
41

USER STORY SOFTWARE ESTIMATION:

A SIMPLIFICATION OF SOFTWARE ESTIMATION MODEL

WITH DISTRIBUTED EXTREME PROGRAMMING

ESTIMATION TECHNIQUE

Ridi Ferdiana
1
, Paulus Insap Santoso

1
, Lukito Edi Nugroho

1
, Ahmad Ashari

2

1
Electrical Engineering and Information Technology Department, Engineering Faculty, Gadjah Mada University,

Grafika Street No. 2, Yogyakarta Indonesia
2
Computer Science Department, FMIPA Faculty, Gadjah Mada University, Sekip Unit III, FMIPA Gedung

Selatan, Yogyakarta Indonesia

Email: ridi@acm.org
1
, insap@mti.ugm.ac.id

1
, lukito@mti.ugm.ac.id

1
, ashari@ugm.ac.id

1

ABSTRACT

Software estimation is an area of software engineering concerned with the identification, classification
and measurement of features of software that affect the cost of developing and sustaining computer programs
[19]. Measuring the software through software estimation has purpose to know the complexity of the software,
estimate the human resources, and get better visibility of execution and process model. There is a lot of software
estimation that work sufficiently in certain conditions or step in software engineering for example measuring line
of codes, function point, COCOMO, or use case points.

This paper proposes another estimation technique called Distributed eXtreme Programming Estimation
(DXP Estimation). DXP estimation provides a basic technique for the team that using eXtreme Programming
method in onsite or distributed development. According to writer knowledge this is a first estimation technique
that applied into agile method in eXtreme Programming.

Keywords: Software estimation, DXP estimation, eXtreme Programming.

1. INTRODUCTION

The concerns of this paper are the

overabundance of proposed software estimation

technique when it’s applied into agile method like

eXtreme Programming. Since the one of the principle

of eXtreme Programming is simplicity [1], this paper

will make an effort to observe previous research and

create simplification software estimation technique

for distributed extreme programming method.

Estimating software is somewhat

challenging but essentially needed. For example,

when the development team meets the client, they

should be able to estimate how long the software will

be developed, how much is cost, and how many

resources needed. Another example that happen in

software industry is estimating the retail process of

the software, how can be a 100 KB software have a

worth $1200, but a software with 46 MB have a

same value. Those examples provides us that

software estimation observe to calculate more than

one dimension (i.e. line of code) but three

dimensions which are process, product, and

resources [5].

Good estimation provides team a wide-

ranging forecast view in quantitative aspect such as

time to finish the project, how many resources, and

also project risks value. Jones [6] has stated that

accuracy of good estimation can be achieved ±10%

from the real one, but only on well-controlled

project. In normal project the estimation accuracy

can be within 25% for the actual result (product), and

75% for the actual time [4]. The variance happens

since the project is in the phase of uncertainty when

it’s executed, there some of unforeseen external

events which make the projects late or in the risk.

Requirement changes, staff changes, and priority

changes are the most prominent changes that make

the project far from the estimation. McConnell [7]

states that a good estimation is an estimate which is

provides a clear enough view of the “project reality”

to allow the project leadership to make good decision

about how to control the project to hit its target.

In software development project, the project

reality can be achieved by seen its lifecycle. Software

development lifecycle phases from gathering

requirement, analysis, design, and development can

be estimated through various research results. Table

1 shows some of estimation technique that designed

for certain phases. Applying some of those

estimation techniques in an agile method like

extreme programming will give additional work for

the team.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by JUTI: Jurnal Ilmiah Teknologi Informasi

https://core.ac.uk/display/304721735?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:ridi@acm.org1
mailto:insap@mti.ugm.ac.id1
mailto:lukito@mti.ugm.ac.id
mailto:ashari@ugm.ac.id

 Volume 9, Nomor 1, Januari 2011: 41 – 48

42

Table 1. Various Estimation Techniques and Its

Lifecycle Fitness

Phases Estimation Technique Samples

Requirement Function Point [15], Mark II Function Point
[18]

Analysis Use Case Points [10]

Design Uml Estimation [11]

Development Line of Code [17]

Maintenance COSMIC [8]

Overall Phases COCOMO [2]

The additional work sometime will make

the accumulation of the work rather than creating the

quality code. eXtreme Programming has a simple

approach of estimation technique during the planning

game session. The entity which is being estimated is

called as user story. User story is estimated through

intuition of the developer. Although is provides a just

enough estimation model, we see an opportunities

that this paper will contribute.

 A novel approach to estimate the software by

using user story and formal the approach as an

artifact in extreme programming and distributed

extreme programming,

 A modified user story estimation by including

risk and others aspect that make the user story

estimation more precisely and give a good

estimation value to the team

 A proposed way to integrate the user story as

basic information for project budgeting and

costing.

We simply said our contribution as

Distributed eXtreme Programming estimation

technique (DXP Estimation).

2. PREVIOUS RESEARCH

2.1. Use Case Points
This research is started by seeing available

simple approach to estimate the software. Carroll
(2005) provides a simple way to estimate the
software complexity by using use case points (UCP).
UCP estimate technique provides a formal approach
to estimate the software through use case diagram, a
part of UML diagram that used in much software
engineering method. Figure 1 provides a workflow to
estimate the use case points.

Figure 1. Use Case Points Workflow

1. Weighting actor complexity

The process starts by considering the

Actors. For each actor, determine whether the actor

is a simple, average or complex actor. A simple actor

represents another system with a defined Application

Programming Interface (API). An average actor is

either another system that interacts through a

protocol such as TCP/IP, or it is a person interacting

through a text-based interface. A complex actor is a

person interacting through a graphical user interface

(GUI). A simple actor is weighted by 1, API is

weighted by 2, and GUI is weighted by 3. Those

values will be multiplied by the sum of actor that

identified.

2. Weighting use case complexity

For each use case, determine whether it is

simple, average or complex based on the number of

transactions in a use case, including secondary

scenarios. For this purpose, a transaction is defined

as an atomic set of activities which is either

performed entirely or not at all. A simple use case

has 3 or fewer transactions is weighted by 5, an

average use case has 4 to 7 transactions is weighted

by 10, and a complex use case has more than 7

transactions is weighted by 15. Those values will be

multiplied by the sum of the use case that identified.

Both actor complexity and use case

complexity is calculated as unadjusted use case

points (UUCP).

 (1)

3. Weighting the technical factor

Technical factor is an exercise to calculate a

Use Case Point modifier which will modify the

UUCP by the weight of the technical complexity

factors (TCF). TCF go through the following table

and rate each factor from 0 to 5. A rating of 0 means

the factor is irrelevant for this project, 5 means it is

essential. For each factor multiply its rating by its

weight from the table.

Table 2. Weighting Technical Factor

Technica
l Factor

Factor Descriptions Weight
Factor

T1 Distributed solution 2

T2 Specific performance
objectives

1

T3 meet end-user efficiency
desires

1

T4 complex internal processing 1

T5 code must be reusable 1

T6 must be easy to install 0.5

T7 must be easy to use 0.5

T8 must be portable 2

T9 must be easy to change 1

T10 must allow concurrent user 1

T11 special security features 1

T12 provides interoperability for
3rd parties

1

T13 special user training 1

Ferdiana dkk, User Story Software Estimation: A Simplification of Software Estimation Model with
Distributed Extreme Programming Estimation Technique

43

Those technical factors is accumulated by

using this formula

 (2)

TFactor then calculated to get technical

complexity factor (TCF) by using this formula.

 (3)

The technical complexity factor provides basic

way to calculate the size of software (szUC) which is

multiplying a TCF and UUCP.

 (4)

4. Weighting Experience Factor

The level of experience for each team

member can have a great affect on the accuracy of an

estimate. Consider the experience level for each team

member, called the Experience factor (EF).

Table 3. Weighting Experience Factor

Experien

ce Factor

Factor Descriptions Weight

Factor

E1 familiar with software

process

1

E2 application experience 0.5

E3 paradigm experience (OO) 1

E4 lead analysis capability 0.5

E5 motivation 0

E6 stable requirements 2

E7 part time workers -1

E8 difficulty of programming

language

-1

To calculate EF, go through the table above

and rate each factor from 0 to 5. For factors E1-E4, 0

means no experience in the subject, 3 mean average,

and 5 means expert. For E5, 0 means no motivation

on the project, 3 means average, and 5 means high

motivation. For E6, 0 means unchanging

requirements, 3 means average amount of change

expected, and 5 means extremely unstable

requirements. For E7, 0 means no part-time technical

staff, 3 means on average half of the team is part-

timer and 5 means all of the team is part-time. For

E8, 0 means an easy to use programming language is

planned, 3 means the language is of average

difficulty, and 5 means a very difficult language is

planned for the project.

For each factor, multiply its rating by its

weight from the table above. Add together all of

these factors to get the total E factor.

 (5)

Experience Complexity Factor (ECF) can

be calculated using formula below

 (6)

Use Case Points is calculated from the

multiplication between Experience Complexity

Factor and Use Case Size.

 (7)

5. Calculate efforts and man hours

Translating use case points into man-hours

per UCP is a matter of calculating a standard usage

or effort rate (ER) and multiplying that value by the

number of UCPs. Carroll calculates the effort rate by

28 for small medium projects and 20 for complex or

enterprise project. Those numbers is counting from

the number of factor ratings of E1-E6 that are below

3 and the number of factor ratings of E7-E8 that are

above 3. If the total is 2 or less, then use 20 man-

hours per UCP. If the total is 3 or 4 use 28 man-hours

per UCP. If the total is 5 or more then consider

restructuring the project team so that the numbers fall

at least below 5. A value of 5 indicates that this

project is at significant risk of failure with this team.

 (8)

Project budget then can be calculated by

multiplying the man hours with hourly rate.

2.2. User Story

User story is defined as unit of functionality

in the requirements system [1]. User stories are

expressed in short phrases and should be measurable

and testable. This artifact is used in a planning game

session of eXtreme Programming.

User story consists as a simple statement

regarding the feature that requested to the system.

For example, “A customer detail is shown by

selecting it from a list” [9]. Some of the research

modified the user story to provide also the estimation

number. Pelrine [13] add the estimation value with

the estimation point which have a scale from 1 (sure

about this feature) to 4 (not idea about the feature).

The estimation is multiplied by the load factor. Load

factor is a multiply factor that used to show the

uncertainty of the feature. Load factor has a range

from 1.0 (certain) to 3.0 (agile). The result of

multiplication between the load factor and the

estimation point provide time that needed by the

team to solve the problem.

Another research about user story

estimation is provided by Woit [14]. Woit states that

user story simple provide a simple statement

(between 1 – 3 statements), time to estimate for each

user story, progress, and some note about the

urgency or additional info in the user story. Figure 1

provides a user story illustration which is written on

story card / index card [1].

 Volume 9, Nomor 1, Januari 2011: 41 – 48

44

Figure 2. User Story

Cohn [3] in his research provides a formal

way to estimate the user story as a software

complexity asset. The estimation step is provided as

a five simple steps which are displayed in figure

below.

Figure 3.User Story Estimation

1. Estimate Stories in a story points

Story point is defined as complexity

estimation, efforts, or duration of a story. Therefore,

it can be as a man-days or another numerical

representative like integer value that discussed

through the team. For example if a story has a 5

points its might be solved ion five man-hours or five

man-days, it’s depend on the agreement on the team.

2. Triangulate an estimate

Triangulate an estimate is grouping the

entire user story regarding of their points. Grouping

makes the team aware the complexity of the story

and preparing the team to create an iteration

planning.

Figure 4. User Story Triangulation

3. Planning game

Planning game addressed two main

questions in the agile development, which are about

the iteration plan, and the product development

roadmap. Planning game is done by the team and the

client, in distributed extreme programming planning

game is proposed by the team and adjusted by the

client [16].

Iteration planning provides information

about how many story points in iteration. For

example, if iteration has 2 week length, and 2 week

length is equal with 40 story points then the user

story that included in the iteration is not more that 40

story points.

Product development roadmap or also

known as project planning is provides an agreement

about how many milestone (or iteration) that should

be exist to provide functional product. Project

planning provides detail information what will be

delivered in iteration including amount of time to

deliver the feature.

2.3. eXtreme Programming Estimation Model at

Practices

Keefe [2004] shows when applying XP,

there are some circumstances where the estimation is

far from accurate. There were two reasons for the

inaccurate estimations

 The complexities of the task at hand

 The lack of experience the team had in creating

estimates for themselves.

Those reasons remembered us, the use case

points which also includes the complexities

(technical factor) and experience (experience factor).

In software development both of those challenge also

called as risks. Li et al. [12] proposed a risk driven

XP development, and the interesting point in their

research is a fact that risks in XP is categorized into

four main risks which are requirements risks,

estimation risk, technology risk, and personnel risk.

In their research, those risks are described

qualitatively in a range low, medium, and high. They

consideration using qualitatively rather than

quantitatively is because quantitative estimation

requires a lot of time and cost, and sometime it is

difficult for developers to collect enough data for

quantitative analysis.

Based on the previous research that we have

learned we found some opportunity that illustrated

from the table 4.

Those opportunities are described formally

as a distributed extreme programming (DXP)

estimation technique, which are simply as a selective

integration between use case point estimation and

user story point estimation.

Ferdiana dkk, User Story Software Estimation: A Simplification of Software Estimation Model with
Distributed Extreme Programming Estimation Technique

45

Table 4. Use Case Points, User Story Points, and

Its Opportunity

issue use case
point

User story
points

Opportunity

risk
identifica-
tion

yes partially
yes,
(qualitative
only)

make it
quantitatively

standard yes, UML no, free
style

make formal
estimation
model
through
reference

distributed
support

yes,
counting
distributed
as technical
factor

no, there
are no
additional
info

make the
estimation
model
support
distributed
project

efforts and
cost
estimation

yes implicitly
derived

make formal
cost
estimation

3. DXP ESTIMATION TECHNIQUE
DXP estimation technique is proposed to

fulfill some following gap that happen in the existing

XP estimation technique, which are.

 Estimate the user story with other risk estimation

like technical and experience factor

 Provide a quantitative analysis with more

strength in formal and numerical method.

 Provide a quantitative analysis for cost and

efforts estimation,

 Support estimation technique for a distributed

software development model.

DXP estimation provides three basic steps

to calculate the estimation efforts which are.

 Estimate the unadjusted user story points

(UUSP). Unadjusted user story points is a user

story points which are not including risk

estimation

 Estimate the adjusted use story points (USP)

which extends the UUSP among risk estimation.

 Estimate the man-hours and effort needed for the

following USP.

3.1. Unadjusted user story points

User story which are used in this estimation

technique is consisted with three main components

which are.

 The name of the user story including the short

description about it.

 The estimate point, which are integer range

value started from 1.

 The estimate priority, which are integer point

started from 1 (nice to have), 2 (added business

value), and 3 (essentially must have).

The estimate point is agreed point that

subjectively proposed by the coach in XP team. The

problem is some of the team is to narrow in make the

estimation, for example, the hard is 3 point and the

easy one is one point (only 2 point different). When

the team selects the estimate range that is too narrow,

the most probably problem that happens is biased

value, like answering how hard that features if it’s

only have a 2 point differentiate. In order to avoid

those kinds of situation, we encourage the team to

estimate using Fibonacci number. Fibonacci number

started from 1, but exponentially increases. Since the

Fibonacci is also unlimited in term of value, we are

using 7 level of Fibonacci (starting from 0).

Therefore we have a sequence range started from 1,

1, 2, 3, 5, 8, 13, and 21. Table V provides the

Fibonacci number as estimation points and the means

of estimation.

Table 5. Fibonacci Estimation Points and

Estimation Meaning

Estimation
Points

estimation meaning

1 Simple, just replicate the code.

1 Simple, looking and using codes
reference from the API document
(Application Programming Interface).

2 Simple, having seen the working codes

3 Medium, creating from the scratch or
finding the existing code that need to
be converted (like different
programming language)

5 Medium, creating from scratch without
reference logically can be implemented

8 Medium, interoperability and circular
dependency to build such features.

13 Challenging, complex business process
and knowledge domain dependency.

21 Challenging, not sure that it can be
implemented, and never seen the
working example.

Those numbers is defined by the developer.

McConnell [7] in his research provides that early

estimation can make +40% or -40% than it should.

Novice developer will estimate wider than it should,

and experienced developer will estimate narrower

than it should. In heterogenic team member, we

encourage the team to estimate by combining a

novice and expert in a pair.

Each story is estimated and triangulated in a

blackboard or case tools. There are others benefit

when we are using a Fibonacci estimation point in

term of triangulation. The triangulation is more

concentrated and not too wide. After doing a

tribulation the unadjusted user story can be

calculated with a sum of all user story point.

 (9)

 Volume 9, Nomor 1, Januari 2011: 41 – 48

46

In the next step, those user story points are

arranged based on the priority in planning game

session.

3.2. Adjusted User Story Points

Adjusted user story points or simply user

story points are unadjusted user story points with

additional refinement of risk like technical factor and

experience factor. Both technical factor and

experience factor is described by adopting Carroll

result in use case points. However we add additional

experience factor (E9) which tells that the software is

developed remotely or distributed.

Technical factor is calculated to get the size

of user story (szUS). The DXP estimation technique

follows the size of user story by using the formula.

The size of user story here can be also identified as

software complexity / software size.

 (10)

TCF variable is derived from the technical

complexity calculation factor just like when we

calculate the complexity in Carroll use case points.

The user story points are derived from

multiplication between ECF and the size of user

story (szUS). The ECF variables also derived from

Carroll use case points.

 (11)

The user story points then can be calculated

as man-days effort.

3.3. Estimate the man-days effort

The man-days effort can easily calculated

by adopting the work in sustainable pace extreme

programming values. In that value a team member

can only work effectively not more than 8 hours.

Therefore, when calculating man days we calculate

using this formula.

 (12)

Effort rate (ER) in user story is following

the Carroll effort rate. The man-days value then

converted using a standard rate that agreed both

client and the team.

4. PUTTING IT ALL TOGETHER
Based on the DXP estimation technique that

derived in the above, we make an effort to implement

it into a real project. This project is developing

accounting and product distribution system for

manufacturing company. The project is developing

in distributed development model. The client and the

team are geographically separated. We called this

project as Code-Named: Sidik.

The first step is calculated the UUSP based on

user story estimation points. The system has 406 user

stories that equal with 687 unadjusted user story

points. Those user stories have a wide distribution

between 1 through 8 Fibonacci number.

In order to calculate user story size or software

complexity, we calculate the technical complexity

factor by doing table reference like below.

Table 6. Calculating the Complexity Factor

Tech.
Factor

Factor
Descriptions

Weight
Factor

rating TFactor

T1 Distributed
solution

2 5 10

T2 Specific
performance
objectives

1 3 3

T3 meet end-user
efficiency desires

1 1 1

T4 complex internal
processing

1 5 5

T5 code must be
reusable

1 1 1

T6 must be easy to
install

0.5 1 0.5

T7 must be easy to use 0.5 3 1.5

T8 must be portable 2 0 0

T9 must be easy to
change

1 5 5

T10 must allow
concurrent user

1 5 5

T11 special security
features

1 5 5

T12 provides
interoperability for
3rd parties

1 3 3

T13 special user
training

1 3 3

Total TFactor 43

Technical Complexity Factor (TCF) for

Sidik system is:

TCF = (0.01 * 43) + 0.6 = 1.03 (13)

As a result, we can calculate the software

size or user story size by:

szUS = 1.03 * 687 = 707.61 (14)

What is the meaning of 707.61 in software

complexity? Is the software is complex or simple

enough? By simply seeing the differentiation

between total UUSP and szUS, we intuited that the

software is more complex than expected since szUS

> UUSP.

To calculate the user story points, we

calculate the Experience factor by doing table

reference like below.

Ferdiana dkk, User Story Software Estimation: A Simplification of Software Estimation Model with
Distributed Extreme Programming Estimation Technique

47

Table 7. Calculating the Experience Factor

Exp.
Factor

Factor
Descriptions

Weight
Factor

rating EFactor

E1 familiar with
software
process

1 3 3

E2 application
experience

0.5 0 0

E3 paradigm
experience
(OO)

1 5 5

E4 lead analysis
capability

0.5 3 1.5

E5 motivation 0 1 0

E6 stable
requirements

2 5 10

E7 part time
workers

-1 3 -3

E8 difficulty of
programming
language

-1 0 0

E9 distributed
development

-1 3 -3

Total EFactor 13.5

Experience complexity factor (ECF) for

Sidik system is:

ECF = (-0.03 * 13.5) + 1.4 = 0.995 (15)

As a result, we can calculate the adjusted

user story point by:

USP = 0.995 * 707.61 = 704 (16)

User story point than can be used to
calculate the man-days effort. By seeing the effort
rate rules, we can get 20 man-hours per USP.
Therefore the man-days can be calculated.

Man-days = (20 * 704) / 8 = 1760 (rounded) (17)

That number can be easily converted as

project length by seeing the maximum expected time

from client or team member that exist in the team. In

example if the teams have 7 members the project will

run smoothly in 251 work-days or if the client need

to be done in 6 month (120 work-days) the teams

need to be aligned at least 14 members.

By seeing the example we can estimate that

the project is

 Sidik project is in high complexity since szUS >

UUSP

 The team is in sufficient experience to do the

project since USP < UUSP.

 Ideally this project will be finished in 251 work-

days with the 7 members or 120 work days with

the 14 members.

5. CONCLUSION
This paper main contribution is estimating

the software quantitatively. This paper proposed a

DXP estimation technique, which is an improvement

of the user story point estimation and use case points

estimation. This estimation technique can estimate

the complexity of the software, and the man-days

effort to build the software.

This paper is limited in theoretical

background without sufficient empirical research.

Therefore we see an opportunity to do empirical

research and comparison this technique with the

others agile estimation technique.

6. REFERENCES

[1] Beck, K. 1999. eXtreme Programming

Explained. Boston : Addison-Wesley.

[2] Boehm, B.W. 1981. Software Engineering

Economics. Englewood Cliffs, NJ : Prentice

Hall.

[3] Cohn, M. 2004. User Stories Applied: For

Agile Software Development. Boston :

Addison Wesley.

[4] Conte, S.D., Dunsmore, H.E. and Shen, V.Y.

1986. Software Engineering Metrics and

Models. Menlo Park, CA :

Banjamin/Cummings.

[5] Fenton, N. and Pfleeger, S.L. 1997. Software

Metrics : A rigorous and Practical

Approach. Boston : MA : PWS Publishing.

[6] Jones, C. 1998. Estimating Software Costs.

New York NY : McGraw-Hill.

[7] McConnell, S. 2006. Software Estimation :

Demystifying the black Art. Washington :

Microsoft Press.

[8] Afsharian, S. Giacomobono, M, and Inverardi

Paola. 2008. “A framework for software project

estimation based on cosmic, dsm and rework

characterization”. International Conference

on Software Engineering 2008. ACM.

[9] Bostrom, G., Wayrynen, J. and Boden, M.

2006. “Extending XP Practices to Support

Security Requirements Engineering”. Software

Engineering Educators Symposium 2006.

May 20-21. Shanghai, China, ACM.

[10] Carrol, R.E. 2005. “Estimating Software Based

in Use Case Points”. The International

Conference on Object Oriented

Programming Systems Languages 2005.

October 16–20. San Diego, California, USA :

ACM.

[11] Lavesque, G., Bevo, V. and Tran Cao, D. 2008.

“Estimating Software Size with UML Models”.

Canadian Conference on Computer Science

& Software Engineering 2008. May 12-13.

Montreal : Canada, ACM.

 Volume 9, Nomor 1, Januari 2011: 41 – 48

48

[12] Li, M., Huang M., Shu, F. and Li. J. 2006. “A

Risk-Driven Method for eXtreme Programming

Release Planning”. International Conference

on Software Engineering 2006. May 20-28.

Shanghai, China. ACM.

[13] Pelrine, J. 2000. “Modelling Infection Scenarios

- A Fixed-price eXtreme Programming Success

Story”. The International Conference on

Object Oriented Programming Systems

Languages 2000. Companion, Minneapolis,

Minnesota, ACM.

[14] Woit, D.M. 2005. “Requirements Interaction

Management in an eXtreme Programming

Environment: A Case Study”. International

Conference on Software Engineering 2005.

May 15-21. St. Louis, Missouri, USA. ACM.

[15] Albrecht, A.J. and Gaffney, J.E. 1983.

“Software Function, Source Lines of Codes, and

Development Prediction : A Software Science

Validation”. IEEE Transaction on Software

Engineering 9, 6:639-647.

[16] Ferdiana, R. 2009. “Distributed eXtreme

Programming”. The Architecture Journal 20,

Washington. Microsoft.

[17] McCabe, T.J. 1976. “A Complexity measure”.

IEEE Transaction on Software Engineering
2, 4:308-320.

[18] Symons, C.R. 1988. “Function Point Analysis :

Difficulties and Improvements”. IEEE

Transaction on Software Engineering 14, 1:2-

11.

[19] Waguespack, J.L. and Badlani, S. 1987.

“Software Complexity Assessment: An

Introduction and Annotated Bibliography”.

Software Engineering Notes 12, 4:52-71.

