15 research outputs found

    Unsupervised video summarization framework using keyframe extraction and video skimming

    Full text link
    Video is one of the robust sources of information and the consumption of online and offline videos has reached an unprecedented level in the last few years. A fundamental challenge of extracting information from videos is a viewer has to go through the complete video to understand the context, as opposed to an image where the viewer can extract information from a single frame. Apart from context understanding, it almost impossible to create a universal summarized video for everyone, as everyone has their own bias of keyframe, e.g; In a soccer game, a coach person might consider those frames which consist of information on player placement, techniques, etc; however, a person with less knowledge about a soccer game, will focus more on frames which consist of goals and score-board. Therefore, if we were to tackle problem video summarization through a supervised learning path, it will require extensive personalized labeling of data. In this paper, we attempt to solve video summarization through unsupervised learning by employing traditional vision-based algorithmic methodologies for accurate feature extraction from video frames. We have also proposed a deep learning-based feature extraction followed by multiple clustering methods to find an effective way of summarizing a video by interesting key-frame extraction. We have compared the performance of these approaches on the SumMe dataset and showcased that using deep learning-based feature extraction has been proven to perform better in case of dynamic viewpoint videos.Comment: 5 pages, 3 figures. Technical Repor

    Attentive monitoring of multiple video streams driven by a Bayesian foraging strategy

    Full text link
    In this paper we shall consider the problem of deploying attention to subsets of the video streams for collating the most relevant data and information of interest related to a given task. We formalize this monitoring problem as a foraging problem. We propose a probabilistic framework to model observer's attentive behavior as the behavior of a forager. The forager, moment to moment, focuses its attention on the most informative stream/camera, detects interesting objects or activities, or switches to a more profitable stream. The approach proposed here is suitable to be exploited for multi-stream video summarization. Meanwhile, it can serve as a preliminary step for more sophisticated video surveillance, e.g. activity and behavior analysis. Experimental results achieved on the UCR Videoweb Activities Dataset, a publicly available dataset, are presented to illustrate the utility of the proposed technique.Comment: Accepted to IEEE Transactions on Image Processin

    Creating Summaries from User Videos

    Full text link
    corecore