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Abstract. Due to the increasing volume of network 
traffic and growing complexity of network environment, 
rapid identification of heavy hitters is quite challenging. 
To deal with the massive data streams in real-time, 
accurate and scalable solution is required. The traditional 
method to keep an individual counter for each host in the 
whole data streams is very resource-consuming. This 
paper presents a new data structure called FCM and its 
associated algorithms. FCM combines the count-min 
sketch with the stream-summary structure 
simultaneously for efficient TOP-K heavy hitter 
identification in one pass. The key point of this algorithm 
is that it introduces a novel filter-and-jump mechanism. 

Given that the Internet traffic has the property of being 
heavy-tailed and hosts of low frequencies account for the 
majority of the IP addresses, FCM periodically filters the 
mice from input streams to efficiently improve the 
accuracy of TOP-K heavy hitter identification. On the 
other hand, considering that abnormal events are always 
time sensitive, our algorithm works by adjusting its 
measurement window to the newly arrived elements in 
the data streams automatically. Our experimental results 
demonstrate that the performance of FCM is superior to 
the previous related algorithm. Additionally this solution 
has a good prospect of application in advanced network 
environment. 
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1 Introduction 

Currently, with the rapid growth of Internet traffic, 
characterizing network anomalies in real-time becomes 
progressively more challenging. An important indicator 
for detecting abnormal network events is the substantial 
increase in the number of flows [1-2]. For example, 
when a compromised host wants to infect a large number 
of other machines, it may carry out a wide range scan to 
find possible victims which will result in an unexpected 
large number of network connections. Moreover, during 
distributed denial-of-service (DDoS) attacks, the targeted 
machine typically receives tremendous requests from 
various sources which may overload the system and 
prevent it from providing normal service to its users. 
The heavy hitter generally refers to an element with high 
occurrence in data streams. When defined in network 
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environment, it often represents a host which connects 
with large number of sources (or destinations) during a 
definite time interval. If we take the incoming element as 
NetFlow 5-tuple records, the problem of heavy hitter 
identification can be formulated as follows: given a 
stream SN = s1,s2 …sN with the format of <sourceIP, 
sourcePort, destinationIP, destionPort, protocol>, find 
sourceIP (or destinationIP) that is paired with a large 
number of destinationIP (or sourceIP) which is above a 
predefined threshold. Identification of heavy hitters is 
helpful for detecting the on-going malicious events such 
as DDoS attacks, worm propagation and port scans.  
However, nowadays the exponentially increasing traffic 
and emerging network environment bring new challenge 
to the solution of this issue. According to Akamai latest 
Internet security report [3], the size, complexity and 
frequency of Internet malicious activities have greatly 
increased in the past decades. On the other side, 
considering the crucial importance of Smart Grids, 
malicious attacks are more damaging which may disrupt 
the sensitive information and critical operations on the 
complex infrastructure [4]. So given the strict 
requirement of Smart Grids in terms of robustness and 
performance [5-6], high demand for the accuracy and 
scalability of the recognizing algorithms is put forward 
accordingly.  
In this paper, we work on the following problems which 
are ignored in most of previous studies. First, abnormal 
events are generally time-sensitive which require to be 
detected using the latest arrived items in data streams 
over sliding windows. Dealing with datasets in 
statically predefined interval may miss the targets which 
happen across the border of two adjacent measurement 
windows. Second, when the network behaves 
abnormally, the number of flows in definite interval 
may increase sharply. The problem is much more severe 
for high speed environment. Considering that Internet 
traffic has the property of being heavy-tailed, hosts of 
low frequencies make up a large proportion in data 
streams. Dealing with those hosts increases the memory 
consumption together with more possibilities of hash 
collisions for both counter-based and sketch-based 
solutions. Last, since currently network operators are 
accustomed to monitor the top lists of suspected events, 

the algorithm should be able to provide solution for 
both TOP-K and heavy hitter identification over sliding 
windows. 
Targeting at those challenges, we propose a new 
algorithm called FCM for identifying heavy hitters. To 
summarize, the main contributions of this paper are as 
follows: 

(1) The proposed FCM algorithm provides an efficient 
filter-and-jump scheme to detect Top-K heavy 
hitters over sliding windows. Count-min sketches 
are constructed to calculate the number of 
connections for each host in previous 2s seconds, 
and a dynamic pointer is used to continuously 
adjust the measurement window in real-time and 
trigger the update of the structure. 

(2) Due to the limited computational resources of 
advanced network environments like Smart Grids, 
hosts with little possibility of heavy hitter should be 
deleted in time to make space for new data. FCM 
periodically filters hosts of low frequencies with 
size below certain threshold. Therefore, the 
accuracy of the algorithm can be greatly improved.  

(3) A revised and enhanced version of the Space 
Saving algorithm is designed to get the TOP-K list 
of heavy hitters with arbitrary ranking. Although 
space saving has provided a lightweight and 
effective solution for TOP-K elements detection in 
data streams, papers also found that its 
over-estimate-error is relatively high [7]. Instead of 
incrementing its counter every time a new element 
arrives, our algorithm redesigns the space saving 
algorithm to update the corresponding counter only 
when needed.  

(4) Extensive experiments are conducted to validate 
the accuracy and evaluate the performance of the 
proposed algorithm. The results show that the FCM 
outperforms the existing related algorithm in terms 
of false positive rate, false negative rate, ordering 
deviation rate and average estimate error rate. 

The remainder of the paper is organized as follows. 
After introducing the related work of TOP-K heavy 
hitter identification in Section 2, we present the relevant 



definitions to be used in subsequent sections in Section 
3. Section 4 elaborates the design of the proposed FCM 
algorithm. Then a performance study of this algorithm 
is reported in Section 5. Section 6 evaluates the 
performance of the algorithm via extensive experiments, 
and finally Section 7 concludes this work. 

2 Related Work 

In this section, we summarize existing solutions for 
identifying heavy hitter elements.  
Currently, extensive studies have been conducted and 
various algorithms have been proposed on identifying 
heavy hitters. For example, both the snort intrusion 
detection system [8] and Flowscan [9] detected port 
scans by maintaining a counter for every host which 
records the number of distinct IP addresses it connects 
with in the past several minutes. This solution is not 
feasible when carried out in high speed networks. Paper 
[10] proposed a family of bitmap algorithms to address 
this problem, in which a bitmap is allocated to estimate 
the number of contacts for every IP addresses, and 
another index structure is used for mapping the IP 
address to this bitmap. Obviously, maintaining 4 bytes 
bitmap for each IP address is space consuming. The 
authors in [11] presented a virtual connection degree 
sketch for estimating the connection of hosts in high 
speed environments, together with a filtered bitmap to 
reduce the noise information caused by the bit-sharing 
mechanism. Paper [12] proposed a hash-based algorithm 
to find heavy hitters which implements 
one-level/two-level filtering to sample the input streams. 
This algorithm demonstrates better scalability since it 
does not need to keep state for each host. However, 
paper [13] also pointed out that the hashing and sampling 
mechanism results in high estimate error, and the 
bucket-chaining and sorting process also brings 
overheads.  
Another similar problem is the identification of frequent 
items which generally includes two kinds of solutions: 
counter-based algorithms such as Lossy Counting [14], 
Frequent [15], Space-Saving [16], and sketch-based 
methods such as Count Sketch [17], Count Min-Sketch 

(CM ) [18], and LD-Sketch [19].  
Sketch-based methods use techniques such as hashing to 
map items to a reduced set of counters, and maintain 
approximate summaries of all elements in the stream. 
Among those solutions, count-min sketch is predominant 
than others for summarizing large scale datasets with 
strong accuracy guarantees [20]. The algorithm works in 
a fixed amount of space to store counting information 
which is independent with the size of the input streams. 
However, due to its sub-linear space for the counters, 
papers [21-22] pointed out that the frequency-estimation 
error may increase as more and more items come, and 
the items with low frequency may be incorrectly 
recognized as high-frequency ones. Moreover, sketches 
are not reversible to provide the corresponding keys 
since they only store the counters, therefore they are not 
suitable to be used for TOP-K solution directly.  
Counter-based algorithms maintain a small fixed 
number of items from the inputs, and monitor counts 
associated with them. Space-Saving is the best 
counter-based algorithm which can provide both 
frequent items and TOP-K solutions. It takes limited 
space and delivers better performance over other 
algorithms. Several papers [7][23] have pointed out the 
shortcoming of Space Saving and various solutions 
have been implemented on how to improve it efficiently. 
For example, considering the inaccuracy problem that 
elements which appear in the end of the data stream 
with low frequencies are more likely to be misclassified 
as TOP-K elements, Nuno Homem et al. [7] provided 
solutions which combines hash table and space saving 
method to eliminate the over-estimate-error. Parallel 
versions of Space Saving [24-25] have also been 
presented to accelerate its performance. Most recently 
Ran Ben-Basat et al. [26] redesigned Space Saving with 
statically allocated memory and demonstrated better 
performance for the space requirement. 
For detection of heavy hitters over sliding windows, the 
authors in [27] presented an FSW algorithm (Filtered 
Space-Saving with Sliding Window) which implements 
additional histograms to track the expiration of the 
monitored elements. Paper [23] used divided frames to 
approximately address this issue. Zhen et al. [28] 
designed BF_LRU which adopts LRU to remove the 



mice and bloom filters to represent elephants. Although 
LRU is efficiently applied to record the most recent 
elements with time locality property, it does not provide 
fixed size of measurement window. Recently Massimo 
et al. [29] presented a new sketch based algorithm for 
mining frequent items in data streams in the time fading 
model, which introduces an estimated decaying factor to 
fade older items. 

3 Definitions of heavy hitter 

3.1 Definition 1 

Cdegree(H) — the connection degree of Host H: Given 
a host H with IP address IPH, the connection degree of 
H is the number of destinations (sources) it connects 
with as source (destination) within certain measurement 
period. 

3.2 Definition 2 

TOP-K(SN) — TOP-K heavy hitters in data stream SN: 
Assuming a data stream can be expressed as SN = 
s1,s2 …sN (N is the length of data stream), and each si 
can be expressed as (srci, dsti) pairs, find every IP 
address IPi whose connection degree is among the 
TOP-K list in data streams SN within certain 
measurement period, and Cdegree(IPi) ³ φN. 

4 FCM: Algorithm for TOP-K heavy hitter 
identification over sliding windows 

In this section, we describe our solution to solve the 
problem of both TOP-K and heavy hitter identification 
in data streams over sliding windows. We start by 
describing the Space-Saving algorithm. Then we 
introduce our proposed algorithm of FCM. 

4.1 Space Saving  

Space-Saving [16][30] is a counter-based algorithm for 
finding both the frequent items and the TOP-K elements 

which has the highest frequencies in a data stream. In 
Space-Saving, m (item, count) elements are stored to 
maintain necessary information of the data streams 
which is sorted by their estimated frequencies in the 
associated Stream-Summary data structure. When a 
newly arrived item exists in the m-length monitoring list, 
its count is incremented. If it does not match a 
monitored item, the (item, count) pair in the tail of the 
list has its item replaced with the new item, and the 
count incremented. Assuming no specific data 
distribution, Space-Saving uses a number of 1/e 
elements to find all frequent items with error e.  
Although Space Saving appears conclusively better than 
other counter-based algorithms, it still suffers from the 
deficiency issue. For example, since space saving 
executes the increment operation every time a new 
element arrives, the over-estimate-error will be 
accumulated. Considering the compact stream-summary 
structure is much smaller than the total size of data 
streams, heavy hitter which appears ahead may be 
replaced by host of low frequencies in the end of the 
data streams.  
Below is the pseudo code for Space Saving: 

 
Algorithm 1 for Space Saving: 
   
1:  Initialization(T) 
2:  function additem( Item x) { 
3:     if x Î T then  
4:            i = Query(x)  
5:            ci := ci +1 
6:            return 
7:     endif 
8:     if |T|< k then 
9:            T:= T È {x} 
10:           i:= |T|+1 
11:           ci:=1 
12:           return 
13:    endif 
14:    j:=arg minjÎT cj 
15:    cj:= cj +1 
16:    T:=TÈ {i}\{j} 
17: } 

 



4.2 FCM 

We first present the TOP-K Heavy Hitter algorithm 
—FCM—in landmark window over data streams.  
To deal with the inaccuracy problem of Space Saving 
caused by its tail-replacement mechanism, a 
complementary count-min sketch is added to calculate 
the connection degree of each host which is provided as 
the input of the stream-summary structure. So FCM 
adapts two levels of computation: The first level is 
processed using count-min sketch to filter those flows 
which do not belong to heavy hitters, and the second is 
executed by the stream-summary structure to decide 
whether the host in the arriving flow has been currently 
in the TOP-K list. In this way, the stream-summary 
structure can be provided with more accurate input. 
Since the length of the arriving data streams in definite 
time interval (for example, 5 minutes) is uncertain, the 
possibility of hash collision will arise and the sketch 
may become full with large data streams, resulting in 
weakened estimation accuracy. Considering that the 
input data streams have the nature with heavy-tailed 
distribution, FCM introduces an additional small 
memory to save the hosts with low connection degree 
and flushes this structure periodically (every t seconds). 
Therefore, FCM can greatly decrease hashing collisions 
of the sketch and enhances the accuracy and efficiency 
of Space Saving.  
As shown in Figure 1, our proposed algorithm 
—FCM— consists of two kinds of data structures. The 
first part —D2_cms— is made up of two count-min 
sketches [18] which are very compact data structures to 
estimate the connection degree of items with high 
accuracy, and the second part —topSS— is the revised 
Stream-Summary structures of space saving algorithm.  
topSS is a list utilized to keep the TOP-K elements 
sorted by their estimated connection degrees. The list is 
initially empty. It can be denoted as an array with k 
length, and each entry in this array maintains a 2-tuple 
(ip,c), where ip represents the IP address, and c denotes 
the counter of its connection degree. If a new arrived 
element in data streams exists in the TOP-K list of 
topSS, the corresponding c will be directly processed 
with increment operation. Otherwise, the connection 

degree of each host in data streams is calculated using 
D2_cms.  
The two count-min sketches used by D2_cms are 
denoted by sum_cms, filter_cms, respectively. sum_cms 
is the first count-min sketch for representing those 
elements with connection degree above certain 
threshold a. And d hash functions (h1，h2…hd) is chosen 
for membership query. Whenever a new element e 
arrives, FCM will probe d entries of sum_cms and 
estimate its connection degree Cdegree(e) as the 
minimum value of sum_cms[j, hj(e)] (1 £ j £ d). If the 
estimated value is bigger than a, the d associated 
counters will be incremented by 1. If Cdegree(e)+1 is 
bigger than the minimum c value of topSS, the element 
will be removed from sum_cms and added to the TOP-K 
summary-structure.  
Otherwise it is clear that the element either appears for 
the first time or its connection degree is below a.  
filter_cms is the second count-min sketch used to 
periodically filter those hosts with low connection 
degree. Then the d corresponding entries in filter_cms is 
added by 1. If its connection degree is now bigger than 
a, it will be removed to sum_cms. Every t seconds, the 
flush operation of filter_cms is triggered.  

IP

159.226.45.*
159.226.8.*
210.72.42.*

719
673
633

159.226.38.* 595
192.168.33.* 278
…… ……

159.226.34.* 37
159.226.8.* 7

sum_cms

topSS

filter_cms

① Exist in topSS?② Exist in sum_cms?③ Exist in filter_cms?

 
Fig. 1: The data structure of FCM 

Update procedure  

Let S=s1 s2 … sN be the input data stream that arrives 



sequentially, where each element si is a flow which can 
be briefly expressed as (srci, dsti). We use a k × 2 bit 
array, topSS[i][j] (0 £ i < k, 0 £ j < 2), to store the 
TOP-K heavy hitters. Each item in the list contains 2 
elements: The IP address of the host, the corresponding 
connection degree for this host. In another word, each 
entry in topSS can be expressed as <ip, c>. And FCM 
keeps a value minfq to be the minimum c value in 
topSS.  
For the incoming si = (srci, dsti), if srci matches the xth 
monitored item in topSS, topSS[x][1] will be updated by 
adding 1. And the connection degree of srci can be 
expressed as following: 

Cdegree(srci) = topSS[x][1] (1) 

Otherwise, if srci exists in sum_cms, FCM will calculate 
the Cdegree(srci) and compare it with minfq.  

sum_cms[j, hj(srci)] += 1, 1 £ j £ d (2) 
Cdegree(srci) = min(sum_cms[j, hj(srci)])          

1 £ j £ d   (3) 

If Cdegree(srci) is greater than minfq, the entry with the 
minimum c value of topSS will be replaced with (srci, 
Cdegree (srci)).  
The last case, if none of the above happens which 
indicates that srci represents a host of low connection 
degree. Then FCM will calculate its connection degree 
in filter_cms as below: 

filter_cms[j, hj(srci)] += 1, 1 £ j £ d (4) 

Cdegree(srci) = min(filter_cms[j, hj(srci)] ) 
1 £ j £ d (5) 

If Cdegree(srci) is above the threshold a, then srci will 
be removed from filter_cms, and inserted into sum_cms. 

4.3 FCM over sliding windows 

In this section, we introduce the extended version of 
FCM with sliding window capability, and the 
corresponding operations over it. The size of the sliding 
window in FCM is defined in terms of time units as 2s 
seconds. And each window is split into two equal 
sub_windows. So every t seconds, the filter_cms is 

flushed just the same as in Section 4.2. And every s 
seconds, all data in the data structure of the old 
sub_window are cleared which means the elements 
monitored in this period have decayed, and a new one is 
added to the head. Then FCM will jump and continue to 
work on the next 2s seconds. Using the proposed 
scheme as in Figure 2, FCM can work on dynamic 
datasets efficiently. 

 
 
 
 
 
 
 
Fig. 2: The filter-and-jump mechanism of FCM. 

So the sliding scheme of FCM is implemented using an 
additional count-min sketch and stream-summary 
structure to distinguish between historical flows and 
current flows. The datasets for the latest s minutes are 
mapped to active_topSS and active_cms, whereas topSS 
and sum_cms represent datasets for the latest 2s minutes. 
To remove the decaying elements in time, whenever a 
new item comes, both topSS and active_topSS will be 
updated. Every s seconds, topSS is outputted as the 
TOP-K measurement result. Then topSS and sum_cms 
will be flushed and FCM will switch to active_topSS 
and active_cms for data processing. 

Update procedure 

When using FCM to detect TOP-K heavy hitters over 
sliding windows, the initial values of all counters are set 
to zero. And a pointer p is defined to denote the current 
measurement windows as ((p-1)´s+1, p´s) which is 
equal to (1,s) initially. For each newly arrived element 
flow si denoted by (srci, dsti) in the stream, we execute 
the following several operations in order: 

1) First, the three data structures—topSS, sum_cms and 
filter_cms— is accessed and updated in the same way as 
described in Section 4.2. Based on it, the element is 
mapped to topSS, sum_cms or filter_cms if it matches 

t 

2s 



the corresponding measurement scope. 
2) For active_topSS and active_cms, the operation is 
just the same as being executed with topSS and 
active_cms. If srci has been included in active_topSS 
with index x’, then: 

active_topSS[x’][1] + = 1 (6) 

Otherwise, if srci is a member of active_cms, FCM will 
calculate the Cdegreeactive(srci) from active_cms and 
compare it with minfqactive. if Cdegreeactive(srci) is 
greater than minfqactive, the item with the counter equal 
to minfqactive is removed from active_topSS to 
active_cms, and (srci, Cdegreeactive (srci)) is inserted into 
active_topSS. 
3) At the end of each s minutes in data streams, FCM 
will output the TOP-K heavy hitters from topSS. Then, 
the following operation is executed to ensure that topSS 
and sum_cms continues to save elements of latest 2s 
minutes, and the elements in the latest s minutes are 
stored into active_topSS and active_cms. And p is 
incremented by 1 to move to the next s minutes for 
measurement. 

topSS = active_topSS; (7) 
sum_cms = active_cms; (8) 
Initialize(active_topSS); 
Initialize(active_cms);Initialize(filter_cms); (9) 

5 Complexity Analysis 

FCM is proposed to deal with the issue of heavy hitters 
identification in high speed networks with accurate and 
scalable solutions, so time complex is considered here. 
From the description of the FCM algorithm, 
whenever a new element e is observed, the update 
procedure is carried out by at most two kinds of 
operations: searching in the list of topSS and 
active_topSS to check whether e has existed in it, and 
update the corresponding counter if it matches; 
performing d hashing operations to calculate the 
connection degree of e in filter_cms, sum_cms and 
active_cms, and increment the same d cells by adding 1 
if the membership is verified.  
Since the above procedure can be fulfilled 

simultaneously, the time complexity of FCM can be 
measured by the operation on single count-min sketch 
and the stream-summary structure. According to [30], 
there are two versions of implementation for the Space 
Saving algorithm: SSH (Space Saving with a heap) 
which requires O(logk) time per update, and SSL (Space 
Saving with linked lists) which takes O(1) time cost. 
For FCM, point queries and updates need d hash and d 
update operations, together with a constant look up for 
certain elements in the stream-summary data structure 
implemented using linked lists. So the time required to 
insert an new item in FCM is O(1). 

6 Performance Evaluation and Experiments 

In this section, we present the experimental evaluation 
of the FCM algorithm described in the previous section. 
To verify the advantages of FCM, we choose the most 
relevant algorithm — Space Saving (SS) — for 
comparison which is prominently applied for both 
TOP-K and heavy hitters identification. We implement 
the FCM algorithm based on the SSL source code 
downloaded from MassDAL [31] and select SSL as the 
benchmark to compare with. The dataset we use to 
evaluate our proposal is generated using the network 
traffic of CSTNET (China Science & Technology 
Network), a small Internet service provider, where 288 
NetFlow trace files are collected from a backbone link 
of 10Gbps on 17th July, 2016. In all the experiments we 
use the flow five-tuple which includes source and 
destination IP addresses, source and destination ports, 
protocol. So the trace file consists of five fields. 
We summarize the overall statistics of the data traces as 
shown in Table 1. 

Table 1: Statistics of the data traces 

Dataset Statistics 

Date 

Duration 

Flow Records 

Distinct Flow Records  

Distinct Source IPs 

Distinct Destination IPs 

2016-7-17 

24 hours 

65715486 

15068363 

3327335 

3366161 



6.1 Traffic statistics of experimental datasets 

For implementing the filter-and-jump mechanism of 
FCM，we start by exploring the pattern of Internet 
traffic with detailed statistics of our experimental 
datasets. In our experiment, each unique five-tuple flow 
represents a distinct data-stream element. Figures 3 and 
4 show the dynamics of flow records and unique flow 
records every 5 minutes. Figure 3 illustrates the 
time-series graphs of the 288 traffic traces, in which the 
number of total flows and distinct flows is observed to 
change over time just like the typical model of Internet 
traffic. Meanwhile the number of distinct flows is about 
half of total flows, as illustrated in Figure 4. Figure 5 
plots the number of distinct source IPs and distinct 
destination IPs for each trace file which is quite similar 
with almost equal size. 

 

Fig. 3: The number of total flow records and distinct flow 
records for each trace file. 

Fig. 4: The radio of distinct flows to total flows for each trace 
file. 

 

 

Fig. 5: The number of distinct source IPs and distinct 
destination IPs for each trace file. 

On this basis, we provide further statistics for the hosts 
with different number of total connections and distinct 
connections. Figures 6 and 7 plot the cumulative 
distribution of those two functions which exhibits 
obvious regularity. In addition, Figure 7 draws the 
distribution of host’s distinct connections which 
highlights that there is a large number hosts with low 
frequencies in network traffic traces. For example, the 
number of hosts with single connection occupies around 
82% in 5 minutes. The number of hosts with less than 7 
connections occupies around 96%. In turn, it 
demonstrates the correctness of our design to filter those 
hosts with low frequencies in time so as to improve the 
performance of TOP-K heavy hitter detection. 

 

Fig. 6: CDF for the number of total connections of source IP 
in 5 minutes. 

 

0

100000

200000

300000

400000

1 51 101 151 201 251

No. of Trace Files

total	flows

unique	 flows

0

0.2

0.4

0.6

0.8

1 51 101 151 201 251
No. of Trace Files

unique	 flows/total	flows

0

20000

40000

60000

80000

1 51 101 151 201 251

No. of Trace Files

unique	 source	ip

unique	 destination	 ip

0.65

0.91 0.96 0.98 0.99

0

0.4

0.8

1.2

1 6 11 16 21 26 31

C
D

F 
fo

r t
he

 n
um

be
r o

f h
os

ts
 

Host's total Connections



 

Fig. 7: CDF for the number of distinct connections of source 
IP in 5 minutes. 

6.2 Performance evaluation of FCM 

To evaluate the performance of the identification 
algorithms, most of the previous studies mainly focus 
on the analysis of false positive rate and false negative 
rate. The false positives is measured by the part of items 
in the final list identified by the algorithm which 
actually are not in the TOP_K heavy hitters, and the 
false negatives refer to the part of items in the actual 
TOP_K heavy hitters which could not be identified by 
the algorithm. However, using only those two metrics 
cannot give a comprehensive overview about the 
efficiency of the algorithm. More specifically, previous 
approaches mainly focus on how to find the correct set 
while ignoring the accuracy of corresponding distinct 
values. Therefore, we define another two metrics to 
evaluate the performance of our algorithm for TOP-K 
identification as following. 

1. Ordering deviation rate: For each element e in the 
TOP-K list identified by the algorithm, the ordering 
deviation means the absolute value of the difference 
between its actual rank number seq(e) and its estimated 
rank number seq’(e). The ordering deviation rate of the 
identification algorithm is expressed as dividing the 
sum of ordering deviation by k2, which is equal to 

|"
#$% 𝑠𝑒𝑞(𝑡𝑜𝑝𝑆𝑆 𝑖 0 )– 𝑠𝑒𝑞′(𝑡𝑜𝑝𝑆𝑆 𝑖 0 )|/𝑘4. 

2. Average estimate error rate: For each element e in the 
final TOP-K list identified by the algorithm, suppose its 
actual connection degree is Cdegree(e), and estimated 
connection degree is Cdegree’(e), then its  estimate 
error rate is equal to |Cdegree(e) - Cdegree’(e)|/ 

Cdegree(e), and the average estimate error rate of the 
identification algorithm is expressed as dividing the 
sum of the estimate error rate by k, which is equal to 

|"
#$% 𝐶𝑑𝑒𝑔𝑟𝑒𝑒(𝑡𝑜𝑝𝑆𝑆 i 0 )– 𝐶𝑑𝑒𝑔𝑟𝑒𝑒′

(𝑡𝑜𝑝𝑆𝑆 𝑖 0 )|/(𝐶𝑑𝑒𝑔𝑟𝑒𝑒 𝑡𝑜𝑝𝑆𝑆 i 0 ´𝑘). 

We evaluate the performance of FCM based on our 
datasets and compare it with SS algorithm. In all 
experiments we define the host’s connection degree as 
the number of destinations it connects with as source IP 
address. 
In our first experiment, the measurement epoch is set to 
be 10 minutes. Considering the various requirements of 
security analysis in high speed network environment, we 
set k to be 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100, 
separately. Moreover, from the definition it is obviously 
that false negative rate is equal to false positive rate, so 
we neglect its computation below. Figure 8 plots the 
difference of FCM and SS in capability to identify the 
right set of TOP-K heavy hitters. The false positive rate 
of FCM gives a tight bound of 2% with slightly 
instability, while the calculated result of SS increases 
sharply with the growth of k. Obviously, FCM is 
significantly superior to SS for identifying the TOP_K 
heavy hitters in high speed networks with apparent 
accuracy and scalability.  
Once an anomaly happens, in order to quantify the 
severity of the situation, how to accurately know the 
right list of contacts for each TOP_K host is quite 
important. So to demonstrate the advantage of our 
algorithm to identify TOP-K heavy hitters in correct 
order and with precise value, we evaluate the ordering 
deviation rate (Figure 9) and average estimate error 
(Figure 10) of FCM algorithm compared with SS. The 
ordering deviation rate of SS reaches around 12% when 
k=100, while for FCM it is always below 2.8%. The 
case is almost the same for the measurement of average 
estimate error rate, when the value of SS grows 
substantially with the increase of k, while for FCM it 
keeps almost very stable.  
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Fig. 8: False Positive Rate of FCM and SS with different K. 

 

Fig. 9: Order Deviation Rate of FCM and SS with different K. 

 

Fig. 10: Average Estimate Error of FCM and SS with different 
K. 

As shown in Figure 2, the number of flow records in 
certain time interval varies significantly with the change 
of time every day. In actual environment, the network 
operator may define the measurement interval to be 1, 5 
or 10 minutes according to different requirements. 

Furthermore, the volume of network traffic may 
increase dramatically when abnormal event happens, for 
example, the slammer worm may cause many infected 
hosts to send up to ten thousand scans a second, which 
happens only occasionally. Considering the above 
situations, the scalability of the identifying algorithm is 
seriously required. To compare the scalability between 
FCM and SS, we executed the experiment using various 
value of s which is assigned to 5, 10, 15, 20, 25, till 60 
minutes dynamically. Since FCM supports sliding 
window mechanism, it is convenient to carry out this 
test. For SS, we add an additional program to provide 
the same input datasets as FCM with the corresponding 
time range. For each input, we implement the 
experiment with k=10, 50 and 100, respectively. Figures 
11-13 plot the comparison result. When k=10, both 
FCM and SS show good performance. But when the 
value of s or k increases, the accuracy of SS drops 
markedly. This is because SS needs to predefine the 
length of its linked lists, which is in inverse proportion 
to e. Therefore, when the length of the input file grows, 
the probability for replacement also increases, and the 
over-estimate-error especially for the elements in the 
tail of the linked lists increases too. In contrast, FCM is 
much more stable since the filtering mechanism 
decreases the possibility of collisions. The first 
count-min sketch in FCM is refreshed regularly, which 
is executed per minute in our experiment, and is not 
affected by the variability of k or s. 

 

Fig. 11: False Positive Rate of FCM and SS with different s. 
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Fig. 12: Ordering Deviation Rate of FCM and SS with   
different s. 

 

Fig. 13: Average Estimate Error Rate of FCM and SS with 
different s. 

7 Conclusions 

Heavy hitters identification in high speed networks is an 
important yet challenging issue in many security 
analysis scenarios such as the detection of port scans 
and DDoS attacks, and tracking worm propagations. In 
this paper we have addressed this problem based on a 
new insight, i.e., a large proportion of the total traffic is 
occupied by hosts with low frequencies and removing 
those elements in time can further decrease the 
over-estimate-error caused by hash collision. Based on 
it, we have developed a novel algorithm called FCM to 
identify TOP-K heavy hitters over sliding windows. The 
algorithm consists of two level of data process. The first 
level is a multistage filter implemented with count-min 
sketches — hosts with low connection degree are 

filtered periodically and only those with connection 
degree above the threshold are passed to the next level 
for process. At the second level, a stream-summary 
structure is implemented and enhanced to calculate the 
final TOP-K heavy hitter list. A jumping scheme has 
also proposed to support dynamic datasets in a sliding 
way.  
We have compared our proposal with the best 
counter-based algorithm in terms of the metrics such as 
the false positive rate and estimate error rate with real 
data traces collected from an Internet service provider. 
Extensive experimental results have been conducted to 
demonstrate the effectiveness of our approach, and the 
results have shown that this method can identify the 
TOP-K heavy hitters precisely and efficiently. Although 
our current scheme is mainly carried on the 
improvement of Space Saving, this method is also 
suitable for many data processing tasks with 
heavy-tailed traffic and can be applied to other 
algorithms to improve the efficiency. In addition, this 
work sheds new light on exploring network anomalies, 
and it can be extended to deal with many other practical 
problems such as detection of heavy distinct hitters. 
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