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Abstract: Recent advances in multimedia technology have led to tremendous increases in the available volume of 

video data, thereby creating a major requirement for efficient systems to manage such huge data volumes. Video 

summarization is one of the key techniques for accessing and managing large video libraries. Video summarization 

can be used to extract the affective contents of a video sequence to generate a concise representation of its content. 

Human attention models are an efficient means of affective content extraction. Existing visual attention driven 

summarization frameworks have high computational cost and memory requirements, as well as a lack of efficiency 

in accurately perceiving human attention. To cope with these issues, we propose a divide-and-conquer based 

framework for an efficient summarization of big video data. We divide the original video data into shots, where an 

attention model is computed from each shot in parallel. Viewer attention is based on multiple sensory perceptions, 

i.e., aural and visual, as well as the viewer’s neuronal signals. The aural attention model is based on the Teager 

energy, instant amplitude, and instant frequency, whereas the visual attention model employs multi-scale contrast 

and motion intensity. Moreover, the neuronal attention is computed using the beta-band frequencies of neuronal 

signals. Next, an aggregated attention curve is generated using an intra- and inter-modality fusion mechanism. 

Finally, the affective content in each video shot is extracted. The fusion of multimedia and neuronal signals provides 

a bridge that links the digital representation of multimedia with the viewer’s perceptions. Our experimental results 

indicate that the proposed shot-detection based divide-and-conquer strategy mitigates the time and computational 

complexity. Moreover, the proposed attention model provides an accurate reflection of the user preferences and 

facilitates the extraction of highly affective and personalized summaries. 

Keywords: affective content analysis, big video data, divide-and-conquer-architecture, human attention modeling. 

1. Introduction 

Traditionally, computing has been mainly restricted to manipulating numerical and textual data. However, due to 

recent advances in digital systems, digitalized representations of images, audio, and video data have been introduced 

[1]. These heterogeneous media types and their combination in multimedia are a source of inspiration for the 
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development of vast numbers of applications. At present, multimedia computing has been successfully incorporated 

into various applications such as video on demand, video conferencing, multimedia surveillance, and context-aware 

advertising. However, heterogeneous streams of data, high storage volumes, processing costs, and communication 

requirements demand a system that can manipulate such data in an efficient and effective manner. Experimental 

observations have shown that the data analysis and management algorithms used in traditional systems are not 

sufficient in assisting users when indexing and accessing their required content. To address this problem, video 

summarization schemes have been proposed that generate a concise version of a full-length video sequence by 

identifying the most important and pertinent content [2-5]. 

Video abstracts can be created in various forms, but these forms can generally be represented as keyframes or video 

skims [6]. Sets of keyframes, which are also called static storyboards, represent the main affective content of a video 

sequence using a group of salient frames. Video skimming is the extraction of a video clip with a much shorter 

duration than the original video sequence. The ultimate aim of video summarization is to algorithmically engineer 

computers to conceive specific multimedia data by giving the computers the ability to interpret multimedia data in 

the same manner as human perception. This helps content-based retrieval systems efficiently index content before 

being stored in a database. As a consequence, users can access their desired content more efficiently and effectively. 

Video abstracts can be generated manually and automatically, but a manual summarization is not feasible owing to 

the huge volumes of video data and limited manpower. Thus, the development of fully automated video analysis and 

processing algorithms is vital for reducing the manual involvement in the video summarization process [7]. Previous 

research suggests that existing video summarization schemes can be categorized into two classes: low- and high-

level summarization schemes [8]. 

The majority of video summarization research during the last two decades has focused on the development of low-

level video summarization techniques, which summarize video sequences by analyzing low-level features such as 

the color, shape, object motion, and speech [9]. For example, Naveed et al. [10], Zhou et al. [11], Avila et al. [12], 

Furini et al. [13], and Almeida et al. [14] use low-level features to summarize video rushes. Naveed et al. [10] use an 

aggregation mechanism to combine visual features, where keyframes were extracted from a video sequence based 

on the correlations among the RGB color channels, color histogram, and moments of inertia. Zhou et al. [11] 

initially extract the audio, color, and motion features, which are then dynamically fused using an adaptively 

weighting mechanism. The video sequence is clustered into separate scenes using a fuzzy c-means scheme with an 

optimally determined cluster number. Avila et al. [12] presented a scheme based on color feature extraction from 

video frames and a clustering algorithm for producing static video summaries. Initially, the frames are grouped in a 

sequential order instead of being randomly distributed between clusters. The frames are then grouped using the 

traditional k-means algorithm, leading to the generation of a summary selecting one frame per cluster. In [13], a 

summarization technique was specifically proposed for producing on-the-fly video storyboards. This method 

produces still and moving storyboards, which allows further advanced customization by users. This method is based 

on a fast clustering algorithm, which selects the most descriptive visual frames based on the HSV frame color 

distribution. For each frame in the input sequence, the visual features are extracted to describe the visual content. 
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After extracting the features, a simple and fast algorithm is used to detect groups of video frames with similar 

content and to select a representative frame from each group. Almeida et al. [14] segmented the input video into a 

set of meaningful shots by analyzing the color histogram of the image stream. Next, in each video shot, a Zero-mean 

Normalized Cross Correlation metric [15] is employed to eliminate redundant frames. Finally, the selected frames 

are filtered to avoid the inclusion of any possibly meaningless frames in the video summary.  

Summarization schemes based on low-level features fail to agree with human perception owing to the semantic gap 

between low-level features and the high-level perception capability of humans with respect to video content [16]. To 

address this issue, most recent summarization schemes employ the concept of a visual attention model to bridge this 

semantic gap [17-19]. The basic assumption of such techniques is to extract frames as keyframes when they are 

visually important for humans as determined by visual attention models. Thus, the semantic details of video 

sequences can be better approximated compared with the low-level features. Attention is a supportive mental 

process in cognition and allows humans to interact with the outer world in a more focused and specialized manner 

[1]. Ma et al. [20] proposed the first attention-model based video summarization framework, which decomposes an 

original video sequence into the primary elements of its basic channels. Next, a set of features related to visual, 

aural, and linguistic attention is extracted to generate a comprehensive attention curve, which is used as an 

importance ranking, or to index the video content. Peng and Xiao-Lin [21] proposed a keyframe-based video 

summary method that uses visual attention cues, where static and dynamic attention models are computed and then 

fused using a motion priority scheme. This method controls the keyframe density according to the content variation 

in the entire clip. In [17-19], we previously proposed various visual-attention based summarization and prioritization 

schemes. These schemes employ the concepts of multiscale image contrast, salient motion, and linear and nonlinear 

weighted fusion methods to construct efficient human-attention models. Researchers have shown that visual 

attention-driven summarization techniques tend to obtain semantically more significant summaries compared with 

traditional low-level feature-based schemes. However, these attention models are computed using active features 

such as audio and visual information, whereas they ignore the passive responses of users, such as their neuronal 

signals. In addition, the complete human-attention mechanism is unknown. As a result, human-attention modeling 

algorithms fail to agree with the actual human-cognitive process. 

The affective and emotional preferences of a user can overcome the drawbacks of existing visual and audio attention 

models, thereby generating an enhanced human-attention model [22]. An affect is generated through a neuronal 

process, which is triggered by the conscious/unconscious perception of a scene. An ideal summarization framework 

should consider both cognitive and emotional preferences. Emotional preferences can be measured by understanding 

the intensity and type of affects evoked in a user while watching a video sequence [23]. Various video scenes 

stimulate neuronal responses in the viewer’s brain and such responses can be measured through an 

electroencephalograph (EEG) [24]. An EEG can provide valuable insight into the real-time changes in a viewer’s 

affective state [25]. Owing to the technological advances, biosensors are now becoming more affordable, but they 
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are also more versatile in terms of capturing physiological response data [9]. For example, an EMOTIV EPOC 

headset1 can measure a viewer’s neuronal responses in real time. 

To accurately understand a viewer’s attentive and emotional preferences, we present an efficient human-attention 

model that combines both external (multimedia content) and internal information (the viewer’s neuronal responses). 

Multimedia content-based features are extracted using audio and video processing, and neuronal attention features 

are extracted from EEG recordings. The multimedia and neuronal features are then combined to obtain an 

aggregated attention curve. This attention curve represents the inferred changes in the viewer’s affective state while 

watching video sequences by extracting the most significant video frames. However, attention-driven frameworks to 

summarize large-scale video data are infeasible owing to their time and computational complexity. Moreover, an 

analysis of lengthy video sequences is impractical on a single computer because their data sizes are too large to store 

in memory. Thus, to increase the applicability of attention models in practical scenarios, we adopt a divide-and-

conquer strategy that partitions the original video sequence into smaller sub-video clips. Our key idea for the 

dividing step is based on a shot-detection method, which detects shot boundaries using the histogram difference 

metric, X2. Next, attention models are computed and summaries are extracted from each sub-video clip 

independently, thereby achieving a much faster computational procedure. For the conquering step, we aggregate all 

sub-summaries and remove redundancies among them to build a final summary for the original video. This study 

offers three main contributions: 1) a shot-boundary detection based divide-and-conquer approach is presented to 

extract keyframes from each video shot independently, which is more promising than a sequential approach; 2) the 

viewer’s neuronal responses are employed as a potential source of information; 3) and an efficient intra- and inter-

modality attention fusion method is proposed for video summarization. 

2. Methodology 

Advances in multimedia technologies have produced a dramatic increase in the amount of video data. These data 

volumes exceed the capabilities of conventional video analytical methods. This situation demands algorithms 

capable of conducting an efficient analysis of large video data sets. In this context, we present a divide-and-conquer 

based framework to compute video summaries. The proposed framework splits input videos into a number of 

smaller video clips (video shots), extracting attention features from each of them independently, and merging the 

sub-summaries into a final summary, as shown in Figure 1. In each video shot, sub-summaries are extracted by 

computing the attention curves. Attention is considered to be the most important cognitive process associated with 

the human brain (e.g., reasoning, decision making, and problem solving). Thus, an efficient human attention model 

can play a vital role in an affective content analysis. The proposed attention model is computed using three types of 

data streams: audio, visual, and neuronal signals. Figure 2 shows the main steps in the proposed attention model. 

                                                            
1 https://emotiv.com/epoc.php 



5 
 

 

Figure 1. Conceptual diagram of the proposed divide-and-conquer based summarization process. 

 

Figure 2. Framework of the proposed attention model for affective video content extraction. 

2.1. Video Parsing 

The analysis of lengthy video sequences is often infeasible owing to resource constraints and time complexity. In 

this context, video parsing can play a major role by dividing a long video into number of shorter video chunks. 

Amongst the various structural elements, a shot is an important temporal component of a video sequence. A video 

shot is a sequence of frames captured from a single camera operation. Shot detection, also known as video parsing, 
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is the first step in a video analysis. In video parsing, scene boundaries and scene changes between camera shots are 

detected [26], thereby making large amount of video data more manageable by imposing a hierarchy. A shot 

boundary is detected by identifying the transition (boundaries) between two consecutive shots. Shot boundaries are 

categorized into two classes of transitions: 1) abrupt (discontinuous) transitions, which are also referred to as cuts, 

and 2) gradual (continuous) transitions such as fades and dissolves, as shown in Figure 3. In recent years, various 

video parsing methods have been developed [27-29], and in a majority of shot-detection methods, the difference 

between successive frames is identified by comparing some of the low-level features such as the color histogram, 

edge, and intensity. These techniques are computationally efficient and accurately detect abrupt scene changes. 

However, they fail to detect gradual transitions within a scene. To cope with this challenge, we present a shot 

detection approach that partitions the video frames into 8×8 equally sized blocks and compares the corresponding 

blocks from two consecutive frames. This comparison is based on the X2 histogram measure, which is very effective 

in detecting both abrupt and gradual scene changes [30]. The X2 histogram difference between two frames F(t) and 

F(t+1) is computed as 
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where n is the number of histogram bins, and 
B

tH  and 
B

tH 1  are the color histograms of the Bth blocks of video 

frames F(t) and F(t+1), respectively. Video shots are easy to analyze with limited resources. In addition, it can 

reduce the time complexity and computational burden by allowing parallel and distributed processing of the 

underlying shots. Thus, a large summarization task can be divided into a number of subtasks, which is easy to 

achieve. After computing the local summaries from these shots, the sub-summaries can be efficiently merged to 

generate a final summary. 

 

Figure 3. Examples of gradual and abrupt scene changes 

2.2. EEG-based Attention Modeling 

An EEG is used to detect electrical activity of the brain using electrodes attached to the user’s scalp. An EEG 

generates a continuous recording of waves of varying frequencies and amplitudes. The number of EEG cycles per 

second is known as the frequency, which is recorded in Hertz (Hz). The amplitude is the strength of the EEG signal, 

which is measured in terms of microvolts of electrical energy. In general, EEG signals can be classified into five 
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categories according to their frequency bands, i.e., alpha, beta, theta, delta, and gamma bands. Researchers have 

found that activity in different EEG frequency bands can be related to specific psychophysiological states [31]. For 

instance, beta-band activity plays an important role in cognitive functions, mainly because of their relationship to the 

attention processes [32]. Thus, the beta-band (12 to 30 Hz) captures activities related to awakeness, alertness, and 

attentive states of mind. An increase in beta waves reflects the arousal of human attention. Thus, the beta band is the 

best option among the available EEG bands for generating a human attention model. 

a. EEG Data Preprocessing 

A wireless EMOTIV EPOC headset2 can be used to capture EEG signals, which comprises 14 channels: AF3, AF4, 

F3, F4, F7, F8, FC5, FC6, P7, P8, T7, T8, O1, and O2. The captured EEG signals are usually contaminated with 

various artifacts caused by electrode movement, electrical line noise, muscle activity, sweating, and so on. 

Therefore, the EEG signals are preprocessed prior to an EEG analysis and feature extraction. Preprocessing of the 

EEG signals involves two steps: bandpass filtering and an independent component analysis (ICA). The biological 

artifacts caused by a heartbeat, blinking, and eyeball movements appear at around 1.2 Hz and below 4 Hz. Artifacts 

caused by muscle movements are the most dominant around 50 Hz. The Butterworth filter with a bandpass between 

5 Hz and 50 Hz is applied to raw EEG signals to remove biological artifacts. This Butterworth filter rejects the 

unwanted frequencies, but also has a uniform sensitivity to the desired frequencies. In general, EEG recordings are 

linear combinations of the underlying brain sources [33]. As a result, the underlying signals become mixed during 

the EEG recordings. It is important to separate and extract each source by employing blind source separation (BSS) 

techniques [34]. Among the BSS techniques, ICA is known to be capable of estimating mutually independent 

sources from highly correlated EEG sources [35]. The main goal of ICA is to separate the unwanted artifacts from 

the neuronally generated EEG sources. In this study, we utilized EEGLAB3 for processing and evaluating the ICA 

results based on the captured EEG data. 

b. Extraction of EEG Features 

Neurobiologists have obtained abundant evidence that attention is governed by the arousal level [36]. Arousal is the 

state of physiological reactivity in humans, which includes excitement, panic, and anger. In recent studies, 

psychologists have found that beta-band EEG frequencies are related to the arousal modulation in human cognitive 

processes. In various experiments, it has been shown that elderly people exhibit decreased beta-band power levels 

during tasks requiring visual attention [31]. This affect is accompanied by low behavioral accuracy in elderly 

people. It was thus determined that an increase in beta power indicates high attention, and vice versa. These findings 

are employed in the present study, and the power spectral densities (PSDs) of the EEG beta-band in each of the 14 

channels are extracted as attention features. PSD is a positive and real function of the frequency variable associated 

with a stationary stochastic process, which describes the signal power strength at each frequency [37]. The PSD can 

                                                            
2 https://emotiv.com/epoc.php 
3 http://sccn.ucsd.edu/eeglab/ 
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be computed easily using a discrete Fourier transform (DFT). If we consider a 1-s non-overlapping EEG segment, its 

DFT coefficient ),( tfcF  at frequency f and time t is 
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where x(n,t) represents the discrete samples of EEG data at time t extracted from channel c, and N = 128 is the 

length of the EEG data per second. The PSD is calculated by taking the square of the absolute value of ),( tfcF  

within the range of the beta-band frequencies, as follows: 
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where f[12 30] because we consider only those frequencies that come under the category of a beta-band. The 14 

features obtained through an EEG correspond to the data extracted from 14 microelectrodes: AF3, AF4, F3, F4, F7, 

F8, FC5, FC6, P7, P8, T7, T8, O1, and O2. The values of these features were normalized within the range of 0 to 1. 

We divided the PSD feature vectors into two classes: high- and low-priority channels, as shown in Figure 4. Four 

channels, i.e., P7, P8, O1, and O2, are included in the high-priority category, whereas the remaining 10 channels are 

considered to be of low-priority. The classification of features into high- and low-priority categories is motivated by 

the fact that visual attention is associated more deeply with responses in the occipital regions of the brain compared 

with non-occipital regions [38, 39]. Thus, the four channels that belong to the occipital regions, i.e., P7, P8, O1, and 

O2, are more important for the modeling of human attention. In this context, a weighted linear mechanism was used 

to estimate the EEG attention curve, as follows: 
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where WLP and WHP are the weights of the low- and high-priority channels, respectively. The weight values are 

within the range of 0 to 1. To give more weighting to high-priority channels, the value of WHP was kept higher than 

that of WLP. In addition, AE(t) is an EEG-based attention curve, which represents the attention level of the viewer at 

time t while watching a video sequence. This attention curve was normalized in the range of 0 to 1. We carefully 

synchronized the visual output of the video sequences used with the viewers’ EEG data recordings; thus, the EEG 

feature values denote the attention levels for the corresponding video frames. When the attention value was close to 

1, the frame sequence viewed at a particular time was considered to be salient (i.e., affective) for that user. Similarly, 

when the attention value was close to 0, the viewed frame sequence was considered to be non-salient (i.e., non-

affective). 
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Figure 4. Top view of a human brain model showing the EEG electrode locations, as Traced from [40]. 

2.3. Audio Visual Attention Modeling 

Researchers have identified significant correlations between audiovisual information and human emotional states 

[41]. Some of the most important components of visual information are salient motion (rhythm motion) and 

multiscale image contrast. Rhythm motion measures the amount of motion in video frames. The quantity of the 

salient motion present in a particular part of a video frame is directly proportional to its level of excitement. 

Similarly, multiscale image contrast is an essential visual feature for attention detection because the contrast 

operator simulates the human visual receptive field. Multi-scale contrast is used to compute the local contrast 

features of intensity at each scale. We used these features to produce compelling video summaries, as described in 

our previous schemes [17, 42, 43], and they are integrated into our current framework. Audio signals also provide 

useful information when selecting more affective and semantically meaningful video content [44, 45]; therefore, in 

addition to a visual content analysis, audio features are also incorporated in the proposed framework. In [46], an 

AM-FM modulation model was proposed for speech, which allows speech formants to be modeled as follows: 
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where aN(t) is the amplitude, N(t) is the frequency, and N is the size of the audio sequence. The audio attention 

model is based on three features: the maximum Teager energy, MTE: the mean instant amplitude, MIA: and the mean 

instant frequency, MIF [47]. The first, MTE captures the joint amplitude-frequency information of the audio activity, 

which represents the dominant signal modulation energy. For an audio signal frame m of length N, MTE is obtained 

by measuring the Gabor filter bank responses on S as: 
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where  is the convolution operator, d is the nonlinear Teager-Kaiser differential energy operator, K represents the 

linearly spaced bank of Gabor filters, hk is the impulse response of the kth filter, and n is the sample index. Next, an 

energy separation algorithm [48] is applied on filter j = arg max (MTE) to derive the MIA and MIF features: 

 ][)(IA nAm jM        (7) 

 ][)(IF nm jM        (8) 

where A and Ω are the instantaneous amplitude and frequency signals, respectively. An aural attention curve is then 

generated by linearly fusing the MTE, MIA, and MIF audio features to signify the salient audio segments. 

2.4. Extracting Keyframes from Intra- and Inter-Modality Attention Models 

The extraction of high-level neuronal features and low- or middle-level multimedia features allows the extraction of 

keyframes. Figure 5 shows the intra- and inter-modality fusion and keyframe selection process. At the intra-modality 

level, keyframes are extracted independently using attention features based on the modality at the time using the 

aural, visual, and EEG attention curves computed as described in the previous section. The keyframes selected by 

each modality are then combined to generate a final intra-modality summary. However, there is a semantic gap 

between the high-level and low-level features due to the lack of an appropriate description and the presentation of 

the semantics perceived by the human brain. To overcome these issues, the inter-modality attention model is 

computed by linearly fusing audio, visual, and EEG-based attention curves. This inter-modality attention fusion 

method combines the strengths of the underlying three modalities while minimizing their weaknesses. The 

summaries generated by intra- and intra-modality are merged to generate a final summary, but it was observed that 

the aggregated summary has some redundant frames. Therefore, these redundant frames are removed using a color 

histogram. 

 

Figure 5. Keyframe extraction from intra- and inter-modality attention models. 

3. Experiments and Results 
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To evaluate the efficacy of the proposed method, various experiments were conducted using video sequences from 

different genres. The details of these experiments are described in the following sections. 

3.1. Experimental Setup 

In this subsection, we describe the technical setup, participants, ambient environment, and goals of the experiments. 

The main goal of this experiment was to assess the ability of the proposed algorithm to correctly detect the salient 

frames in a video sequence. Tests were conducted using numerous videos downloaded from two standard databases: 

The Open Video Project4 and AiirSource channel5. The selected video sequences belonged to different genres, 

including action, thriller, horror, and comedy. Detailed information regarding the sample video sequences used in 

this experiment is shown in Table 1. Ten users (five female and five male) from different laboratories in the Digital 

Content Department, which is close to our laboratory, were requested to participate in this study. All of the 

participants have normal vision and reported no history of neurological problems. In addition, they are all 

researchers working on image analysis. The experiments were conducted in a fully equipped multimedia laboratory, 

which was free from outside noise. The participants were provided two 22-inch displays, which facilitated their high 

resolution viewing of the videos. The visual field of each participant was protected from outside distractions, 

thereby providing a clear view of the screen. The output volume of the speakers was also tested to ensure that the 

users could clearly hear the audio content of the video clips. 

The EEG signals of each participant were recorded using an EMOTIV EPOC headset6 while watching the videos. 

The EMOTIV detected and digitized the EEG signals produced by each participant’s brain and wirelessly 

transmitted them to a computer. We used the TestBenchTM research software included in the EMOTIV Research 

Edition SDK, which facilitates the recording of EEG data files in the binary EEGLAB format. The main use of the 

EEG recordings was for extracting the neuronal responses of each participant and to investigate these responses to 

select the most salient contents of the underlying video. Before initiating the experiment, the participants were asked 

to wear the EMOTIV headset for a few minutes to familiarize themselves with the sensors. This avoided potential 

discomfort during use, which could have influenced the accuracy of the experimental results. After watching each 

video clip, the participants were asked to provide a summary of the underlying video, where they selected the most 

informative and affective frames. The summaries produced manually by the participants were used as the ground 

truth of the comparisons. The EEG recordings were carefully synchronized with the audio and visual frames. 

EEGLAB’s toolbox was used to process the acquired EEG data, whereas Matlab was used to extract the audio and 

visual features. 

 

Table 1: Details of the test video database. 

No. Video title Video description Genre 

1 Skydiving 

A group of youngsters videotape their skydiving trip. One 

person's parachute does not open and he has to use his 

reserve chute. 

Adventure, 

Fear 

                                                            
4 http://www.open-video.org/index.php 
5 https://www.youtube.com/user/AiirSource 
6 https://emotiv.com/epoc.php 

http://www.open-video.org/index.php
https://www.youtube.com/user/AiirSource
https://emotiv.com/epoc.php
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2 Rave: Christmas Special 

This video shows a joyful holiday season for many, except 

Vernon who is constantly bullied. However, the Christmas 

trees come alive and take revenge on his behalf. 

Fantasy, 

Comedy 

3 Bunjee People bungee jumping from a bridge in New Zealand. 
Adventure, 

Thrill 

4 
Winning: Aerospace, Segment 

07 

This video introduces students to the unique career 

opportunities in America's aerospace industry. 

Education, 

Documentary 

5 1955 Chevrolet Screen Ads 
Ten short theatrical “screen ads” promoting 1955 

Chevrolet models. 

Adventure, 

Lifestyle 

6 
NASASciFiles - Aviation 

History 

NASA science file segment tracing the history of human 

flight. 

Documentary, 

Thriller 

7 

U.S. Marines Maritime Raid 

Force - MH-60S Helicopter 

Casting and SPIE 

U.S. Marines Maritime Raid Force conducting helicopter 

casting and helicopter special patrol operations from an 

MH-60S Helicopter 

Adventure, 

Thriller 

8 
U.S. Marines Pilot Recovery 

Training. HH-60 Pave Hawk 

A squadron and a group of U.S. Marines visiting Eielson 

Air Force Base, Alaska to execute pilot recovery training 

Adventure, 

Thriller 

9 
US Airstrike Against ISIS 

Storage Facility in Syria 

Unmanned aerial vehicle video of overnight operations 

against ISIL in Syria, including a U.S. airstrike against an 

ISIS/ISIL storage facility near Abu Kamel, Syria. 

Action, War 

10 
Drone and Manned F-18 

Takeoff and Land 

The US Navy's unmanned X-47B conducts flight 

operations with a manned F-18 aboard the aircraft carrier, 

the USS Theodore Roosevelt (CVN 71). 

Action, 

Thriller 

 

3.2. Case Study: Extracting Keyframes from a Single Video 

In this subsection, we demonstrate the benefits of the proposed scheme based on the choice of keyframes in the 

video sequence Daenerys' Dragons Fight7 taken from the American medieval fantasy television series Game of 

Thrones. This video sequence comprises of 2490 frames, which capture Daenerys Targaryen watching a fight 

between her dragons. Daenerys Targaryen, who has the sobriquet Mother of Dragons, is one of the major characters 

in this series. In the video sequence, one of the dragons unexpectedly snaps at Daenerys when she tries to interfere 

with the dragons that are fighting over food; thus, she realizes that she is losing control of them. 

For the underlying video, the intra-modality audio, visual, and EEG-based attention curves are shown in Figures 

6(a), 6(b), and 6(c), respectively. Figure 6(a) shows the audio attention curve estimated by fusing three audio 

attention features, i.e., the maximum Teager energy, the mean instant amplitude, and the mean instant frequency. 

Figure 6(a) shows that the values of the audio attention curve did not vary significantly during the initial 30s of the 

video sequence. However, a significant increase in the audio attention was observed during the first 30 to 60s, which 

was caused by the horrifying sounds of the fighting dragons. In the last 23s, a decrease in audio attention was 

observed with only a few significant sounds. The keyframes extracted using the audio attention curve are shown in 

Figure 7(a). Figure 6(b) shows the visual attention curve. In frames 730 through 828, no salient activities were 

observed. Consequently, visual attention received the minimum value for this sequence. In contrast, a significant 

increase in visual attention was observed in frames 300 through 400, which shows Daenerys and her pair of dragons 

fighting in the sky. Figure 7(b) shows the keyframes extracted from the underlying video using the visual attention 

curve. Figure 6(c) shows the EEG power spectrum of a viewer while watching the video sequence. In this study, the 

EEG attention curve was found to be more suitable for locating exciting video segments, as shown in Figure 7(c). 

                                                            
7 https://www.youtube.com/watch?v=RHTw8BxU1fk 
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Frames 573 and 1655 showed positive and negative events that occurred in the video, respectively. These frames 

were efficiently highlighted by the beta band-driven EEG attention curve. 

A few important frames were neglected by the intra-modality attention models. To overcome this issue, an inter-

modality attention model was estimated by linearly fusing various modalities, i.e., the audio, visual, and EEG 

attention curves, to generate a single attention curve, as shown in Figure 6(d). This inter-modality attention curve 

overcame the weaknesses of the three underlying modalities. Figure 7(d) shows the summary generated from the 

inter-modality fusion curve. The summaries generated by the intra- and inter-modality models were combined to 

generate a final video summary. Redundant frames were eliminated from the aggregated summary using a color 

histogram. The video summary obtained matched the human perception by representing more interesting and 

representative frames from the video sequence, as shown in Figure 7(e). 

 

Figure 6. Intra- and inter-modality attention curves for the video sequence Daenerys' Dragons Fight. 
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Figure 7. Comparison of the affective video contents extracted by intra- and inter-modality attention models. 
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3.3. Ground Truth Comparison based Summary Evaluation 

Ground truth comparison-based evaluation metrics are widely used to assess the effectiveness of video 

summarization schemes. In this study, the ground truth was prepared by a group of users and the summaries 

produced by a specific technique were compared with the ground truth to compute the values of various evaluation 

metrics. The ground truth data for the dataset in Table 1 were manually generated by a group of multimedia experts. 

In this section, we describe the efficiency of the proposed method based on two sets of metrics: 1) precision, recall, 

and, f-measure metrics, and 2) the TRECVID evaluation metrics. 

a. Evaluations based on the Precision, Recall, and F-measure 

The precision, recall, and f-measure are widely employed metrics for evaluating video summarization and video 

retrieval tasks [49-51]. In a video summarization, precision is the ratio of the number of relevant frames chosen as 

keyframes by the system to the total number of relevant and irrelevant frames selected as keyframes by the system. 

Recall is the ratio of the number of relevant frames chosen as keyframes by the system to the total number of 

keyframes in the ground truth summary. Precision and recall are complementary metrics and cannot be used solely. 

For example, a high precision value can be obtained by generating a short summary, which includes few relevant 

frames. Similarly, extracting too many keyframes can lead to a high recall value. The f-measure is the average of the 

precision and recall, which facilitates an interpretation of the results by providing a combined measure. A high F-

measure indicates that both the precision and recall have high values. Precision, recall and f-measure are defined as 

follows: 

FPTP

TP


Precision       (9) 

FNTP

TP


Recall        (10) 

PrecisionRecall
Precision*Recall

measure-F


 *2    (11) 

where a true positive (TP) refers to the number of frames extracted by the summarization scheme that are also 

present in the ground truth. A false positive (FP) refers to the number of frames selected by the scheme that are not 

present in the ground truth. A false negative (FN) is defined as the number of frames included in the ground truth 

that are not selected by the summarization scheme. The precision, recall, and f-measure range from 0 to 1. A value 

close to 1 is considered good, and vice versa. Table 2 shows the mean precision, recall, and f-measure values 

obtained by the proposed method using different attention fusion schemes. The proposed aggregated attention model 

obtained significant improvements compared with the summaries generated by individual intra- and inter-modality 

attention models. In some cases, the audio, visual, and EEG attention models obtained high values for one of the 

metrics. However, a high value for one of the metrics is generally insufficient. For example, in video sequence 7, the 
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visual-attention base summary achieved a precision value of 1 by selecting all of the relevant frames but the recall 

value was low. However, the aggregated summarization scheme had the highest Recall value for video 7 and a 

sufficiently high precision value. In addition, the f-measure of the aggregated summary was 0.77, whereas that for 

visual attention-based summary was 0.71. Table 2 shows that the overall aggregated attention model achieved high 

F-measure values. 

Table 2: Mean recall (R), precision (P), and f-measure (F) values obtained by the proposed method using different 

fusion schemes. 

 Intra-modality 

attention 

Inter-modality 

attention 
Aggregated 

 Audio Visual EEG   

No. R P F R P F R P F R P F R P F 

1 0.48 0.61 0.54 0.72 0.55 0.62 0.75 0.74 0.74 0.47 0.49 0.48 0.88 0.77 0.82 

2 0.50 0.70 0.58 0.64 0.68 0.66 0.81 0.67 0.73 0.71 0.77 0.74 0.79 0.70 0.74 

3 0.74 0.49 0.59 0.51 0.71 0.59 0.74 0.77 0.75 0.77 0.80 0.78 0.92 0.94 0.93 

4 0.82 0.52 0.64 0.44 0.54 0.48 0.66 0.61 0.64 0.70 0.67 0.68 0.94 0.85 0.89 

5 0.66 0.49 0.56 0.49 0.66 0.56 0.76 0.80 0.78 0.74 0.75 0.74 0.91 0.81 0.86 

6 0.60 0.67 0.63 0.53 0.73 0.61 0.79 0.70 0.74 0.78 0.67 0.72 0.88 0.86 0.87 

7 0.47 0.58 0.52 0.55 1.00 0.71 0.81 0.68 0.74 0.70 0.68 0.69 0.88 0.69 0.77 

8 0.62 0.70 0.66 0.55 0.68 0.61 0.68 0.88 0.77 0.71 0.77 0.74 0.96 0.54 0.69 

9 0.55 0.65 0.60 0.65 0.71 0.68 0.65 0.70 0.67 0.69 0.80 0.74 0.95 0.90 0.92 

10 0.51 0.73 0.60 0.72 0.71 0.72 0.69 0.60 0.64 0.75 0.66 0.70 0.93 0.95 0.94 

Average 0.60 0.61 0.59 0.58 0.70 0.63 0.73 0.72 0.72 0.70 0.71 0.70 0.90 0.80 0.84 

 

b. TRECVID Evaluation Criteria 

In this subsection, we present comparisons of the proposed scheme against state-of-the-art summarization schemes 

based on non-visual and visual attention, i.e., STIMO [13], VSUMM [12], and the method proposed by Naveed et 

al. [17]. This comparison used the TRECVID evaluation metrics. TRECVID is a conference series that promotes 

research into information retrieval by providing a large test data collection and efficient evaluation procedures [52]. 

TRECVID has defined its evaluation criteria based on comparisons of summaries with the ground truth. In the 

evaluation performed in the present study, a system-generated summary was assessed by a human user and 

compared with the ground truth summary. During this comparison, the user was requested to score the underlying 

summary based on three criteria: (1) the amount of ground truth included, (2) the amount of redundancy present, and 

(3) the proportion of junk frames present in the summary. The value of the ground truth inclusion (IN) was 

normalized within a range of 0 to 1, where a value close to 1 indicates that most of the frames in the ground truth 

were covered by the system-generated summary. The scores for a lack of redundancy (RE) and lack of junk frames 

(JU) were normalized within a range of 1 to 5, where a score close to 5 indicates the best scenario, with minimum 

redundancy and minimum junk frames; whereas a score close to 1 denotes that the summary contains redundant and 

junk frames. Table 3 indicates that the proposed method obtained a high value for the IN metric. In addition, a high 

score for the RE metric demonstrates that the summary evaluators (users) strongly disagree that the proposed 

summary contains redundancy in comparison with the ground truth. Our method removed junk frames in an efficient 

manner, and obtained high scores for the JU metric. There were some exceptions, but the proposed method generally 

outperformed the other summarization schemes. For instance, for video sequence 3, the proposed method achieves 
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high scores of redundancy and junk metrics, which highlights the significance of our method to remove useless and 

redundant frames. However, for this video, the proposed method’s summary has a low inclusion score. Similarly, 

STIMO has the highest value of redundancy for video sequence 9, whereas the inclusion value is significantly low. 

Table 3: Inclusion (IN), redundancy (RE), and junk frame (JU) rating for different schemes. 

 
Non-visual-attention based 

schemes 

Visual-attention 

based scheme 

Proposed 

method 

 STIMO [13] VSUMM [12] Naveed et al. [17]  

No. IN RE JU IN RE JU IN RE JU IN RE JU 

1 0.69 4 3 0.88 4 4 0.74 4 3 0.84 4 5 

2 0.65 3 3 0.77 3 3 0.69 4 4 0.81 4 5 

3 0.78 5 4 0.63 3 4 0.88 5 4 0.77 5 5 

4 0.65 4 3 0.55 2 4 0.71 4 5 0.92 3 4 

5 0.62 4 4 0.72 5 5 0.7 3 4 0.79 4 5 

6 0.68 4 3 0.7 4 4 0.66 4 3 0.88 4 5 

7 0.64 4 3 0.59 3 2 0.69 3 4 0.8 5 5 

8 0.57 3 4 0.62 3 3 0.83 4 2 1 4 4 

9 0.52 3 3 0.66 3 4 0.62 3 3 0.9 4 4 

10 0.64 3 4 0.79 4  4 0.72 4 3 0.74 5 5 

Average 0.64 3.7 3.4 0.69 3.4 3.7 0.72 3.8 3.5 0.84 4.2 4.7 

 

3.4. Comparative Analysis of Computational Time 

To validate the effectiveness of the proposed summarization framework in terms of the computational time, we 

extracted video summaries using both sequential and divide-and-conquer based approaches. In the sequential 

process, summaries were extracted from video sequences without fragmentation, i.e., a complete video sequence 

was processed on a single server. In the divide-and-conquer based approach, the underlying video sequence was first 

fragmented into shots and then sub-summaries were extracted from each shot simultaneously. Figure 8, depicts the 

comparison between the total computational time required for a summarization of the underlying sample video 

database. It can be observed that total summary generation time using the sequential process is significantly high 

compared with the corresponding divide-and-conquer based process. Although the total CPU consumption time, 

which is the sum of the CPU usage time in computing sub-summaries on all nodes, was approximately equal to or 

higher than sequential processing, the distribution of video shots among several nodes for a parallel execution 

reduced the total summarization time. This result is significant when dealing with large video repositories. 
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Figure 8. Comparison of summary generation time between a traditional approach and the proposed divide-and-

conquer framework.  

4. Conclusion 

In this study, we proposed a divide-and-conquer based summarization framework, which computes aural, visual, and 

EEG attention features to extract the affective keyframes from video sequences. In the dividing step, audio and 

video streams are fragmented into shots, and each video shot is distributed among the nodes to compute the attention 

features. In the conquering step, sub-summaries generated from individual shots are combined to obtain the final 

summary. The viewer’s attention is modeled based on multiple sensory perceptions, i.e., aural, visual, and neuronal 

signals. Aural attention is defined using three intrinsic attributes: the maximum Teager energy, the mean instant 

amplitude, and the mean instant frequency, whereas visual attention is computed from two essential video attributes, 

i.e., multi-scale contrast and salient motion. Aural and visual attention models are both related to active attention, 

and are often controlled by the video producers, e.g., the camera motions and sound level are controlled by the 

producer to reflect the producer’s intentions. In addition to active attention, passive attention is computed using EEG 

signals. Our proposed EEG-based attention technique is based on the beta-band frequencies obtained from the 

neuronal signals of the viewers. We found that EEG attention helps to identify the preferences and emotions of users 

with respect to a particular video. Finally, all of the attention models obtained from different modalities are fused to 

generate an aggregated attention model. The keyframes selected by the aural, visual, and EEG attention models, as 

well as those based on the aggregated attention model, are combined to generate a final summary. We compared the 

performance of the proposed method with several state-of-the-art summarization schemes based on two standard 

sets of metrics: 1) precision, recall, and f-measure, and a 2) TRECVID evaluation, which demonstrates that the 

proposed framework selects semantically relevant keyframes from video sequences and personalizes the summary 

according to the viewer’s preferences. We also presented experimental results that validate the effectiveness of the 

proposed divide-and-conquer framework, reducing the computational time and optimizing the resources by 

distributing the summarization tasks among various computation nodes. 
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