23,833 research outputs found

    When Things Matter: A Data-Centric View of the Internet of Things

    Full text link
    With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor devices, and Web technologies, the Internet of Things (IoT) approach has gained momentum in connecting everyday objects to the Internet and facilitating machine-to-human and machine-to-machine communication with the physical world. While IoT offers the capability to connect and integrate both digital and physical entities, enabling a whole new class of applications and services, several significant challenges need to be addressed before these applications and services can be fully realized. A fundamental challenge centers around managing IoT data, typically produced in dynamic and volatile environments, which is not only extremely large in scale and volume, but also noisy, and continuous. This article surveys the main techniques and state-of-the-art research efforts in IoT from data-centric perspectives, including data stream processing, data storage models, complex event processing, and searching in IoT. Open research issues for IoT data management are also discussed

    Network Sampling: From Static to Streaming Graphs

    Full text link
    Network sampling is integral to the analysis of social, information, and biological networks. Since many real-world networks are massive in size, continuously evolving, and/or distributed in nature, the network structure is often sampled in order to facilitate study. For these reasons, a more thorough and complete understanding of network sampling is critical to support the field of network science. In this paper, we outline a framework for the general problem of network sampling, by highlighting the different objectives, population and units of interest, and classes of network sampling methods. In addition, we propose a spectrum of computational models for network sampling methods, ranging from the traditionally studied model based on the assumption of a static domain to a more challenging model that is appropriate for streaming domains. We design a family of sampling methods based on the concept of graph induction that generalize across the full spectrum of computational models (from static to streaming) while efficiently preserving many of the topological properties of the input graphs. Furthermore, we demonstrate how traditional static sampling algorithms can be modified for graph streams for each of the three main classes of sampling methods: node, edge, and topology-based sampling. Our experimental results indicate that our proposed family of sampling methods more accurately preserves the underlying properties of the graph for both static and streaming graphs. Finally, we study the impact of network sampling algorithms on the parameter estimation and performance evaluation of relational classification algorithms

    Efficient Identification of TOP-K Heavy Hitters over Sliding Windows

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer Verlag via the DOI in this recordDue to the increasing volume of network traffic and growing complexity of network environment, rapid identification of heavy hitters is quite challenging. To deal with the massive data streams in real-time, accurate and scalable solution is required. The traditional method to keep an individual counter for each host in the whole data streams is very resource-consuming. This paper presents a new data structure called FCM and its associated algorithms. FCM combines the count-min sketch with the stream-summary structure simultaneously for efficient TOP-K heavy hitter identification in one pass. The key point of this algorithm is that it introduces a novel filter-and-jump mechanism. Given that the Internet traffic has the property of being heavy-tailed and hosts of low frequencies account for the majority of the IP addresses, FCM periodically filters the mice from input streams to efficiently improve the accuracy of TOP-K heavy hitter identification. On the other hand, considering that abnormal events are always time sensitive, our algorithm works by adjusting its measurement window to the newly arrived elements in the data streams automatically. Our experimental results demonstrate that the performance of FCM is superior to the previous related algorithm. Additionally this solution has a good prospect of application in advanced network environment.Chinese Academy of SciencesNational Natural Science Foundation of Chin

    Dynamic Poisson Factorization

    Full text link
    Models for recommender systems use latent factors to explain the preferences and behaviors of users with respect to a set of items (e.g., movies, books, academic papers). Typically, the latent factors are assumed to be static and, given these factors, the observed preferences and behaviors of users are assumed to be generated without order. These assumptions limit the explorative and predictive capabilities of such models, since users' interests and item popularity may evolve over time. To address this, we propose dPF, a dynamic matrix factorization model based on the recent Poisson factorization model for recommendations. dPF models the time evolving latent factors with a Kalman filter and the actions with Poisson distributions. We derive a scalable variational inference algorithm to infer the latent factors. Finally, we demonstrate dPF on 10 years of user click data from arXiv.org, one of the largest repository of scientific papers and a formidable source of information about the behavior of scientists. Empirically we show performance improvement over both static and, more recently proposed, dynamic recommendation models. We also provide a thorough exploration of the inferred posteriors over the latent variables.Comment: RecSys 201
    • …
    corecore