370 research outputs found

    Iz stranih časopisa

    Get PDF
    U tekstu je dan popis radova koji su objavljeni u stranim časopisima

    Iz stranih časopisa

    Get PDF
    U tekstu je dan popis radova koji su objavljeni u stranim časopisima

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    Quality of terrestrial data derived from UAV photogrammetry : A case study of Hetao irrigation district in northern China

    Get PDF
    Most crops in northern China are irrigated, but the topography affects the water use, soil erosion, runoff and yields. Technologies for collecting high-resolution topographic data are essential for adequately assessing these effects. Ground surveys and techniques of light detection and ranging have good accuracy, but data acquisition can be time-consuming and expensive for large catchments. Recent rapid technological development has provided new, flexible, high-resolution methods for collecting topographic data, such as photogrammetry using unmanned aerial vehicles (UAVs). The accuracy of UAV photogrammetry for generating high-resolution Digital Elevation Model (DEM) and for determining the width of irrigation channels, however, has not been assessed. A fixed-wing UAV was used for collecting high-resolution (0.15 m) topographic data for the Hetao irrigation district, the third largest irrigation district in China. 112 ground checkpoints (GCPs) were surveyed by using a real-time kinematic global positioning system to evaluate the accuracy of the DEMs and channel widths. A comparison of manually measured channel widths with the widths derived from the DEMs indicated that the DEM-derived widths had vertical and horizontal root mean square errors of 13.0 and 7.9 cm, respectively. UAV photogrammetric data can thus be used for land surveying, digital mapping, calculating channel capacity, monitoring crops, and predicting yields, with the advantages of economy, speed and ease.</p

    Modelling of Floods in Urban Areas

    Get PDF
    This Special Issue publishes the latest advances and developments concerning the modelling of flooding in urban areas and contributes to our scientific understanding of the flooding processes and the appropriate evaluation of flood impacts. This issue contains contributions of novel methodologies including flood forecasting methods, data acquisition techniques, experimental research in urban drainage systems and/or sustainable drainage systems, and new numerical and simulation approaches in nine papers with contributions from over forty authors

    Pork, Place, and Planning

    Get PDF

    A Predictive Flood Model for Urban Karst Groundwater Systems

    Get PDF
    Urban karst environments are often plagued by groundwater flooding, which occurs when water rises from the subsurface to the surface through the underlying caves and other karst features. The heterogeneity and interconnectedness of karst systems often makes them very unpredictable, especially during intense storm events; urbanization exacerbates the problem with the addition of many impervious surfaces. Residents in such areas are frequently disturbed and financially burdened by the effects of karst groundwater flooding. The Federal Emergency Management Agency (FEMA) offers limited protection to citizens living near flood-prone areas as they primarily focus on the areas near surface bodies of water. The City of Bowling Green, Kentucky is one of the largest cities in the United States built entirely upon karst and experiences frequent, unpredictable groundwater flooding making it the ideal study area for this project. This research attempted to aid the flooding problem in Bowling Green, by laying the framework for the creation of a predictive flood model in the Lost River Karst Aquifer, in Bowling Green, KY. The model was created primarily by analyzing relationships between precipitation and antecedent moisture conditions of the aquifer using effective precipitation and antecedent water levels as a proxy. High-resolution, spatiotemporal data monitoring of several hydrometeorological parameters to ensure accuracy of the model. The results from this study provide a stable and validated methodology to create a predictive flood model for karst environments that could potentially allow residents to better prepare for rain events and offers additional information on the storage and response times of a large karst aquifer

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of “volunteer mappers”. Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protection

    Investigating impacts of natural and human-induced environmental changes on hydrological processes and flood hazards using a GIS-based hydrological/hydraulic model and remote sensing data

    Get PDF
    Natural and human-induced environmental changes have been altering the earth's surface and hydrological processes, and thus directly contribute to the severity of flood hazards. To understand these changes and their impacts, this research developed a GISbased hydrological and hydraulic modeling system, which incorporates state-of-the-art remote sensing data to simulate flood under various scenarios. The conceptual framework and technical issues of incorporating multi-scale remote sensing data have been addressed. This research develops an object-oriented hydrological modeling framework. Compared with traditional lumped or cell-based distributed hydrological modeling frameworks, the object-oriented framework allows basic spatial hydrologic units to have various size and irregular shape. This framework is capable of assimilating various GIS and remotely-sensed data with different spatial resolutions. It ensures the computational efficiency, while preserving sufficient spatial details of input data and model outputs. Sensitivity analysis and comparison of high resolution LIDAR DEM with traditional USGS 30m resolution DEM suggests that the use of LIDAR DEMs can greatly reduce uncertainty in calibration of flow parameters in the hydrologic model and hence increase the reliability of modeling results. In addition, subtle topographic features and hydrologic objects like surface depressions and detention basins can be extracted from the high resolution LiDAR DEMs. An innovative algorithm has been developed to efficiently delineate surface depressions and detention basins from LiDAR DEMs. Using a time series of Landsat images, a retrospective analysis of surface imperviousness has been conducted to assess the hydrologic impact of urbanization. The analysis reveals that with rapid urbanization the impervious surface has been increased from 10.1% to 38.4% for the case study area during 1974 - 2002. As a result, the peak flow for a 100-year flood event has increased by 20% and the floodplain extent has expanded by about 21.6%. The quantitative analysis suggests that the large regional detentions basins have effectively offset the adverse effect of increased impervious surface during the urbanization process. Based on the simulation and scenario analyses of land subsidence and potential climate changes, some planning measures and policy implications have been derived for guiding smart urban growth and sustainable resource development and management to minimize flood hazards
    corecore