysis. A key result from the analysis is that the sample complexity of all such estimators depends on the Gaussian width of a spherical cap corresponding to the restricted error set. Further, once the number of samples nn crosses the required sample complexity, the estimation error decreases as cn\frac{c}{\sqrt{n}}, where cc depends on the Gaussian width of the unit norm ball.Comment: Fixed technical issues. Generalized some result

    Eigenvalue interlacing and weight parameters of graphs

    Get PDF
    Eigenvalue interlacing is a versatile technique for deriving results in algebraic combinatorics. In particular, it has been successfully used for proving a number of results about the relation between the (adjacency matrix or Laplacian) spectrum of a graph and some of its properties. For instance, some characterizations of regular partitions, and bounds for some parameters, such as the independence and chromatic numbers, the diameter, the bandwidth, etc., have been obtained. For each parameter of a graph involving the cardinality of some vertex sets, we can define its corresponding weight parameter by giving some "weights" (that is, the entries of the positive eigenvector) to the vertices and replacing cardinalities by square norms. The key point is that such weights "regularize" the graph, and hence allow us to define a kind of regular partition, called "pseudo-regular," intended for general graphs. Here we show how to use interlacing for proving results about some weight parameters and pseudo-regular partitions of a graph. For instance, generalizing a well-known result of Lov\'asz, it is shown that the weight Shannon capacity Θ∗\Theta^* of a connected graph \G, with nn vertices and (adjacency matrix) eigenvalues λ1>λ2≥.˙.≥λn\lambda_1>\lambda_2\ge\...\ge \lambda_n, satisfies \Theta\le \Theta^* \le \frac{\|\vecnu\|^2}{1-\frac{\lambda_1}{\lambda_n}} where Θ\Theta is the (standard) Shannon capacity and \vecnu is the positive eigenvector normalized to have smallest entry 1. In the special case of regular graphs, the results obtained have some interesting corollaries, such as an upper bound for some of the multiplicities of the eigenvalues of a distance-regular graph. Finally, some results involving the Laplacian spectrum are derived. spectrum are derived
    • …
    corecore