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Abstract Dimensionality reduction is an important

aspect in the pattern classification literature, and linear

discriminant analysis (LDA) is one of the most widely

studied dimensionality reduction technique. The applica-

tion of variants of LDA technique for solving small sample

size (SSS) problem can be found in many research areas

e.g. face recognition, bioinformatics, text recognition, etc.

The improvement of the performance of variants of LDA

technique has great potential in various fields of research.

In this paper, we present an overview of these methods. We

covered the type, characteristics and taxonomy of these

methods which can overcome SSS problem. We have also

highlighted some important datasets and software/

packages.

Keywords Linear discriminant analysis (LDA) � Small

sample size problem � Variants of LDA � Types � Datasets �
Packages

1 Introduction

In a pattern classification (or recognition) system, an object

(or pattern) which is characterized in terms of a feature

vector is assigned a class label from a finite number of

predefined classes. For this, the pattern classifier is trained

using a set of training vectors (called the training dataset)

and its performance is evaluated by classifying the feature

vectors from the test dataset (which is normally different

from the training dataset). In many pattern classification

problems, the dimensionality of the feature vector is very

large. It is therefore imperative to reduce the dimension-

ality of the feature space for improving the robustness (or

generalization capability) and computational complexity of

the pattern classifier. Different methods used for dimen-

sionality reduction can be grouped into two categories:

feature selection methods and feature extraction methods.

Feature selection methods retain only few useful features

and discards less important (or low ranked) features. Fea-

ture extraction methods reduce the dimensionality by

constructing a few features from the large number of ori-

ginal features through their linear (or non-linear) combi-

nation. There are two popular feature extraction techniques

reported in the literature for reducing the dimensionality of

the feature space. These are principal component analysis

(PCA) and linear discriminant analysis (LDA). PCA is an

unsupervised technique, while LDA is a supervised tech-

nique. In general, LDA outperforms PCA in terms of

classification performance.

The LDA technique finds an orientation W that trans-

forms high dimensional feature vectors belonging to dif-

ferent classes to a lower dimensional feature space such

that the projected feature vectors of a class on this lower

dimensional space are well separated from the feature

vectors of other classes. If the dimensionality reduction is

from d-dimensional (Rd) space to h-dimensional (Rh)

space (where h\ d), then the size of the orientation matrix

W is R
d�h; i.e., it has h column vectors. The orientation

matrix W is obtained by maximizing the Fisher’s criterion

function; in other words by the eigenvalue decomposition

(EVD) of S�1
W SB, where SW 2 R

d�d is within-class scatter
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matrix and SB 2 R
d�d is between-class scatter matrix. For a

c-class problem, the value of h will be min(c - 1, d). If the

dimensionality d is very large compared to the number of

training vectors n, then SW becomes singular and the

evaluation of eigenvalues and eigenvectors of S�1
W SB

becomes impossible. This drawback is considered to be the

main problem of LDA and is commonly known as the

small sample size (SSS) problem [15].

Over last several years, the discriminant analysis research

is centered on developing algorithms that can solve SSS

problem. In this overview, we focus on the LDA based

techniques that can solve SSS problems. For brevity,we refer

these techniques as LDA-SSS techniques. We provide tax-

onomy, characteristics and usage of these LDA-SSS tech-

niques. The objective is to make the readers aware of the

benefits and importance of these methods in the pattern

classification applications. In addition, we have also high-

lighted some existing software/packages or programs useful

for the LDA-SSS problem and mentioned about some of the

commonly used datasets. Since these packages are not

available from one place, we have developed Matlab func-

tions for various LDA-SSS methods and it can be down-

loaded from our website (https://maxwell.ict.griffith.edu.au/

spl/ or http://www.staff.usp.ac.fj/*sharma_al/index.htm).

2 Linear discriminant analysis

As mentioned earlier, the LDA technique finds an orien-

tation W that reduces high dimensional feature vectors

belonging to different classes to a lower dimensional fea-

ture space such that the projected feature vectors of a class

on this lower dimensional space are well separated from

the feature vectors of other classes. This technique is

illustrated in Fig. 1, where two-dimensional feature vectors

are reduced to one-dimensional feature vector. The feature

vectors belong to three different classes namely C1, C2 and

C3. An orientation is to be found where the projected

feature vectors (on a line) of a class are to be maximally

separated from the feature vectors of other classes. It can

be observed that orientation Ŵ does not separate projected

feature vectors quite well. However, rotating the line fur-

ther to orientation W and projecting two-dimensional fea-

ture vectors on this orientation separate the projected

feature vectors of a class with other classes. Thus, the

orientation W is a better selection than the orientation Ŵ.

The value of W can be obtained by maximizing the Fish-

er’s criterion function J(W). This criterion function

depends on three factors: orientation W, within-class

scatter matrix (SW) and between-class scatter matrix (SB).

If the dimensionality reduction is from d-dimensional

space to h-dimensional space, then the size of orientation

matrix W is d 9 h, and W has h B min (c -1, d) (where

c is the number of classes) column vectors known as the

basis vectors.

To define LDA explicitly, let us consider a multi-class

pattern classification problem with c classes. Let

X = {x1, x2, …, xn} denotes n training samples (or feature

vectors) in a d-dimensional space having class labels

X = {x1, x2, …, xn}, where x 2 f1; 2; . . .; cg and c is

the number of classes. The set X can be subdivided into c

subsets X1, X2,…, Xc where Xj belongs to class j and

consists of nj number of samples such that:

n ¼
Xc

j¼1

nj

and Xj � X and X1 [ X2 [ . . . [ Xc ¼ X:

If lj is the centroid of Xj and l is the centroid of X, then

the total scatter matrix ST 2 R
d�d, within-class scatter

matrix SW 2 R
d�d and between-class scatter matrix SB 2

R
d�d are defined as [43, 46]

ST ¼
X

x2X
x� lð Þ x� lð ÞT;

SW ¼
Xc

j¼1

X

x2Xj

x� lj
� �

x� lj
� �T

and SB ¼
Xc

j¼1

nj lj � l
� �

lj � l
� �T

:

where ST = SB ? SW. The Fisher’s criterion as a function

of W can be given as

J Wð Þ¼ WTSBW
�� ��=jWTSWWj

where j � j is the determinant. The orientation matrix W is

the solution of eigenvalue problem

Fig. 1 An illustration of LDA technique
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S�1
W SBwi ¼ kiwi

where wi (for i = 1…h) are the column vectors of W that

correspond to the largest eigenvalues (ki). There are several
other criterion function also used which provide equivalent

results [15].

In the conventional LDA technique, SW needs to be non-

singular. However, in the SSS case, this scatter matrix

becomes singular. To overcome this problem, various

LDA-SSS methods have been proposed in the literature.

The next section discusses variants of LDA technique.

3 Variants of LDA technique (LDA-SSS) for solving

SSS problem

In LDA-SSS, there are four informative spaces namely,

null space of SW (SnullW ), range space of SW (SrangeW ), range

space of SB (SrangeB ) and null space of SB (SnullB ). The

computations of these spaces are very expensive and dif-

ferent methods use different strategies to tackle the com-

putational problem. A popular way of reducing the

computational complexity is by doing a preprocessing step.

The preprocessing step is described as follows. It is known

that the null space of ST does not contain any discriminant

information [21]. Therefore, the dimensionality can be

reduced from d-dimensional space to rt-dimensional space

(where rt is the rank of ST) by applying PCA as a pre-

processing step [15, 44]. The range space of ST matrix,

U1 2 R
d�rt , is used as a transformation matrix. In the

reduced dimensional space the scatter matrices is given by:

Sw ¼ UT
1SWU1 and Sb ¼ UT

1SBU1. After this procedure

Sw 2 R
rt�rt and Sb 2 R

rt�rt are reduced dimensional

within-class scatter matrix and reduced dimensional

between-class scatter matrix, respectively.

These four informative spaces are illustrated in Fig. 2

after carrying out the preprocessing step1; i.e., the data is

first transformed to the range space of ST. Let the trans-

formed spaces are depicted by Snullw , Srangew , Snullb and Srangeb .

In Fig. 2, the symbols rw, rb and rt are the rank of matrices

SW, SB and ST, respectively. If the samples in training set

are linearly independent then rt = rw ? rb and their values

will be rt = n - 1, rw = n - c and rb = c - 1. Further,

the dimensionality of spaces Snullw and Srangeb will be iden-

tical. Similarly, the dimensionality of spaces Srangew and

Snullb will be identical.

These four individual spaces contain significant discrimi-

nant information useful for classification. This is illustrated in

Fig. 32 where the classification performance obtained by the

individual spaces is shown. Among these spaces, Snullb is the

least effective space, but it still contains some discriminant

information. Different combinations of these spaces are used

in the literature for finding the orientation matrix W. The

following four combinations have been used most in the lit-

erature: (1) SrangeW and SrangeB , (2) SnullW and SrangeB , (3)

SnullW ; SrangeW and SrangeB , and (4) SnullW ; SrangeW ; SrangeB and SnullB .

Based on these distinct combinations, we categorize the fol-

lowing LDA-SSS techniques into one of the four categories:

null LDA (NLDA) [9], PCA ? NLDA [21], orthogonal LDA

(OLDA) [62], uncorrelated LDA (ULDA) [63], QR-NLDA

Fig. 2 An illustration of all the four spaces of LDA when SSS

problem exist

Fig. 3 Average classification accuracy over k-fold cross-validation

(k = 5) using spaces Snullw ;Srangew ; Srangeb andSnullb

1 These four spaces can also be represented in Fig. 2 without

performing a preprocessing step. In that case, rt in the figure will be

replaced by the dimensionality d and the size of the spaces will

change accordingly.

2 For this experiment, first we project the original feature vectors

onto the range space of ST matrix as a pre-processing step. Then all

the spaces are utilized individually to do dimensionality reduction and

to classify a test feature vector, the nearest neighbor classifier is used.

To obtain performance in terms of average classification accuracy, k-

fold cross-validation process has been applied, where k = 5. The

details of the datasets have been given later in Sect. 10.1.
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[10], fast NLDA (FNLDA) [49], discriminant common vector

LDA (CLDA) [8], direct LDA (DLDA) [67], kernel DLDA

(KDLDA) [28], parameterized DLDA (PDLDA) [56],

improved DLDA (IDLDA) [36], pseudoinverse LDA (PIL-

DA) [59], fast PILDA (FPILDA) [27], improved PILDA (I-

PILDA) [34],LDA/QR[64], approximateLDA(ALDA) [35],

PCA ? LDA [5, 57], regularized LDA (RLDA) [14, 29, 30,

68–70], eigenfeature regularization (EFR) [22], extrapolation

of scatter matrices (ELDA) [47], maximum uncertainty LDA

(MLDA) [58], penalized LDA (PLDA) [20], two-stage LDA

(TSLDA) [50], maximum margin criterion LDA (MMC-

LDA) [26] and improved RLDA (IRLDA) [54].

The classification accuracies of several of these methods

have been computed on three datasets (for description of

datasets please refer to Section Datasets) and twofold

cross-validation results are shown in Table 1 and their

average classification performance over 3 datasets is shown

in Fig. 4. The nearest neighbor classifier has been used for

classification purpose.

Table 2 shows the categorization (or taxonomy) of these

LDA-SSS methods. It should be noted that different LDA-

SSS techniques use different combinations of spaces and

the performance of a given LDA-SSS technique depends

on the particular combination it uses. In addition, it

depends in what manner these spaces are combined. Four

categories are depicted (types 1–4). Most of the techniques

fall under the first three categories. The fourth category

(type-4) has not been fully explored in the literature.

Figure 5 depicts average classification performance of all

types over 3 face recognition datasets. Further character-

ization of these categories is discussed in the following

subsections.

Table 1 Classification accuracies (in percentage) of several LDA

based techniques

Techniques ORL AR FERET Average

DLDA 89.5 80.8 92.9 87.7

OLDA 91.5 80.8 97.1 89.8

PCA ? LDA 86.0 83.4 95.7 88.4

RLDA 91.5 75.4 97.3 88.1

MLDA 92.0 76.2 97.8 88.7

EFR 92.3 81.8 97.7 90.6

TSLDA 92.3 87.7 97.7 92.6

PILDA 91.0 82.1 96.1 89.7

FPILDA 91.0 82.1 96.1 89.7

NLDA 91.5 80.8 97.1 89.8

ULDA 88.3 89.6 97.1 91.7

QR-NLDA 91.5 80.8 97.1 89.8

FNLDA 91.5 80.8 97.1 89.8

CLDA 91.5 80.8 97.1 89.8

IPILDA 87.5 87.9 97.1 90.8

ELDA 90.8 87.0 97.1 91.6

ALDA 91.3 72.1 96.7 86.7

IDLDA 91.5 72.7 96.9 87

IRLDA 92.0 81.9 97.7 90.5

Fig. 4 Average classification accuracies (in %) of several LDA based

techniques over three datasets

Table 2 Taxonomy for LDA based algorithms used for solving SSS

problem

TYPE-1

S
range
W þ S

range
B

TYPE-2

SnullW þ S
range
B

TYPE-3

SnullW þ S
range
W þ S

range
B

TYPE-4 all

spaces

DLDA NLDA RLDA TSLDA

KDLDA PCA ? NLDA ALDA

PDLDA OLDA EFR

PILDA ULDA ELDA

FPILDA QR-NLDA MLDA

LDA/QR FNLDA IDLDA

PCA ? LDA CLDA PLDA

MMC-LDA IPILDA IRLDA

Fig. 5 Average classification accuracy of best three methods of a

particular type over three face recognition datasets (ORL, AR and

FERET). (For Type 4 only 1 method has been selected). It can be

observed that as the type increases the average performance improves.

However, the improvement is based on how effectively the spaces are

utilized in the computation of the orientation matrix
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3.1 Type-1 based techniques

LDA-SSS techniques of type-1 category employ Srangew and

Srangeb spaces to compute the orientation matrix W and

therefore discard Snullw and Snullb . This could, however, affect

the classification performance adversely as the discarded

spaces have significant discrimination information. Some

of these methods compute W in two stages (e.g. DLDA)

and some in one stage (e.g. PILDA). In general, type-1

methods are economical in computing the orientation

matrix. However, their performances are not as good as

that of other types of methods.

3.2 Type-2 based techniques

Techniques in this category utilize Snullw and Srangeb spaces

and discard the other two spaces. It has seen empirically (in

Fig. 3) that for most of the datasets, Snullw contains more

discriminant information than other spaces for classifica-

tion performance. Therefore, employing Snullw in a dis-

criminant technique would enable to compute better

orientation matrix W compared to Type-1 based tech-

niques. However, since these techniques discard the other

two spaces, its classification performance is suboptimal.

The theory of many of these techniques are different, but

they produce almost similar performance in terms of

classification accuracy. The computational complexity of

some of the type-2 methods is high. Nonetheless, they

show encouraging classification performances.

3.3 Type-3 based techniques

To compute the orientation matrix W, the techniques in

this category utilize the three spaces; i.e., Snullw , Srangew and

Srangeb . All the three spaces contain significant discrimina-

tion information and since Type-3 techniques employ more

spaces than the previous two categories (Type-1 and Type-

2), intuitively it would give a better classification perfor-

mance. However, different strategies of combining these

three spaces would result in different level of generaliza-

tion capability. These methods require higher computa-

tional complexity. But produce encouraging performance if

all the three spaces are effectively utilized.

3.4 Type-4 based techniques

It has been seen (in Fig. 3) that though Snullb is the least

effective space, it still contains some discrimination

information useful for classification. If Snullb can also be

used appropriately with the other spaces for the compu-

tation of orientation matrix W, then classification

performance can be further improved. So far very few

techniques have been explored in this category. The

computational complexity in this category is very high but

they can produce good classification performance pro-

vided that all the spaces are utilized effectively.

This section illustrated the four informative spaces for

solving SSS problem. Based on the utilization of different

spaces, various techniques can be categorized into four

types. However, it is possible that performance of techniques

in a given type can vary. This is because various techniques

(of a particular type) apply the spaces for computing the

orientation matrix in different ways. Therefore, how effec-

tively spaces are utilized can vary the performance of tech-

niques (this can be observed from Table 1 where techniques

of a particular type vary in performances). Nonetheless, in

general utilizing spaces effectively would improve the per-

formance (as shown in Fig. 5 for best three methods).

4 Review of LDA based techniques for solving SSS

problem

In this section, we review some of the common LDA based

techniques for solving SSS problem. In a SSS problem, the

within-class scatter matrix SW becomes singular and its

inverse computation becomes impossible. In order to

overcome this problem, approximation of inverse of SW
matrix has been used to compute the orientation matrix

W. There are various techniques to compute this inverse in

the literature in different ways. Here we review some of the

techniques:

4.1 Fisherface (PCA ? LDA) technique

In Fisherface method, d-dimensional features are firstly

reduced to h-dimensional feature space by the application

of PCA and then LDA is applied to further reduce features

to k dimensions. There are several criteria for determining

the value of h [5, 57]. One way is to select h = n - c as

the rank of SW is n - c [5]. The advantage of this method

is that it overcome SSS problem. However, the drawback is

that some discriminant information has been lost in the

PCA application to n - c dimensional space.

4.2 Direct LDA

Direct LDA (DLDA) is an important dimensionality

reduction technique for solving small sample size problem

[67]. In the DLDA method, the dimensionality is reduced

in two stages. In the first stage, a transformation matrix is

computed to transform the training samples to the range

space of SB; i.e.,
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UT
r SBUr¼K2

B:

or K�1
B UT

r SBUrK
�1
B ¼ Ib�b:

where Ur corresponds to the range space of SB (i.e., KB)

and b = rank(SB).

In the second stage, the dimensionality of this trans-

formed samples is further transformed by some regulating

matrices; i.e., the transformation matrix UrK
�1
B is used to

transform SW matrix as

ŜW ¼ K�1
B UT

r SWUrK
�1
B ¼ FR2

wF
T

or R�1
w FTK�1

B UT
r SWUrK

�1
B FR�1

w ¼ Ib�b:

Therefore, the orientation matrix of DLDA technique

can be given as W ¼ UrK
�1
B FR�1

w . The benefit of DLDA

technique is that it does not require PCA transformations to

reduce the dimensionality as required by other techniques

like Fisherface (or PCA ? LDA) technique [5, 57].

4.3 Regularized LDA

When the dimensionality of feature space is very large

compared to the number of training samples available, then

the SW matrix becomes singular. To overcome this singu-

larity problem in the regularized LDA (RLDA) method, a

small perturbation to the SW matrix has been added [12, 14,

69]. This makes the SW matrix non-singular. The regular-

ization can be applied as follows:

SW þ dIð Þ�1SBwi ¼ kiwi

where d[ 0 is a perturbation term or regularization

parameter. The addition of d in the regularized method

helps to incorporate both the null space and range space of

SW. However, the drawback is that there is no direct way of

evaluating the parameter as it requires heuristic approaches

to evaluate it and a poor choice of d can degrade the

generalization performance of the method. The parameter d
has been added just to perform the inverse operation fea-

sible and it has no physical meaning.

4.4 Null LDA technique

In the null LDA (NLDA) technique [9], the h column

vectors of the orientation W = [w1, w2, …, wh] are taken

to be in the null space of the within-class scatter matrix SW;

i.e., wi
TSWwi = 0 for i = 1…h. In addition, these column

vectors have to satisfy the condition wT
i SBwi 6¼ 0. for

i = 1…h.

Since the dimensionality of the null space of SW is

d - (n - c), we will have d - (n - c) linearly indepen-

dent vectors satisfying the two above mentioned condi-

tions. Since d - (n - c) is greater than h, Chen et al. [9]

have used eigen analysis of SB matrix to select h leading

eigenvectors from these d - (n - c) vectors to form the

orientation matrix W. Thus, in the null space method W is

found by maximizing |WTSBW| subject to the constraint

|WTSWW| = 0, i.e.,

W = arg max
WTSWWj j¼0

jWTSBWj

The null LDA technique finds the orientation W in two

stages. In the first stage, it computes W such that

SWW = 0: i.e., data is projected on the null space of SW
and throws the range space of SW. Then in the second stage

it finds W that satisfies SBW = 0 and maximizes

|WTSBW|. The second stage is commonly implemented

through the PCA method applied on SB. When the

dimensionality d of the original feature space is very large

in comparison to sample size n, the evaluation of null space

becomes nearly impossible as the eigenvalue decomposi-

tion of such a large d 9 d matrix will lead to serious

computational problems. This is a major problem. There

are two main techniques in this respect suggested in the

literature for computing the orientation W. In the first

technique, a pre-processing step is introduced where the

PCA technique is applied to reduce the dimensionality

from d to n - 1 by removing the null space of ST. In the

reduced n - 1 dimensional space it is possible to compute

the null space of SW. This pre-processing step is then fol-

lowed by the two steps of the null space LDA method [21].

In the second technique, no pre-processing is necessary but

the required null space of SW is computed in the first stage

by first finding the range space of SW, then projecting the

data onto this range space followed by subtracting it from

the original data. After this step, the PCA method is applied

to carry out the second stage. It can be seen that in both the

techniques range space of SW was thrown which could have

some discriminant information for classification.

4.5 Orthogonal LDA

Orthogonal LDA (OLDA) method [62] has shown to be

equivalent to the null LDA method under a mild condition;

i.e., when the training vectors are linearly independent

[65]. In his method, the orientation matrixW is obtained by

simultaneously diagonalizing scatter matrices. Therefore, a

matrix A1. can be found which diagonalizes all scatter

matrices; i.e.,

AT
1SBA1¼RB;A

T
1SWA1¼RW and AT

1STA1¼IT ;

where A1 ¼ U1R
�1
T P, U1 is range space of ST, RT is

eigenvalues of ST and R�1
T UT

1HB ¼ PRQT (SB = HBHB
T).

The orientation matrix W can be found by orthogonalizing

matrix A1; i.e., A1 = QR, where W = Q.
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In this method, the dimensionality is reduced from R
d to

R
c�1. The computational complexity of OLDA method is

better than null LDA method and is estimated to be

14dn2 ? 4dnc ? 2dc2 flops (where c is the number of

classes).

4.6 QR-NLDA

Chu and Thye [10] proposed a new implementation of null

LDA method by doing QR decomposition. This is faster

method than OLDA. Their approach requires approxi-

mately 4dn2 ? 2dnc computations.

4.7 Fast NLDA

Fast NLDA (FNLDA) method [49] is an alternative method

of NLDA. It assumes that the training vectors are linearly

independent. In this method, the orientation matrix is

obtained by using the relation W = ST
?SBY where Y is a

random matrix of rank c - 1. This method is so far the

fastest method of performing null LDA operation. The fast

computation is achieved by using random matrix multi-

plication with scatter matrices. The computational com-

plexity of FNLDA is dn2 ? 2dnc.

4.8 Pseudoinverse method

In the pseudoinverse LDA (PILDA) method [59], the

inverse of within-class scatter matrix SW is estimated by its

pseudoinverse and then the conventional eigenvalue prob-

lem is solved to compute the orientation matrix W. In this

method, a pre-processing step is used where feature vectors

are projected on the range space of ST to reduce the

computational complexity [21]. After the pre-processing

step, the reduced dimensional within-class scatter matrix

Ŝw is decomposed as

Ŝw¼UwD
2
wU

T
w, where

Uw 2 R
t�t;Dw 2 R

t�t; t ¼ rankðSTÞ

Dw ¼ Kw 0

0 0

� �
and Kw 2 R

w�w (w is the rank of SW

such that w\ t).

Let the eigenvectors corresponding to the range space of

Ŝw is Uwr and the eigenvectors corresponding to the null

space of Ŝw is Uwn, i.e., Uw = [Uwr, Uwn], then the

pseudoinverse of SW can be expressed as

Ŝ
þ
w ¼ UwrK

�2
w UT

wr

The orientation matrix W can now be computed by

solving the following conventional eigenvalue problem

Ŝ
þ
w Ŝbwi ¼ kiwi

where Ŝb is the between-class scatter matrix in the reduced

space. It can be observed that the null space of within-class

scatter matrix is discard which would sacrifice some dis-

criminant information.

4.9 Eigenfeature regularization

In eignefeature regularization (EFR) method [22], SW is

regularized by extrapolating its eigenvalues in its null

space. The lagging eigenvalues of SW is considered as

noisy or unreliable which are replaced by an estimation

function. Since the extrapolation has been done by an

estimation function, it cannot be guaranteed to be optimal

in dimensionality reduction.

4.10 Extrapolation LDA

In extrapolation LDA (ELDA) method [47], the null space

of SW matrix is regularized by extrapolating eigenvalues of

SW using exponential fitting function. This method utilizes

range space information and null space information of SW
matrix.

4.11 Maximum uncertainty LDA

The maximum uncertainty LDA (MLDA) method is based

on maximum entropy covariance selection approach that

overcomes singularity and instability of SW matrix ( [58] ).

The MLDA is constructed by replace SW with its estimate

in the Fisher criterion function. This is computed by

updating less reliable eigenvalues of SW.

4.12 Two stage LDA

The two stage LDA (TSLDA) method [50] exploits all the

four informative spaces of scatter matrices. These spaces

are included in two separate discriminant analyses in par-

allel. In the first analysis, null space of SW and range space

of SB are retained. In the second analysis, range space of

SW and null space of SB are retained. It has been shown that

all four spaces contain some discriminant information

which is useful for classification.

5 Applications of the LDA-SSS techniques

In many applications the number of features or dimen-

sionality is much larger than the number of training sam-

ples. In these applications, LDA-SSS techniques have been

successfully applied. Some of the applications of LDA-SSS

techniques are described as follows:
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Table 3 Description of datasets

Dataset Description

Face recognition

AR [32] Contains over 4,000 color images of 126 people’s faces (70 men and 56 women). Images are with frontal illumination,

occlusions and facial expressions

http://www2.ece.ohio-state.edu/*aleix/ARdatabase.html

ORL [41] Contains 400 images of 40 people having 10 images per subject. The images were taken at different times, varying the

lighting, facial expressions (open/closed eyes, smiling/not smiling) and facial details (glasses/no glasses)

http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html

FERET [38] Contains 14,126 images from 1199 individuals. Images of human heads with views ranging from frontal to left and

right profiles

http://www.itl.nist.gov/iad/humanid/feret/feret_master.html

Yale [5] Contains 165 images of 15 subjects. There are 11 images per subject, one for each of the following facial expressions

or configurations: center-light, with glasses, happy, left-light, with no glasses, normal, right-light, sad, sleepy,

surprised and wink

http://cvc.yale.edu/projects/yalefaces/yalefaces.html

Cancer classification

Acute leukemia [17] Consists of DNA microarray gene expression data of human acute leukemias for cancer classification. Two types of

acute leukemias data are provided for classification namely acute lymphoblastic leukemia (ALL) and acute myeloid

leukemia (AML). The dataset is subdivided into 38 training samples and 34 test samples. The training set consists of

38 bone marrow samples (27 ALL and 11 AML) over 7,129 probes. The testing set consists of 34 samples with 20

ALL and 14 AML, prepared under different experimental conditions. All the samples have 7,129 dimensions and all

are numeric

ALL subtype [66] Consists of 12,558 genes of subtypes of acute lymphoblastic leukemia. The dataset is subdivided into 215 training

samples and 112 testing samples. These train and test sets belong to seven classes namely T-ALL, E2A-PBX1,

BCR-ABL, TEL-AML1, MLL, hyperdiploid[50 chromosomes and other (contains diagnostic samples that did not

fit into any of the former six classes). The training samples per class are 28, 18, 9, 52, 14, 42 and 52 respectively.

The test samples per class are 15, 9, 6, 27, 6, 22 and 27 respectively

Breast cancer [60] This is a 2 class problem with 78 training samples (34 relapse and 44 non-relapse) and 19 testing samples (12 relapse

and 7 non-relapse) of relapse and non-relapse. The dimension of breast cancer dataset is 24,481

GCM [40] This global cancer map (GCM) dataset has 14 classes with 144 training samples and 46 testing samples. There are

16,063 number of gene expression levels in this dataset

MLL [3] This dataset has 3 classes namely ALL, MLL and AML leukemia. The training data contains 57 leukemia samples (20

ALL, 17 MLL and 20 AML) whereas the testing data contains 15 samples (4 ALL, 3 MLL and 8 AML). The

dimension of MLL dataset is 12,582

Lung adenocarcinoma

[4]

Consists of 96 samples each having 7129 genes. This is a three class classification problem. Out of 96 samples, 86 are

primary lung adenocarcinomas, including 67 stage I tumor and 19 stage III tumor. An addition of ten non-neoplastic

lung samples are provided

Lung [18] Contains gene expression levels of malignant mesothelioma (MPM) and adenocarcinoma (ADCA) of the lung. There

are 181 tissue samples (31 MPM and 150 ADCA). The training set contains 32 of them, 16 MPM and 16 ADCA.

The rest of 149 samples are used for testing. Each sample is described by 12,533 genes

Prostate [55] This is a 2-class problem with tumor class versus normal class. It contains 52 prostate tumor samples and 50 non-

tumor samples (or normal). Each sample is described by 12,600 genes. A separate test contains 25 tumor and 9

normal samples

SRBCT [23] Consists of 83 samples with each having 2,308 genes. This is a four class classification problem. The tumors are

Burkitt lymphoma (BL), the Ewing family of tumors (EWS), neuroblastoma (NB) and rhabdomyosarcoma (RMS).

There are 63 samples for training and 20 samples for testing. The training set consists of 8, 23, 12 and 20 samples of

BL, EWS, NB and RMS respectively. The testing set consists of 3, 6, 6 and 5 samples of BL, EWS, NB and RMS

respectively

Colon tumor [2] Contains 2 classes of colon tumor samples. A total of 62 samples are given out of which 40 are tumor biopsies

(labelled as ‘negative’) and 22 are normal (labelled as ‘positive’). Each sample has 2,000 genes. The dataset does

not have separate training and testing sets

Ovarian cancer [37] Contains 253 samples of ovarian cancer (162 samples) and non-ovarian cancer (91 samples). The dimension of

feature vector is 15154. These 15,154 identities are normalized prior to processing
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5.1 Face recognition

Face recognition system comprises of two main steps:

feature extraction (including face detection) and face rec-

ognition [42, 70]. In feature extraction step, an image of a

face (of size m 9 n) is normally represented by the illu-

mination levels of m 9 n pixels (giving a feature vector of

dimensionality d = mn) and in the recognition step an

unknown face image is identified/verified. Several LDA-

SSS techniques have been applied for this application (e.g.

[57, 68, 69].

5.2 Cancer classification

The DNA microarray data for cancer classification consists

of large number of genes (dimensions) compared to the

number of tissue samples or feature vectors. The high

dimensionality of the feature space degrades the general-

ization performance of the classifier and increases its

computational complexity. This situation, however, can be

overcome by first reducing the dimensionality of feature

space, followed by classification in the lower-dimensional

feature space. Different methods used for dimensionality

reduction can be grouped into two categories: feature

selection methods and feature extraction methods. Feature

selection methods (e.g. [11, 16, 17, 31, 48, 51–53]) retain

only a few useful features and discard others. Feature

extraction methods construct a few features from the large

number of original features through their linear (or non-

linear) combination. A number of papers have been

reported for the cancer classification task using the

microarray data [13, 25, 26, 33, 45].

5.3 Text document classification

In the text document classification, a free text document is

categorized to a pre-defined category based on its contents

[1]. The text document is a collection of words. To

represent a given text document as a feature vector, a finite

dictionary of words is chosen and frequencies of these

words (e.g. monogram, bigram etc.) are used as features.

Dimensionality reduction and classification techniques are

applied for the categorization of a document. The LDA-

SSS techniques have also been applied to text document

classification (e.g. [62, 65].

6 Datasets

In this section we cover some of the commonly used

datasets for LDA related methods. Three types of datasets

have been depicted. These are face recognition data, DNA

microarray gene expression data and text data. The

description of datasets is given in Table 33.

7 Packages

In this section we list some of the packages available. This

is shown in Table 4. We have also developed in our labo-

ratory a LDA-SSS package (written in Matlab), which

provides the Matlab functions for computing Snullw , Srangew ,

Srangeb and Snullb , and implementation of several LDA-SSS

techniques such as DLDA, PILDA, FPILDA, PCA ? LDA,

NLDA, OLDA, ULDA, QR-NLDA, FNLDA, CLDA, IPI-

LDA, ALDA, EFR, ELDA, MLDA, IDLDA and TSLDA.

8 Conclusion

In this paper, we reviewed LDA-SSS algorithms for

dimensionality reduction. Some of these algorithms

Table 3 continued

Dataset Description

Central nervous

system [39]

This is a two class problem with 60 patient samples of central nervous system embryonal tumor. There are 21

survivors and 39 failures which contribute to 60 samples. There are 7,129 genes of the samples of the dataset

Lung cancer 2 [6] This is a 5-class problem with a total of 203 normal lung and snap-frozen lung tumors. The dataset includes 139

samples of lung adenocarcinoma, 20 samples of pulmonary carcinoids, 6 samples of small-cell lung carcinomas, 21

samples of squamous cell lung carcinomas and 17 normal lung samples. Each sample has 12,600 genes

Text document classification

Reuters-21578 [24] Contains 22 files. The first 21 files contain 1,000 documents and the last file contains 578 documents

TREC (2000) Large collection of text data

Dexter [7] Collection of text classification in a bag-of-word representation. This dataset has sparse continuous input variables

3 For more datasets on face see Ralph Gross [19], Zhao et al. [70] and

http://www.face-rec.org/databases/. For bio-medical data see Kent

Ridge Bio-medical Repository (http://datam.i2r.a-star.edu.sg/datasets/

krbd/).
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provide the-state-of-the-art performance in many applica-

tions. We discuss and categorize LDA-SSS algorithms into

four distinct categories based on the combination of spaces

of scatter matrices. We have also highlighted some datasets

and software/packages useful to investigate the SSS prob-

lem. The LDA-SSS package written in our laboratory has

been made available.
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