
Efficient Identification of TOP-K Heavy Hitters over Sliding

Windows

Haina Tang1, Yulei Wu2, Tong Li3, Chunjing Han3, Jingguo Ge3, Xiangpeng Zhao1

Abstract. Due to the increasing volume of network
traffic and growing complexity of network environment,
rapid identification of heavy hitters is quite challenging.
To deal with the massive data streams in real-time,
accurate and scalable solution is required. The traditional
method to keep an individual counter for each host in the
whole data streams is very resource-consuming. This
paper presents a new data structure called FCM and its
associated algorithms. FCM combines the count-min
sketch with the stream-summary structure
simultaneously for efficient TOP-K heavy hitter
identification in one pass. The key point of this algorithm
is that it introduces a novel filter-and-jump mechanism.

Given that the Internet traffic has the property of being
heavy-tailed and hosts of low frequencies account for the
majority of the IP addresses, FCM periodically filters the
mice from input streams to efficiently improve the
accuracy of TOP-K heavy hitter identification. On the
other hand, considering that abnormal events are always
time sensitive, our algorithm works by adjusting its
measurement window to the newly arrived elements in
the data streams automatically. Our experimental results
demonstrate that the performance of FCM is superior to
the previous related algorithm. Additionally this solution
has a good prospect of application in advanced network
environment.

Haina Tang1

hntang@ucas.ac.cn

Yulei Wu2

y.l.wu@exeter.ac.uk

Tong Li3

litong@iie.ac.cn

Chunjing Han3

hanchunjing@iie.ac.cn

Jingguo Ge3

gejingguo@iie.ac.cn

Xiangpeng Zhao1

zhaoxiangpeng16@mails.ucas.ac.cn

1 School of Engineering Science, University of Chinese

Academy of Sciences, Beijing, 100049, China
2 School of Engineering, Mathematics and Physical Sciences,

University of Exeter, Exeter, EX4 4QF, UK
3 Institute of Information Engineering, Chinese Academy of

Science, Beijing, 100195, China

Keywords heavy hitters · count-min sketch · Space
Saving · sliding window

1 Introduction

Currently, with the rapid growth of Internet traffic,
characterizing network anomalies in real-time becomes
progressively more challenging. An important indicator
for detecting abnormal network events is the substantial
increase in the number of flows [1-2]. For example,
when a compromised host wants to infect a large number
of other machines, it may carry out a wide range scan to
find possible victims which will result in an unexpected
large number of network connections. Moreover, during
distributed denial-of-service (DDoS) attacks, the targeted
machine typically receives tremendous requests from
various sources which may overload the system and
prevent it from providing normal service to its users.
The heavy hitter generally refers to an element with high
occurrence in data streams. When defined in network

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Exeter

https://core.ac.uk/display/266992009?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

environment, it often represents a host which connects
with large number of sources (or destinations) during a
definite time interval. If we take the incoming element as
NetFlow 5-tuple records, the problem of heavy hitter
identification can be formulated as follows: given a
stream SN = s1,s2 …sN with the format of <sourceIP,
sourcePort, destinationIP, destionPort, protocol>, find
sourceIP (or destinationIP) that is paired with a large
number of destinationIP (or sourceIP) which is above a
predefined threshold. Identification of heavy hitters is
helpful for detecting the on-going malicious events such
as DDoS attacks, worm propagation and port scans.
However, nowadays the exponentially increasing traffic
and emerging network environment bring new challenge
to the solution of this issue. According to Akamai latest
Internet security report [3], the size, complexity and
frequency of Internet malicious activities have greatly
increased in the past decades. On the other side,
considering the crucial importance of Smart Grids,
malicious attacks are more damaging which may disrupt
the sensitive information and critical operations on the
complex infrastructure [4]. So given the strict
requirement of Smart Grids in terms of robustness and
performance [5-6], high demand for the accuracy and
scalability of the recognizing algorithms is put forward
accordingly.
In this paper, we work on the following problems which
are ignored in most of previous studies. First, abnormal
events are generally time-sensitive which require to be
detected using the latest arrived items in data streams
over sliding windows. Dealing with datasets in
statically predefined interval may miss the targets which
happen across the border of two adjacent measurement
windows. Second, when the network behaves
abnormally, the number of flows in definite interval
may increase sharply. The problem is much more severe
for high speed environment. Considering that Internet
traffic has the property of being heavy-tailed, hosts of
low frequencies make up a large proportion in data
streams. Dealing with those hosts increases the memory
consumption together with more possibilities of hash
collisions for both counter-based and sketch-based
solutions. Last, since currently network operators are
accustomed to monitor the top lists of suspected events,

the algorithm should be able to provide solution for
both TOP-K and heavy hitter identification over sliding
windows.
Targeting at those challenges, we propose a new
algorithm called FCM for identifying heavy hitters. To
summarize, the main contributions of this paper are as
follows:

(1) The proposed FCM algorithm provides an efficient
filter-and-jump scheme to detect Top-K heavy
hitters over sliding windows. Count-min sketches
are constructed to calculate the number of
connections for each host in previous 2s seconds,
and a dynamic pointer is used to continuously
adjust the measurement window in real-time and
trigger the update of the structure.

(2) Due to the limited computational resources of
advanced network environments like Smart Grids,
hosts with little possibility of heavy hitter should be
deleted in time to make space for new data. FCM
periodically filters hosts of low frequencies with
size below certain threshold. Therefore, the
accuracy of the algorithm can be greatly improved.

(3) A revised and enhanced version of the Space
Saving algorithm is designed to get the TOP-K list
of heavy hitters with arbitrary ranking. Although
space saving has provided a lightweight and
effective solution for TOP-K elements detection in
data streams, papers also found that its
over-estimate-error is relatively high [7]. Instead of
incrementing its counter every time a new element
arrives, our algorithm redesigns the space saving
algorithm to update the corresponding counter only
when needed.

(4) Extensive experiments are conducted to validate
the accuracy and evaluate the performance of the
proposed algorithm. The results show that the FCM
outperforms the existing related algorithm in terms
of false positive rate, false negative rate, ordering
deviation rate and average estimate error rate.

The remainder of the paper is organized as follows.
After introducing the related work of TOP-K heavy
hitter identification in Section 2, we present the relevant

definitions to be used in subsequent sections in Section
3. Section 4 elaborates the design of the proposed FCM
algorithm. Then a performance study of this algorithm
is reported in Section 5. Section 6 evaluates the
performance of the algorithm via extensive experiments,
and finally Section 7 concludes this work.

2 Related Work

In this section, we summarize existing solutions for
identifying heavy hitter elements.
Currently, extensive studies have been conducted and
various algorithms have been proposed on identifying
heavy hitters. For example, both the snort intrusion
detection system [8] and Flowscan [9] detected port
scans by maintaining a counter for every host which
records the number of distinct IP addresses it connects
with in the past several minutes. This solution is not
feasible when carried out in high speed networks. Paper
[10] proposed a family of bitmap algorithms to address
this problem, in which a bitmap is allocated to estimate
the number of contacts for every IP addresses, and
another index structure is used for mapping the IP
address to this bitmap. Obviously, maintaining 4 bytes
bitmap for each IP address is space consuming. The
authors in [11] presented a virtual connection degree
sketch for estimating the connection of hosts in high
speed environments, together with a filtered bitmap to
reduce the noise information caused by the bit-sharing
mechanism. Paper [12] proposed a hash-based algorithm
to find heavy hitters which implements
one-level/two-level filtering to sample the input streams.
This algorithm demonstrates better scalability since it
does not need to keep state for each host. However,
paper [13] also pointed out that the hashing and sampling
mechanism results in high estimate error, and the
bucket-chaining and sorting process also brings
overheads.
Another similar problem is the identification of frequent
items which generally includes two kinds of solutions:
counter-based algorithms such as Lossy Counting [14],
Frequent [15], Space-Saving [16], and sketch-based
methods such as Count Sketch [17], Count Min-Sketch

(CM) [18], and LD-Sketch [19].
Sketch-based methods use techniques such as hashing to
map items to a reduced set of counters, and maintain
approximate summaries of all elements in the stream.
Among those solutions, count-min sketch is predominant
than others for summarizing large scale datasets with
strong accuracy guarantees [20]. The algorithm works in
a fixed amount of space to store counting information
which is independent with the size of the input streams.
However, due to its sub-linear space for the counters,
papers [21-22] pointed out that the frequency-estimation
error may increase as more and more items come, and
the items with low frequency may be incorrectly
recognized as high-frequency ones. Moreover, sketches
are not reversible to provide the corresponding keys
since they only store the counters, therefore they are not
suitable to be used for TOP-K solution directly.
Counter-based algorithms maintain a small fixed
number of items from the inputs, and monitor counts
associated with them. Space-Saving is the best
counter-based algorithm which can provide both
frequent items and TOP-K solutions. It takes limited
space and delivers better performance over other
algorithms. Several papers [7][23] have pointed out the
shortcoming of Space Saving and various solutions
have been implemented on how to improve it efficiently.
For example, considering the inaccuracy problem that
elements which appear in the end of the data stream
with low frequencies are more likely to be misclassified
as TOP-K elements, Nuno Homem et al. [7] provided
solutions which combines hash table and space saving
method to eliminate the over-estimate-error. Parallel
versions of Space Saving [24-25] have also been
presented to accelerate its performance. Most recently
Ran Ben-Basat et al. [26] redesigned Space Saving with
statically allocated memory and demonstrated better
performance for the space requirement.
For detection of heavy hitters over sliding windows, the
authors in [27] presented an FSW algorithm (Filtered
Space-Saving with Sliding Window) which implements
additional histograms to track the expiration of the
monitored elements. Paper [23] used divided frames to
approximately address this issue. Zhen et al. [28]
designed BF_LRU which adopts LRU to remove the

mice and bloom filters to represent elephants. Although
LRU is efficiently applied to record the most recent
elements with time locality property, it does not provide
fixed size of measurement window. Recently Massimo
et al. [29] presented a new sketch based algorithm for
mining frequent items in data streams in the time fading
model, which introduces an estimated decaying factor to
fade older items.

3 Definitions of heavy hitter

3.1 Definition 1

Cdegree(H) — the connection degree of Host H: Given
a host H with IP address IPH, the connection degree of
H is the number of destinations (sources) it connects
with as source (destination) within certain measurement
period.

3.2 Definition 2

TOP-K(SN) — TOP-K heavy hitters in data stream SN:
Assuming a data stream can be expressed as SN =
s1,s2 …sN (N is the length of data stream), and each si
can be expressed as (srci, dsti) pairs, find every IP
address IPi whose connection degree is among the
TOP-K list in data streams SN within certain
measurement period, and Cdegree(IPi) ³ φN.

4 FCM: Algorithm for TOP-K heavy hitter
identification over sliding windows

In this section, we describe our solution to solve the
problem of both TOP-K and heavy hitter identification
in data streams over sliding windows. We start by
describing the Space-Saving algorithm. Then we
introduce our proposed algorithm of FCM.

4.1 Space Saving

Space-Saving [16][30] is a counter-based algorithm for
finding both the frequent items and the TOP-K elements

which has the highest frequencies in a data stream. In
Space-Saving, m (item, count) elements are stored to
maintain necessary information of the data streams
which is sorted by their estimated frequencies in the
associated Stream-Summary data structure. When a
newly arrived item exists in the m-length monitoring list,
its count is incremented. If it does not match a
monitored item, the (item, count) pair in the tail of the
list has its item replaced with the new item, and the
count incremented. Assuming no specific data
distribution, Space-Saving uses a number of 1/e
elements to find all frequent items with error e.
Although Space Saving appears conclusively better than
other counter-based algorithms, it still suffers from the
deficiency issue. For example, since space saving
executes the increment operation every time a new
element arrives, the over-estimate-error will be
accumulated. Considering the compact stream-summary
structure is much smaller than the total size of data
streams, heavy hitter which appears ahead may be
replaced by host of low frequencies in the end of the
data streams.
Below is the pseudo code for Space Saving:

Algorithm 1 for Space Saving:

1: Initialization(T)
2: function additem(Item x) {
3: if x Î T then
4: i = Query(x)
5: ci := ci +1
6: return
7: endif
8: if |T|< k then
9: T:= T È {x}
10: i:= |T|+1
11: ci:=1
12: return
13: endif
14: j:=arg minjÎT cj
15: cj:= cj +1
16: T:=TÈ {i}\{j}
17: }

4.2 FCM

We first present the TOP-K Heavy Hitter algorithm
—FCM—in landmark window over data streams.
To deal with the inaccuracy problem of Space Saving
caused by its tail-replacement mechanism, a
complementary count-min sketch is added to calculate
the connection degree of each host which is provided as
the input of the stream-summary structure. So FCM
adapts two levels of computation: The first level is
processed using count-min sketch to filter those flows
which do not belong to heavy hitters, and the second is
executed by the stream-summary structure to decide
whether the host in the arriving flow has been currently
in the TOP-K list. In this way, the stream-summary
structure can be provided with more accurate input.
Since the length of the arriving data streams in definite
time interval (for example, 5 minutes) is uncertain, the
possibility of hash collision will arise and the sketch
may become full with large data streams, resulting in
weakened estimation accuracy. Considering that the
input data streams have the nature with heavy-tailed
distribution, FCM introduces an additional small
memory to save the hosts with low connection degree
and flushes this structure periodically (every t seconds).
Therefore, FCM can greatly decrease hashing collisions
of the sketch and enhances the accuracy and efficiency
of Space Saving.
As shown in Figure 1, our proposed algorithm
—FCM— consists of two kinds of data structures. The
first part —D2_cms— is made up of two count-min
sketches [18] which are very compact data structures to
estimate the connection degree of items with high
accuracy, and the second part —topSS— is the revised
Stream-Summary structures of space saving algorithm.
topSS is a list utilized to keep the TOP-K elements
sorted by their estimated connection degrees. The list is
initially empty. It can be denoted as an array with k
length, and each entry in this array maintains a 2-tuple
(ip,c), where ip represents the IP address, and c denotes
the counter of its connection degree. If a new arrived
element in data streams exists in the TOP-K list of
topSS, the corresponding c will be directly processed
with increment operation. Otherwise, the connection

degree of each host in data streams is calculated using
D2_cms.
The two count-min sketches used by D2_cms are
denoted by sum_cms, filter_cms, respectively. sum_cms
is the first count-min sketch for representing those
elements with connection degree above certain
threshold a. And d hash functions (h1，h2…hd) is chosen
for membership query. Whenever a new element e
arrives, FCM will probe d entries of sum_cms and
estimate its connection degree Cdegree(e) as the
minimum value of sum_cms[j, hj(e)] (1 £ j £ d). If the
estimated value is bigger than a, the d associated
counters will be incremented by 1. If Cdegree(e)+1 is
bigger than the minimum c value of topSS, the element
will be removed from sum_cms and added to the TOP-K
summary-structure.
Otherwise it is clear that the element either appears for
the first time or its connection degree is below a.
filter_cms is the second count-min sketch used to
periodically filter those hosts with low connection
degree. Then the d corresponding entries in filter_cms is
added by 1. If its connection degree is now bigger than
a, it will be removed to sum_cms. Every t seconds, the
flush operation of filter_cms is triggered.

IP

159.226.45.*
159.226.8.*
210.72.42.*

719
673
633

159.226.38.* 595
192.168.33.* 278
…… ……

159.226.34.* 37
159.226.8.* 7

sum_cms

topSS

filter_cms

① Exist in topSS?② Exist in sum_cms?③ Exist in filter_cms?

Fig. 1: The data structure of FCM

Update procedure

Let S=s1 s2 … sN be the input data stream that arrives

sequentially, where each element si is a flow which can
be briefly expressed as (srci, dsti). We use a k × 2 bit
array, topSS[i][j] (0 £ i < k, 0 £ j < 2), to store the
TOP-K heavy hitters. Each item in the list contains 2
elements: The IP address of the host, the corresponding
connection degree for this host. In another word, each
entry in topSS can be expressed as <ip, c>. And FCM
keeps a value minfq to be the minimum c value in
topSS.
For the incoming si = (srci, dsti), if srci matches the xth
monitored item in topSS, topSS[x][1] will be updated by
adding 1. And the connection degree of srci can be
expressed as following:

Cdegree(srci) = topSS[x][1] (1)

Otherwise, if srci exists in sum_cms, FCM will calculate
the Cdegree(srci) and compare it with minfq.

sum_cms[j, hj(srci)] += 1, 1 £ j £ d (2)
Cdegree(srci) = min(sum_cms[j, hj(srci)])

1 £ j £ d (3)

If Cdegree(srci) is greater than minfq, the entry with the
minimum c value of topSS will be replaced with (srci,
Cdegree (srci)).
The last case, if none of the above happens which
indicates that srci represents a host of low connection
degree. Then FCM will calculate its connection degree
in filter_cms as below:

filter_cms[j, hj(srci)] += 1, 1 £ j £ d (4)

Cdegree(srci) = min(filter_cms[j, hj(srci)])
1 £ j £ d (5)

If Cdegree(srci) is above the threshold a, then srci will
be removed from filter_cms, and inserted into sum_cms.

4.3 FCM over sliding windows

In this section, we introduce the extended version of
FCM with sliding window capability, and the
corresponding operations over it. The size of the sliding
window in FCM is defined in terms of time units as 2s
seconds. And each window is split into two equal
sub_windows. So every t seconds, the filter_cms is

flushed just the same as in Section 4.2. And every s
seconds, all data in the data structure of the old
sub_window are cleared which means the elements
monitored in this period have decayed, and a new one is
added to the head. Then FCM will jump and continue to
work on the next 2s seconds. Using the proposed
scheme as in Figure 2, FCM can work on dynamic
datasets efficiently.

Fig. 2: The filter-and-jump mechanism of FCM.

So the sliding scheme of FCM is implemented using an
additional count-min sketch and stream-summary
structure to distinguish between historical flows and
current flows. The datasets for the latest s minutes are
mapped to active_topSS and active_cms, whereas topSS
and sum_cms represent datasets for the latest 2s minutes.
To remove the decaying elements in time, whenever a
new item comes, both topSS and active_topSS will be
updated. Every s seconds, topSS is outputted as the
TOP-K measurement result. Then topSS and sum_cms
will be flushed and FCM will switch to active_topSS
and active_cms for data processing.

Update procedure

When using FCM to detect TOP-K heavy hitters over
sliding windows, the initial values of all counters are set
to zero. And a pointer p is defined to denote the current
measurement windows as ((p-1)´s+1, p´s) which is
equal to (1,s) initially. For each newly arrived element
flow si denoted by (srci, dsti) in the stream, we execute
the following several operations in order:

1) First, the three data structures—topSS, sum_cms and
filter_cms— is accessed and updated in the same way as
described in Section 4.2. Based on it, the element is
mapped to topSS, sum_cms or filter_cms if it matches

t

2s

the corresponding measurement scope.
2) For active_topSS and active_cms, the operation is
just the same as being executed with topSS and
active_cms. If srci has been included in active_topSS
with index x’, then:

active_topSS[x’][1] + = 1 (6)

Otherwise, if srci is a member of active_cms, FCM will
calculate the Cdegreeactive(srci) from active_cms and
compare it with minfqactive. if Cdegreeactive(srci) is
greater than minfqactive, the item with the counter equal
to minfqactive is removed from active_topSS to
active_cms, and (srci, Cdegreeactive (srci)) is inserted into
active_topSS.
3) At the end of each s minutes in data streams, FCM
will output the TOP-K heavy hitters from topSS. Then,
the following operation is executed to ensure that topSS
and sum_cms continues to save elements of latest 2s
minutes, and the elements in the latest s minutes are
stored into active_topSS and active_cms. And p is
incremented by 1 to move to the next s minutes for
measurement.

topSS = active_topSS; (7)
sum_cms = active_cms; (8)
Initialize(active_topSS);
Initialize(active_cms);Initialize(filter_cms); (9)

5 Complexity Analysis

FCM is proposed to deal with the issue of heavy hitters
identification in high speed networks with accurate and
scalable solutions, so time complex is considered here.
From the description of the FCM algorithm,
whenever a new element e is observed, the update
procedure is carried out by at most two kinds of
operations: searching in the list of topSS and
active_topSS to check whether e has existed in it, and
update the corresponding counter if it matches;
performing d hashing operations to calculate the
connection degree of e in filter_cms, sum_cms and
active_cms, and increment the same d cells by adding 1
if the membership is verified.
Since the above procedure can be fulfilled

simultaneously, the time complexity of FCM can be
measured by the operation on single count-min sketch
and the stream-summary structure. According to [30],
there are two versions of implementation for the Space
Saving algorithm: SSH (Space Saving with a heap)
which requires O(logk) time per update, and SSL (Space
Saving with linked lists) which takes O(1) time cost.
For FCM, point queries and updates need d hash and d
update operations, together with a constant look up for
certain elements in the stream-summary data structure
implemented using linked lists. So the time required to
insert an new item in FCM is O(1).

6 Performance Evaluation and Experiments

In this section, we present the experimental evaluation
of the FCM algorithm described in the previous section.
To verify the advantages of FCM, we choose the most
relevant algorithm — Space Saving (SS) — for
comparison which is prominently applied for both
TOP-K and heavy hitters identification. We implement
the FCM algorithm based on the SSL source code
downloaded from MassDAL [31] and select SSL as the
benchmark to compare with. The dataset we use to
evaluate our proposal is generated using the network
traffic of CSTNET (China Science & Technology
Network), a small Internet service provider, where 288
NetFlow trace files are collected from a backbone link
of 10Gbps on 17th July, 2016. In all the experiments we
use the flow five-tuple which includes source and
destination IP addresses, source and destination ports,
protocol. So the trace file consists of five fields.
We summarize the overall statistics of the data traces as
shown in Table 1.

Table 1: Statistics of the data traces

Dataset Statistics

Date

Duration

Flow Records

Distinct Flow Records

Distinct Source IPs

Distinct Destination IPs

2016-7-17

24 hours

65715486

15068363

3327335

3366161

6.1 Traffic statistics of experimental datasets

For implementing the filter-and-jump mechanism of
FCM，we start by exploring the pattern of Internet
traffic with detailed statistics of our experimental
datasets. In our experiment, each unique five-tuple flow
represents a distinct data-stream element. Figures 3 and
4 show the dynamics of flow records and unique flow
records every 5 minutes. Figure 3 illustrates the
time-series graphs of the 288 traffic traces, in which the
number of total flows and distinct flows is observed to
change over time just like the typical model of Internet
traffic. Meanwhile the number of distinct flows is about
half of total flows, as illustrated in Figure 4. Figure 5
plots the number of distinct source IPs and distinct
destination IPs for each trace file which is quite similar
with almost equal size.

Fig. 3: The number of total flow records and distinct flow
records for each trace file.

Fig. 4: The radio of distinct flows to total flows for each trace
file.

Fig. 5: The number of distinct source IPs and distinct
destination IPs for each trace file.

On this basis, we provide further statistics for the hosts
with different number of total connections and distinct
connections. Figures 6 and 7 plot the cumulative
distribution of those two functions which exhibits
obvious regularity. In addition, Figure 7 draws the
distribution of host’s distinct connections which
highlights that there is a large number hosts with low
frequencies in network traffic traces. For example, the
number of hosts with single connection occupies around
82% in 5 minutes. The number of hosts with less than 7
connections occupies around 96%. In turn, it
demonstrates the correctness of our design to filter those
hosts with low frequencies in time so as to improve the
performance of TOP-K heavy hitter detection.

Fig. 6: CDF for the number of total connections of source IP
in 5 minutes.

0

100000

200000

300000

400000

1 51 101 151 201 251

No. of Trace Files

total	flows

unique	 flows

0

0.2

0.4

0.6

0.8

1 51 101 151 201 251
No. of Trace Files

unique	 flows/total	flows

0

20000

40000

60000

80000

1 51 101 151 201 251

No. of Trace Files

unique	 source	ip

unique	 destination	 ip

0.65

0.91 0.96 0.98 0.99

0

0.4

0.8

1.2

1 6 11 16 21 26 31

C
D

F
fo

r t
he

 n
um

be
r o

f h
os

ts

Host's total Connections

Fig. 7: CDF for the number of distinct connections of source
IP in 5 minutes.

6.2 Performance evaluation of FCM

To evaluate the performance of the identification
algorithms, most of the previous studies mainly focus
on the analysis of false positive rate and false negative
rate. The false positives is measured by the part of items
in the final list identified by the algorithm which
actually are not in the TOP_K heavy hitters, and the
false negatives refer to the part of items in the actual
TOP_K heavy hitters which could not be identified by
the algorithm. However, using only those two metrics
cannot give a comprehensive overview about the
efficiency of the algorithm. More specifically, previous
approaches mainly focus on how to find the correct set
while ignoring the accuracy of corresponding distinct
values. Therefore, we define another two metrics to
evaluate the performance of our algorithm for TOP-K
identification as following.

1. Ordering deviation rate: For each element e in the
TOP-K list identified by the algorithm, the ordering
deviation means the absolute value of the difference
between its actual rank number seq(e) and its estimated
rank number seq’(e). The ordering deviation rate of the
identification algorithm is expressed as dividing the
sum of ordering deviation by k2, which is equal to

|"
#$% 𝑠𝑒𝑞(𝑡𝑜𝑝𝑆𝑆 𝑖 0)– 𝑠𝑒𝑞′(𝑡𝑜𝑝𝑆𝑆 𝑖 0)|/𝑘4.

2. Average estimate error rate: For each element e in the
final TOP-K list identified by the algorithm, suppose its
actual connection degree is Cdegree(e), and estimated
connection degree is Cdegree’(e), then its estimate
error rate is equal to |Cdegree(e) - Cdegree’(e)|/

Cdegree(e), and the average estimate error rate of the
identification algorithm is expressed as dividing the
sum of the estimate error rate by k, which is equal to

|"
#$% 𝐶𝑑𝑒𝑔𝑟𝑒𝑒(𝑡𝑜𝑝𝑆𝑆 i 0)– 𝐶𝑑𝑒𝑔𝑟𝑒𝑒′

(𝑡𝑜𝑝𝑆𝑆 𝑖 0)|/(𝐶𝑑𝑒𝑔𝑟𝑒𝑒 𝑡𝑜𝑝𝑆𝑆 i 0 ´𝑘).

We evaluate the performance of FCM based on our
datasets and compare it with SS algorithm. In all
experiments we define the host’s connection degree as
the number of destinations it connects with as source IP
address.
In our first experiment, the measurement epoch is set to
be 10 minutes. Considering the various requirements of
security analysis in high speed network environment, we
set k to be 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100,
separately. Moreover, from the definition it is obviously
that false negative rate is equal to false positive rate, so
we neglect its computation below. Figure 8 plots the
difference of FCM and SS in capability to identify the
right set of TOP-K heavy hitters. The false positive rate
of FCM gives a tight bound of 2% with slightly
instability, while the calculated result of SS increases
sharply with the growth of k. Obviously, FCM is
significantly superior to SS for identifying the TOP_K
heavy hitters in high speed networks with apparent
accuracy and scalability.
Once an anomaly happens, in order to quantify the
severity of the situation, how to accurately know the
right list of contacts for each TOP_K host is quite
important. So to demonstrate the advantage of our
algorithm to identify TOP-K heavy hitters in correct
order and with precise value, we evaluate the ordering
deviation rate (Figure 9) and average estimate error
(Figure 10) of FCM algorithm compared with SS. The
ordering deviation rate of SS reaches around 12% when
k=100, while for FCM it is always below 2.8%. The
case is almost the same for the measurement of average
estimate error rate, when the value of SS grows
substantially with the increase of k, while for FCM it
keeps almost very stable.

0.83

0.92

0.96 0.97 0.99 0.99

0.7

0.8

0.9

1

1.1

1 4 7 10 13

C
D

F
fo

r t
he

 n
um

be
r o

f h
os

ts

Host's distinct connections

Fig. 8: False Positive Rate of FCM and SS with different K.

Fig. 9: Order Deviation Rate of FCM and SS with different K.

Fig. 10: Average Estimate Error of FCM and SS with different
K.

As shown in Figure 2, the number of flow records in
certain time interval varies significantly with the change
of time every day. In actual environment, the network
operator may define the measurement interval to be 1, 5
or 10 minutes according to different requirements.

Furthermore, the volume of network traffic may
increase dramatically when abnormal event happens, for
example, the slammer worm may cause many infected
hosts to send up to ten thousand scans a second, which
happens only occasionally. Considering the above
situations, the scalability of the identifying algorithm is
seriously required. To compare the scalability between
FCM and SS, we executed the experiment using various
value of s which is assigned to 5, 10, 15, 20, 25, till 60
minutes dynamically. Since FCM supports sliding
window mechanism, it is convenient to carry out this
test. For SS, we add an additional program to provide
the same input datasets as FCM with the corresponding
time range. For each input, we implement the
experiment with k=10, 50 and 100, respectively. Figures
11-13 plot the comparison result. When k=10, both
FCM and SS show good performance. But when the
value of s or k increases, the accuracy of SS drops
markedly. This is because SS needs to predefine the
length of its linked lists, which is in inverse proportion
to e. Therefore, when the length of the input file grows,
the probability for replacement also increases, and the
over-estimate-error especially for the elements in the
tail of the linked lists increases too. In contrast, FCM is
much more stable since the filtering mechanism
decreases the possibility of collisions. The first
count-min sketch in FCM is refreshed regularly, which
is executed per minute in our experiment, and is not
affected by the variability of k or s.

Fig. 11: False Positive Rate of FCM and SS with different s.

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

5 25 45 65 85

Fa
ls

e
Po

st
iv

e R
at

e

k

SS

FCM

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

5 30 55 80

O
rd

er
in

g
D

ev
ia

tio
n

R
at

e

k

SS

FCM

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

1.40%

5 30 55 80

A
ve

ra
ge

 E
st

im
at

e
Er

ro
r R

at
e

k

SS

FCM

0%

4%

8%

12%

16%

20%

5 10 15 20 25 30 35 40 45 50 55 60

Fa
ls

e
Po

si
tiv

e R
at

e

2s

SS_10

SS_50

SS_100

FCM_10

FCM_50

FCM_100

Fig. 12: Ordering Deviation Rate of FCM and SS with
different s.

Fig. 13: Average Estimate Error Rate of FCM and SS with
different s.

7 Conclusions

Heavy hitters identification in high speed networks is an
important yet challenging issue in many security
analysis scenarios such as the detection of port scans
and DDoS attacks, and tracking worm propagations. In
this paper we have addressed this problem based on a
new insight, i.e., a large proportion of the total traffic is
occupied by hosts with low frequencies and removing
those elements in time can further decrease the
over-estimate-error caused by hash collision. Based on
it, we have developed a novel algorithm called FCM to
identify TOP-K heavy hitters over sliding windows. The
algorithm consists of two level of data process. The first
level is a multistage filter implemented with count-min
sketches — hosts with low connection degree are

filtered periodically and only those with connection
degree above the threshold are passed to the next level
for process. At the second level, a stream-summary
structure is implemented and enhanced to calculate the
final TOP-K heavy hitter list. A jumping scheme has
also proposed to support dynamic datasets in a sliding
way.
We have compared our proposal with the best
counter-based algorithm in terms of the metrics such as
the false positive rate and estimate error rate with real
data traces collected from an Internet service provider.
Extensive experimental results have been conducted to
demonstrate the effectiveness of our approach, and the
results have shown that this method can identify the
TOP-K heavy hitters precisely and efficiently. Although
our current scheme is mainly carried on the
improvement of Space Saving, this method is also
suitable for many data processing tasks with
heavy-tailed traffic and can be applied to other
algorithms to improve the efficiency. In addition, this
work sheds new light on exploring network anomalies,
and it can be extended to deal with many other practical
problems such as detection of heavy distinct hitters.

Acknowledgements

This work was supported in part by the Strategic
Priority Research Program of the Chinese Academy of
Sciences under Grant No. XDA06010306 and the
National Natural Science Foundation of China under
Grant No. 61303241. Furthermore, this work is done
also with the support of Chinese Academy of Sciences
project under Grant No. CXJJ-16M119.

References

[1] Q. Zhao, A. Kumar, and J. Xu, "Joint data
streaming and sampling techniques for detection of
super sources and destinations", in Proceedings of
the 5th ACM SIGCOMM conference on Internet
Measurement, pp. 7-7, October 2005.

[2] R. Kompella, S. Singh, and G. Varghese, "On
scalable attack detection in the network", in
Proceedings of the 4th ACM SIGCOMM

0%

4%

8%

12%

16%

20%

5 10 15 20 25 30 35 40 45 50 55 60

O
rd

er
in

g
D

ev
ia

tio
n

R
at

e

2s

SS_10

SS_50

SS_100

FCM_10

FCM_50

FCM_100

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

5 10 15 20 25 30 35 40 45 50 55 60

A
ve

ra
ge

 E
si

tm
ea

te
 E

rro
r

R
at

e

2s

SS-10
SS-50
SS-100
FCM-10
FCM-50
FCM-100

conference on Internet Measurement, pp. 187-200,
October 2004.

[3] Akamai, "Akamai Q1 2016 State of the Internet
Security Report", [Online].
https://content.akamai.com/PG6292-SOTI-Securit
y.html. Accessed October 2016.

[4] S. Shapsough, F. Qatan, R. Aburukba, F. Aloul,
and A. Ali, "Smart grid cyber security: Challenges
and solutions", in International Conference on
Smart Grid and Clean Energy Technologies
(ICSGCE), pp. 170-175, October 2015.

[5] Y. Yao, S. Xiong, H. Qi, Y. Liu, L. Tolbert, and Q.
Cao, "Efficient Histogram Estimation for Smart
Grid Data Processing With the
Loglog-Bloom-Filter", IEEE Transactions on
Smart Grid, vol. 6, no. 1, pp. 199-208, August
2014.

[6] A. Procopiou, and N. Komninos, "Current and
Future Threats Framework in Smart Grid Domain",
in IEEE International Conference on Cyber
Technology in Automation Control and
Intelligence Systems(CYBER), pp. 1852-1857,
June 2015.

[7] N. Homem, and J. Carvalho, "Finding top- k
elements in data streams", Information Sciences,
vol. 180, no. 24, pp. 4958-4974, December 2010.

[8] M. Roesch, "Snort–lightweight intrusion detection
for networks", in Proceedings of the USENIX
LISA 1999, pp. 229-238, November 1999.

[9] D. Plonka, "FlowScan: A Network Traffic Flow
Reporting and Visualization Tool", in Proceedings
of USENIX LISA 2000, pp. 305–317, December
2000.

[10] C. Estan, G. Varghese, and M. Fiskin, "Bitmap
algorithms for counting active flows on high speed
links", in Proceedings of the 3rd ACM SIGCOMM
conference on Internet Measurement, pp. 153-166,
October 2003.

[11] P. Wang, X. Guan, W. Gong, and D. Towsley, "A
new virtual indexing method for measuring host
connection degrees", in INFOCOM 2011, pp.
156-160, April 2011.

[12] S. Venkataraman, D. Song, P. Gibbons, and A.
Blum, "New Streaming Algorithms for Fast

Detection of Superspreaders", in Proceedings of
Network and Distributed System Security
Symposium (NDSS), pp. 149-166, January 2005.

[13] N. Bandi, D. Agrawal, and A. El, "Fast Algorithms
for Heavy Distinct Hitters using Associative
Memories", in International Conference on
Distributed Computing Systems, pp. 6-6, June
2007.

[14] X. Dimitropoulos, P. Hurley, and A. Kind,
"Probabilistic lossy counting: an efficient
algorithm for finding heavy hitters", ACM
SIGCOMM Computer Communication Review,
vol. 38, no. 1, pp. 5-5, January 2008.

[15] R. Karp, S. Shenker and C. Papadimitriou, "A
simple algorithm for finding frequent elements in
streams and bags", ACM Transactions on Database
Systems (TODS), vol. 28, no. 1, pp. 51-55, March
2003.

[16] A. Metwally, D. Agrawal, and A. El, "Efficient
computation of frequent and Top-k elements in
data streams", in International Conference on
Database Theory. Springer Berlin Heidelberg, pp.
398-412, January 2005.

[17] M. Charikar, K. Chen, and M. Farach-Colton,
"Finding frequent items in data streams", in
International Colloquium on Automata, Languages,
and Programming. Springer Berlin Heidelberg, pp.
693-703, July 2002.

[18] G. Cormode, "Count-Min Sketch", Encyclopedia
of Algorithms. Springer US, vol. 29, no. 1, pp. 1-6,
November 2014.

[19] Q. Huang, and P. Lee, "LD-Sketch: A distributed
sketching design for accurate and scalable
anomaly detection in network data streams", in
international conference on computer
communications, pp. 1420-1428, April 2014.

[20] E. Anceaume, Y. Busnel, and N. Rivetti
"Estimating the Frequency of Data Items in
Massive Distributed Streams", in IEEE
Symposium on Network Cloud Computing and
Applications (NCCA), pp. 59-66, June 2015.

[21] P. Roy, A. Khan, and G. Alonso, "Augmented
Sketch: Faster and More Accurate Stream
Processing", in Proceedings of the 2016

International Conference on Management of Data,
pp. 1449-1463, June 2016.

[22] G. Pitel, and G. Fouquier, "Count-Min-Log sketch:
Approximately counting with approximate
counters", in 1st International Symposium on Web
Algorithms, June 2015.

[23] R. Ben-Basat, G. Einziger, R. Friedman, and
Y.Kassner, "Heavy hitters in streams and sliding
windows", in IEEE INFOCOM 2016, pp. 1-9,
April 2016.

[24] P. Roy, J. Teubner, and G. Alonso, "Efficient
frequent item counting in multi-core hardware", in
Proceedings of the 18th ACM SIGKDD
international conference on Knowledge discovery
and data mining, pp. 1451-1459, August 2012.

[25] S. Das, S. Antony, D. Agrawal, and A. El, "Thread
Cooperation in Multicore Architectures for
Frequency Counting over Multiple Data Streams",
Proceedings of the VLDB Endowment, vol. 2, no.
1, pp. 217-228, August 2009.

[26] G. Einziger, R. Friedman, "Counting with
TinyTable: every bit counts!", in Proceedings of
International Conference on Distributed
Computing and Networking (ICDCN 2016),
Article No. 27, 2016.

[27] N. Homem, and J. Carvalho, "Finding top-k
elements in a time-sliding window", Evolving
Systems, vol. 2, no. 1, pp. 51-70, March 2011.

[28] Z. Zhang, B. Wang, and J. Lan, "Identifying
Elephant Flows in Internet Backbone Traffic with
Bloom Filters and LRU", Computer
Communications, vol. 61, pp. 70-78, May 2015.

[29] M. Cafaro, M. Pulimeno, I. Epicoco, and G.
Aloisio, "Mining frequent items in the time fading
model", Information Sciences, vol. 370, pp.
221-238, November 2016.

[30] G. Cormode, and M. Hadjieleftheriou, "Methods
for finding frequent items in data streams", The
VLDB Journal, vol. 19, no. 1, pp. 3-20, February
2010.

[31] G. Cormode, and M. Hadjieleftheriou, "Finding
frequent items in data streams", Proceedings of the
VLDB Endowment, vol. 1, no. 2, pp. 1530-1541,
August 2008.

