50,107 research outputs found

    An Efficient Homomorphic Aggregate Signature Scheme Based on Lattice

    Get PDF
    Homomorphic aggregate signature (HAS) is a linearly homomorphic signature (LHS) for multiple users, which can be applied for a variety of purposes, such as multi-source network coding and sensor data aggregation. In order to design an efficient postquantum secure HAS scheme, we borrow the idea of the lattice-based LHS scheme over binary field in the single-user case, and develop it into a new lattice-based HAS scheme in this paper. The security of the proposed scheme is proved by showing a reduction to the single-user case and the signature length remains invariant. Compared with the existing lattice-based homomorphic aggregate signature scheme, our new scheme enjoys shorter signature length and high efficiency

    On Counteracting Byzantine Attacks in Network Coded Peer-to-Peer Networks

    Get PDF
    Random linear network coding can be used in peer-to-peer networks to increase the efficiency of content distribution and distributed storage. However, these systems are particularly susceptible to Byzantine attacks. We quantify the impact of Byzantine attacks on the coded system by evaluating the probability that a receiver node fails to correctly recover a file. We show that even for a small probability of attack, the system fails with overwhelming probability. We then propose a novel signature scheme that allows packet-level Byzantine detection. This scheme allows one-hop containment of the contamination, and saves bandwidth by allowing nodes to detect and drop the contaminated packets. We compare the net cost of our signature scheme with various other Byzantine schemes, and show that when the probability of Byzantine attacks is high, our scheme is the most bandwidth efficient.Comment: 26 pages, 9 figures, Submitted to IEEE Journal on Selected Areas in Communications (JSAC) "Mission Critical Networking
    • …
    corecore