47 research outputs found

    Quadratic Projection Based Feature Extraction with Its Application to Biometric Recognition

    Full text link
    This paper presents a novel quadratic projection based feature extraction framework, where a set of quadratic matrices is learned to distinguish each class from all other classes. We formulate quadratic matrix learning (QML) as a standard semidefinite programming (SDP) problem. However, the con- ventional interior-point SDP solvers do not scale well to the problem of QML for high-dimensional data. To solve the scalability of QML, we develop an efficient algorithm, termed DualQML, based on the Lagrange duality theory, to extract nonlinear features. To evaluate the feasibility and effectiveness of the proposed framework, we conduct extensive experiments on biometric recognition. Experimental results on three representative biometric recogni- tion tasks, including face, palmprint, and ear recognition, demonstrate the superiority of the DualQML-based feature extraction algorithm compared to the current state-of-the-art algorithm

    Model-Based Characterization of Mammographic Masses

    Full text link

    Feature regularization and learning for human activity recognition.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.Feature extraction is an essential component in the design of human activity recognition model. However, relying on extracted features alone for learning often makes the model a suboptimal model. Therefore, this research work seeks to address such potential problem by investigating feature regularization. Feature regularization is used for encapsulating discriminative patterns that are needed for better and efficient model learning. Firstly, a within-class subspace regularization approach is proposed for eigenfeatures extraction and regularization in human activity recognition. In this ap- proach, the within-class subspace is modelled using more eigenvalues from the reliable subspace to obtain a four-parameter modelling scheme. This model enables a better and true estimation of the eigenvalues that are distorted by the small sample size effect. This regularization is done in one piece, thereby avoiding undue complexity of modelling eigenspectrum differently. The whole eigenspace is used for performance evaluation because feature extraction and dimensionality reduction are done at a later stage of the evaluation process. Results show that the proposed approach has better discriminative capacity than several other subspace approaches for human activity recognition. Secondly, with the use of likelihood prior probability, a new regularization scheme that improves the loss function of deep convolutional neural network is proposed. The results obtained from this work demonstrate that a well regularized feature yields better class discrimination in human activity recognition. The major contribution of the thesis is the development of feature extraction strategies for determining discriminative patterns needed for efficient model learning

    A deterministic approach to regularized linear discriminant analysis

    Get PDF
    The regularized linear discriminant analysis (RLDA) technique is one of the popular methods for dimensionality reduction used for small sample size problems. In this technique, regularization parameter is conventionally computed using a cross-validation procedure. In this paper, we propose a deterministic way of computing the regularization parameter in RLDA for small sample size problem. The computational cost of the proposed deterministic RLDA is significantly less than the cross-validation based RLDA technique. The deterministic RLDA technique is also compared with other popular techniques on a number of datasets and favorable results are obtained

    Text Driven Recognition of Multiple Faces in Newspapers

    Get PDF
    Face recognition is still a hard task when performed on newspaper images, since they often show faces in non-frontal poses, prohibitive lighting conditions, and too poor quality in terms of resolution. In these cases, combining textual information derived from the page articles with visual information proves to be advantageous for improving the recognition performance. In this work, we extract characters’ names from articles and captions to restrict facial recognition to a limited set of candidates. To solve the difficulties derived from having multiple faces in the same image, we also propose a solution that enables a joint assignment of faces to characters’ names. Extensive tests in both ideal and real scenarios confirm the soundness of the proposed approach

    Linear discriminant analysis for the small sample size problem: an overview

    Get PDF
    Dimensionality reduction is an important aspect in the pattern classification literature, and linear discriminant analysis (LDA) is one of the most widely studied dimensionality reduction technique. The application of variants of LDA technique for solving small sample size (SSS) problem can be found in many research areas e.g. face recognition, bioinformatics, text recognition, etc. The improvement of the performance of variants of LDA technique has great potential in various fields of research. In this paper, we present an overview of these methods. We covered the type, characteristics and taxonomy of these methods which can overcome SSS problem. We have also highlighted some important datasets and software/packages

    The effect of position sources on estimated eigenvalues in intensity modeled data

    Get PDF
    In biometrics, often models are used in which the data distributions are approximated with normal distributions. In particular, the eigenface method models facial data as a mixture of fixed-position intensity signals with a normal distribution. The model parameters, a mean value and a covariance matrix, need to be estimated from a training set. Scree plots showing the eigenvalues of the estimated covariance matrices have two very typical characteristics when facial data is used: firstly, most of the curve can be approximated by a straight line on a double logarithmic plot, and secondly, if the number of samples used for the estimation is smaller than the dimensionality of these samples, using more samples for the estimation results in more intensity sources being estimated and a larger part of the scree plot curve is accurately modeled by a straight line.\ud One explanation for this behaviour is that the fixed-position intensity model is an inaccurate model of facial data. This is further supported by previous experiments in which synthetic data with the same second order statistics as facial data gives a much higher performance of biometric systems. We hypothesize that some of the sources in face data are better modeled as position sources, and therefore the fixed-position intensity sources model should be extended with position sources. Examples of features in the face which might change position between either images of different people or images of the same person are the eyes, the pupils within the eyes and the corners of the mouth.\ud We show experimentally that when data containing a limit number of position sources is used in a system based on the fixed-position intensity sources model, the resulting scree plots have similar characteristics as the scree plots of facial data, thus supporting our claim that facial data at least contains sources inaccurately modeled by the fixed position intensity sources model, and position sources might provide a better model for these sources.\u
    corecore