10,515 research outputs found

    Challenges of using software size in agile software development: A systematic literature review

    Get PDF
    Academic Papers at IWSM Mensura, IWSM-Mensura 2018; Beijing; China; 19 September 2018 through 20 September 2018Software size is a fundamental measure for software management. Size is used for a variety of purposes, such as benchmarking, normalization, and portfolio measurement, and it is frequently considered as the sole input of estimation. Estimations can be produced for various reasons; e.g., to predict effort, cost and duration of software development projects. There are different types of software size measures. Particularly in projects where agile methodologies are adopted, measurement becomes a significant challenge as it is perceived as a non-value-added task and records of tasks such as requirements identification are not always consistent. The difficulties of applying traditional size measurement techniques in agile contexts, however, do not diminish the need, and new methods and techniques are introduced to improve the manageability of the agile projects. In this paper, we discuss estimation and measurement approaches in relation with ―software size in agile contexts. Based on this review, we present the perceptions of software size and related challenges, such as misinterpretation of size, difficulties in implementation, and acceptability of the measurement processes. We anticipate that providing a baseline for the state of software size measures in agile contexts and presenting related challenges, particularly in terms of its acceptability by practitioners can shed light on the development of new techniques

    Estimating, planning and managing Agile Web development projects under a value-based perspective

    Get PDF
    Context: The processes of estimating, planning and managing are crucial for software development projects, since the results must be related to several business strategies. The broad expansion of the Internet and the global and interconnected economy make Web development projects be often characterized by expressions like delivering as soon as possible, reducing time to market and adapting to undefined requirements. In this kind of environment, traditional methodologies based on predictive techniques sometimes do not offer very satisfactory results. The rise of Agile methodologies and practices has provided some useful tools that, combined with Web Engineering techniques, can help to establish a framework to estimate, manage and plan Web development projects. Objective: This paper presents a proposal for estimating, planning and managing Web projects, by combining some existing Agile techniques with Web Engineering principles, presenting them as an unified framework which uses the business value to guide the delivery of features. Method: The proposal is analyzed by means of a case study, including a real-life project, in order to obtain relevant conclusions. Results: The results achieved after using the framework in a development project are presented, including interesting results on project planning and estimation, as well as on team productivity throughout the project. Conclusion: It is concluded that the framework can be useful in order to better manage Web-based projects, through a continuous value-based estimation and management process.Ministerio de Economía y Competitividad TIN2013-46928-C3-3-

    Agile in Public Administration: Oxymoron or reality? An experience report

    Get PDF
    In the last 10 years, Agile methods and practices have emerged as an alternative for software development. Different "flavors" of Agile have appeared ranging from project management to tests organization. These approaches have being gaining popularity and involve now a solid option for organizations developing software, but what about Public Administrations? Is Agile a suitable option for developing software in Public Administrations? Even if Public Administrations have been traditionally regarded as changeresistant, Agile approach can also provide them with the benefits of quick adaptation and frequent value delivery. This paper presents the results of two different projects, which use an Agile framework based on Scrum, developed by a Spanish Public Administration. Additionally, after considering the obtained results, it takes out some relevant learned lessons on the suitability of applying Agile approaches to Public Administration environments.Ministerio de Ciencia e Innovación TIN2010-20057-C03-02Junta de Andalucía TIC-578

    Definition of the on-time delivery indicator in rapid software development

    Get PDF
    Rapid software development (RSD) is an approach for developing software in rapid iterations. One of the critical success factors of an RSD project is to deliver the product releases on time and with the planned features. In this paper, we elaborate an exploratory definition of the On-Time Delivery strategic indicator in RSD based on the literature and interviews with four companies. This indicator supports decision-makers to detect development problems in order to avoid delays and to estimate the additional time needed when requirements, and specifically quality requirements, are considered.Peer ReviewedPostprint (author's final draft

    Are Delayed Issues Harder to Resolve? Revisiting Cost-to-Fix of Defects throughout the Lifecycle

    Full text link
    Many practitioners and academics believe in a delayed issue effect (DIE); i.e. the longer an issue lingers in the system, the more effort it requires to resolve. This belief is often used to justify major investments in new development processes that promise to retire more issues sooner. This paper tests for the delayed issue effect in 171 software projects conducted around the world in the period from 2006--2014. To the best of our knowledge, this is the largest study yet published on this effect. We found no evidence for the delayed issue effect; i.e. the effort to resolve issues in a later phase was not consistently or substantially greater than when issues were resolved soon after their introduction. This paper documents the above study and explores reasons for this mismatch between this common rule of thumb and empirical data. In summary, DIE is not some constant across all projects. Rather, DIE might be an historical relic that occurs intermittently only in certain kinds of projects. This is a significant result since it predicts that new development processes that promise to faster retire more issues will not have a guaranteed return on investment (depending on the context where applied), and that a long-held truth in software engineering should not be considered a global truism.Comment: 31 pages. Accepted with minor revisions to Journal of Empirical Software Engineering. Keywords: software economics, phase delay, cost to fi

    User Story Software Estimation:a Simplification of Software Estimation Model with Distributed Extreme Programming Estimation Technique

    Get PDF
    Software estimation is an area of software engineering concerned with the identification, classification and measurement of features of software that affect the cost of developing and sustaining computer programs [19]. Measuring the software through software estimation has purpose to know the complexity of the software, estimate the human resources, and get better visibility of execution and process model. There is a lot of software estimation that work sufficiently in certain conditions or step in software engineering for example measuring line of codes, function point, COCOMO, or use case points. This paper proposes another estimation technique called Distributed eXtreme Programming Estimation (DXP Estimation). DXP estimation provides a basic technique for the team that using eXtreme Programming method in onsite or distributed development. According to writer knowledge this is a first estimation technique that applied into agile method in eXtreme Programming

    A Conceptual Model of Client-driven Agile Requirements Prioritization: Results of a Case Study

    Get PDF
    ABSTRACT Requirements (re)prioritization is an essential mechanism of agile development approaches to maximize the value for the clients and to accommodate changing requirements. Yet, in the agile Requirements Engineering (RE) literature, very little is known about how agile (re)prioritization happens in practice. Conceptual models about this process are missing, which, in turn, makes it difficult for both practitioners and researchers to reason about requirements decision-making at inter-iteration time. We did a multiple case study on agile requirements prioritization methods to yield a conceptual model for understanding the inter-iteration prioritization process. The model is derived by using interview data from practitioners in 8 development organizations. Such a model makes explicit the concepts that are used tacitly in the agile requirements prioritization practice and can be used for structuring future empirical investigations about this topic, and for analyzing, supporting, and improving the process in real-life projects

    Addressing challenges to teach traditional and agile project management in academia

    Full text link
    In order to prepare students for a professional IT career, most universities attempt to provide a current educational curriculum in the Project Management (PM) area to their students. This is usually based on the most promising methodologies used by the software industry. As instructors, we need to balance traditional methodologies focused on proven project planning and control processes leveraging widely accepted methods and tools along with the newer agile methodologies. Such new frameworks emphasize that software delivery should be done in a flexible and iterative manner and with significant collaboration with product owners and customers. In our experience agile methodologies have witnessed an exponential growth in many diverse software organizations, and the various agile PM tools and techniques will continue to see an increase in adoption in the software development sector. Reflecting on these changes, there is a critical need to accommodate best practices and current methodologies in our courses that deliver Project Management content. In this paper we analyse two of the most widely used methodologies for traditional and agile software development – the widely used ISO/PMBOK standard provided by the Project Management Institute and the well-accepted Scrum framework. We discuss how to overcome curriculum challenges and deliver a quality undergraduate PM course for a Computer Science and Information systems curricula. Based on our teaching experience in Europe and North America, we present a comprehensive comparison of the two approaches. Our research covers the main concepts, processes, and roles associated with the two PM frameworks and recommended learning outcomes. The paper should be of value to instructors who are keen to see their computing students graduate with a sound understanding of current PM methodologies and who can deliver real-world software products.Accepted manuscrip
    corecore