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Abstract—Researchers show that network coding can greatly
improve the quality of service in P2P live streaming systems (e.g.,
IPTV). However, network coding is vulnerable to pollution attacks
where malicious nodes inject into the network bogus data blocks
that will be combined with other legitimate blocks at downstream
nodes, leading to incapability of decoding the original blocks and
degradation of network performance. In this paper, we propose
a novel approach to limiting pollution attacks by identifying
malicious nodes. In our scheme, the malicious nodes can be rapidly
identified and isolated, so that the system can quickly recover from
pollution attacks. Our scheme can fully satisfy the requirements of
live streaming systems, and achieves much higher efficiency than
previous schemes. Each node in our scheme only needs to perform
several hash computations for an incoming block, incurring very
small computational latency in the range of several microseconds.
The space overhead added to each block is only 20 bytes. The
verification information given to each node is independent of the
streaming content and thus does not need to be redistributed. The
simulation results based on real PPLive channel overlays show that
the process of identifying malicious nodes only takes a few seconds
even in the presence of a large number of malicious nodes.

I. INTRODUCTION

Advent of multimedia technology and broadband surge lead
to popularity of various online multimedia applications. One
representative instance is live video streaming (e.g., IPTV),
where a streaming server distributes live video streams to a
large population of users over the Internet. The successes of
several commercial peer-to-peer (P2P) streaming products, such
as PPLive and SopCast, have demonstrated that P2P streaming
is a promising solution to efficiently distributing live video
streams at a large scale. Recently, researchers [2]–[4] found
that network coding can greatly improve the quality of service
in P2P live streaming systems with respective to high playback
qualities, short buffering delays, minimal bandwidth costs, and
resilience to peer dynamics.

Network coding has been initially shown to maximize the
network throughput and robustness to link failures [5]–[7].
Unlike the traditional “store-and-forward” routing, network
coding allows participating nodes in a network to code in-
coming data blocks (typically by linear combination), rather
than simply forward them. However, the “combination” nature
of network coding makes it vulnerable to pollution attacks,
where malicious nodes inject into the network bogus blocks that
will be combined with other legitimate blocks at downstream
nodes and consequently corrupted blocks will rapidly spread
over the network. As a result, the network performance will be
substantially degraded due to the wasted bandwidth distributing

corrupted blocks and the sink nodes will suffer from the
incapability of decoding the original blocks. Thus, network
coding cannot be safely applied to P2P streaming networks,
unless the problem of pollution attacks is addressed.

The nature of live streaming implies two basic challenges
on the defense scheme for protecting network coding from
pollution attacks: (1) it should possess high computational
efficiency to minimize computational delays; (2) the verification
information given to the nodes for security checks on received
data blocks (in a live video stream) should be independent of the
content of the blocks. Additional requirements on the scheme
include: (3) small communication overheads are introduced
to save bandwidth; (4) the achievable network flow rate is
independent of the power of malicious nodes (in terms of the
number of links they can contaminate).

Several schemes dealing with network-coding pollution at-
tacks have been proposed in the literature, but none of them can
meet the above four requirements simultaneously. Generally,
these schemes can be divided into two categories: on-the-fly
verification, and error correction. The approaches in the first
category allow each intermediate node to verify blocks on the
fly. Typically, the previous schemes are based on public key
crypto-systems with homomorphic properties, such as homo-
morphic hashing [8], [10] and homomorphic signatures [11],
[12], which require expensive modular exponentiation compu-
tations at each hop, thus incurring substantial computational
delays. To mitigate computational costs, researchers proposed
probabilistic checking [9] or use null space properties of
network coding [13]. However, the verification information in
both schemes is derived from the blocks to be propagated, and
must be repeatedly pre-distributed to all the nodes, leading to
considerable delays and communication overheads. The second
category – error correction – aims at correcting corrupted
blocks at sink nodes by introducing a level of redundancy
[16], [17]. Nevertheless, as a passive defense, error correction
is applicable only when there are a limited number of cor-
rupted blocks in the network, and the achievable flow rate is
determined by the number of contaminated links.

Previous schemes only fight with corrupted blocks (either
by the on-the-fly verification or by error correction), but do
not limit the origin of the corrupted blocks – malicious nodes.
Consequently, the malicious nodes can keep injecting bogus
blocks to continuously degrade the network performance (e.g.,
by decreasing the network flow rate or wasting the nodes’ CPU
cycles on dealing with corrupted blocks).
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Fig. 1: Network model: mesh-structured P2P network.

In this paper, we propose a Malicious node Identification
Scheme (MIS) that identifies and isolates malicious nodes, so
that the pollution attack can cause harm to the network only
for a short period of time and the subsequent streaming will no
longer be influenced. MIS is block-based in that a malicious
node can be identified repidly as long as it injects a single bogus
block. To unambiguously identify malicious nodes, we design
a novel and light-weight non-repudiation transmission protocol
to ensure that any node that has injected a bogus block cannot
deny its behavior and any malicious node cannot disparage any
innocent node.

To the best of our knowledge, MIS is the first scheme to
satisfy all the four requirements stated before. Each node in
MIS only needs to perform several hash computations for an
incoming block, incurring very small computational latency
in the range of several microseconds, which is significantly
smaller than most previous schemes. Besides, each block only
carries a 20-byte evidence code, introducing much smaller
communication overheads than any existing schemes. The ver-
ification information given to each node is independent of the
streaming content and thus does not need to be redistributed.
Furthermore, even if a large number of links are contaminated
in the network, MIS is still effective and precisely identifies the
malicious nodes. We simulate MIS based on real PPLive chan-
nel overlays with 1, 600 ∼ 4, 000 nodes, which are obtained in
our previous work [19]. The simulation results show that the
process of identifying malicious nodes only takes a few seconds
even in the presence of a large number of malicious nodes.
Although the main motivation of this work is to protect P2P live
streaming, our scheme can also be applied to other network-
coding-based applications, such as P2P large file distribution,
as a deterrence of penalty to constrain pollution attacks.

This paper is organized as follows: Section II introduces
the background and models. Section III gives an overview
of MIS. Section IV presents the non-repudiation transmission
protocol. Section V describes MIS in detail. Section VI gives
the evaluation results and compares MIS with existing schemes.
Section VIII concludes the paper.

II. BACKGROUND AND MODELS

A. Background of P2P Streaming with Network Coding

A P2P streaming network is a mesh-structured overlay
network connecting dedicated servers and a potentially large
number of nodes (or peers) over the Internet. As shown in
Fig. 1, there are usually two types of servers in the system.
One is the membership server (M-server) that manages the peer
membership information, and the other is the streaming server
(S-server) that supplies content over live video channels. The

S-server may provide multiple channels simultaneously. Each
channel forms a separate overlay, and each node belongs to
one particular overlay at any time. In the remaining paper, we
assume the nodes being considered belong to the same overlay
(channel). There may be multiple duplicated streaming servers
in the system, in which case we let “the S-server” mean “any
one of all the S-servers”.

When a new node X joins the overlay, it first registers at the
M-server, which provides X a membership table that contains a
list of peers in the overlay. Out of the membership table, some
peers are selected by X as its upstream neighbors, from which
X can download streaming content. X may also request the S-
server to serve it directly if none of the neighboring peers have
the desired data. When some peers in the membership table
are no longer alive, X contacts the M-server to request more
neighboring peers. Each live stream is divided into segments
Si, i = 1, 2, · · · , and each segment corresponds to a specific
duration of playback (e.g., one second). To ensure smooth
playback, each node maintains a playback buffer that consists
of (tens to hundreds of) segments to be played. Each peer
exchanges the information of availability of segments (referred
to as buffer map) with its neighbors periodically.

When network coding is applied to the P2P streaming, each
segment Si is further divided into m blocks b1,i, · · · ,bm,i,
and each block bj,i is subdivided into d codewords bj,i =
(b1,j,i, · · · , bd,j,i)>, 1 ≤ j ≤ m. The segment Si is considered
as an d×m matrix of elements of the Galois field GF(n) (e.g.,
n = 256), as shown below.

Si = (b1,i, · · · ,bm,i) =




b1,1,i · · · b1,m,i

...
. . .

...
bd,1,i · · · bd,m,i




With network coding, both the S-server and peers perform
encoding operations, which are applied only within a segment
rather than across different segments. Whenever a peer or the
S-server needs to forward a block to another peer, it produces
a linear combination of all the blocks it currently stores.

In particular, when the S-server attempts to send a
block e1,i in Si to peer X , it first picks m ran-
dom coefficients (c1,1,i, · · · , cm,1,i) from GF(n) (referred
to as the coefficient vector). Then the S-server creates
the coded block e1,i by linearly combining the original
blocks b1,i, · · · ,bm,i with (c1,1,i, · · · , cm,1,i), i.e., e1,i =∑m

j=1 cj,1,ibj,i = (
∑m

j=1 cj,1,ib1,j,i, · · · ,
∑m

j=1 cj,1,ibd,j,i). In
other words, e1,i is obtained by multiplying its coefficient
vector (c1,1,i, · · · , cm,1,i) with the d×m matrix Si in GF(n).
The coefficient vector (c1,1,i, · · · , cm,1,i) is appended to the
coded block e1,i and the augmented block is sent to peer X .

Assume peer X has received t coded blocks e1,i, · · · , et,i

in Si, either from the S-server or from other peers. When
X needs to transmit a block et+1,i in Si to its downstream
neighbor Y , it first picks t random numbers r1, · · · , rt from
GF(n), and produces et+1,i =

∑t
k=1 rkek,i. The coeffi-

cient vector (c1,t+1,i, · · · , cm,t+1,i) of et+1,i (s.t., et+1,i =∑m
j=1 cj,t+1,ibj,i) is computed by cj,t+1,i =

∑t
k=1 rkcj,k,i,



b1,1,i b2,1,i b3,1,i b1,2,i b2,2,i b3,2,i
b1,i b2,iSi

......

e1,i =c1,1,I b1,i +c2,1,i b2,i e2,i =c1,2,i b1,i +c2,2,i b2,ic1,1,i c2,2,ic1,2,i c2,1,i
e3,i  = r1 e1,i + r2 e2,i

Coefficient vector of e3,i :
(r1 c1,1,i + r2 c1,2,i ,  r1 c2,1,i + r2 c2,2,i)r1 r2
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Fig. 2: An example to illustrate network coding in P2P streaming.
Each segment consists of m = 2 blocks, and each block has d = 3
codewords. Peer X receives two coded blocks e1,i, e2,i in Si from
the S-server, and produces a new coded block e3,i for peer Y .

1 ≤ j ≤ m. Then et+1,i together with (c1,t+1,i, · · · , cm,t+1,i)
is sent to Y . Fig. 2 gives a concrete example to illustrate the
encoding operations of network coding.

A received coded block is first cached in the receiving buffer.
A peer can reconstruct the original segment after accumulating
m coded blocks (within the segment) for which the associated
coefficient vectors are linearly independent. The decoding pro-
cess is similar to solving a system of linear equations. The
decoded segment is cached in the playback buffer.

B. Attack Model and Assumptions

We assume that a potentially large number of nodes in the
overlay are malicious, but the majority of nodes are innocent.
A malicious node could send any bogus blocks to any of its
downstream neighbors, and eavesdrop, modify or simply drop
any messages passing through it. A malicious node can exhibit
these behaviors either alone or in collusion with other nodes.
The main purpose of malicious nodes is to prevent innocent
nodes from reconstructing the original blocks or to degrade
network performance. We assume malicious nodes are “smart”,
and try to hide themselves or disparage innocent nodes.

We assume both the S-server and the M-server are trusted,
and publicly known so that each node can contact them
directly. We assume there exists a reliable PKI (Public Key
Infrastructure) that enables each node to securely obtain the
servers’ public keys. These public keys are used by the servers
to broadcast authenticated information (e.g., the result of identi-
fying malicious nodes) to the overlay. Broadcast authentication
is an important security primitive and has been extensively
studied (e.g., [23], [24]), but it is orthogonal to this work.

III. OVERVIEW OF OUR SCHEME

In network-coding pollution attacks, malicious nodes send
bogus blocks to their downstream neighbors. An innocent node
that receives a bogus block is infected, and the blocks it
produces with this bogus block are also corrupted and may
further infect its downstream peers. The contaminated links
and infected nodes form a connected component (or several
components if multiple malicious nodes exist) in the network.
Our goal is to track the origin of corrupted blocks.

To achieve this, we first propose an approach to detecting the
existence of malicious nodes. We let each decoding node detect
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Fig. 3: An example of identifying malicious nodes in our scheme.
The infected region consists of I , J , K, L, and M . Solid arrows
denote the links of the streaming overlay, and dashed arrows denote
the deliveries of the checksum. A malicious node (e.g., F ) may block
the dissemination of the checksum. With the checksum, I (or K)
discovers the corrupted block received from F (or J), and F (or J) is
then reported to the servers. I (or K) further forwards the checksum
to its suspected neighbor F (or J), but stop forwarding the checksum
to its downstream neighbors L, M , since I and the downstream peers
L, M share the same origin of the pollution attack (i.e., F ).

corrupted blocks by checking if the decoding result matches
the specific formats of video streams, and any node having an
inconsistent decoding result will send an alert to the servers
(the roles of S-server and M-server will be specified in Sec.
V) to trigger the process of identifying malicious nodes. From
the standpoint of the whole overlay, the existence of malicious
nodes can be detected with very high probability.

After receiving an alert, the servers compute a checksum
based on the original blocks, and disseminate it to the nodes
using the streaming overlay. The checksum will help the nodes
identify which neighbor has sent it a corrupted block. For
example, in Fig. 3, with the checksum, node I (or K) finds out
that the block received from node F (or J) is corrupted. Note
that, at this point, one cannot confirm that the discovered nodes
(F , J) are malicious, since they may be innocent and receive
corrupted blocks from their upstream neighbors. For instance,
J is an innocent node and the corrupted block it produces is
due to the bogus block it has received from F ; whereas, node
F discovered by I is indeed a malicious node. To this end, the
discovered nodes (F , J) are temporarily treated as suspicious
nodes, and are reported (by I , K) to the servers. Then, the
reporting nodes (I , K) further forward the checksum to their
suspected upstream neighbors (I , K), as shown in Fig. 3.

If a suspected node is truely innocent (e.g., J), then with
the received checksum it will identify at least one corrupted
block it has received from its upstream neighbors (i.e., F ), and
correspondingly it will report its suspected neighbors (F ) to the
servers. On the contrary, if a suspected node is malicious (e.g.,
F ), it cannot find a suspicious neighbor that sent it a corrupted
block. Therefore, we let the servers judge a suspicious node
based on whether it can report another suspicious node.

The correctness of the above process of identifying malicious
nodes relies on the condition that no one can lie when reporting
a suspicious node. To be concrete, any malicious node cannot
disparage an innocent node that does not send a corrupted
block, or cannot deny having sent a corrupted block (when
being suspected). For example, F cannot disparate C, or deny
having sent a bogus block to I .

One way to achieve these requirements is to let each node
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Fig. 4: An example of the infected cycles (bold arrows) in mesh-
structured P2P streaming networks. The squares are the transmitted
blocks, and the numbers denote the sequence numbers of the blocks.

sign the block it sends out using a public-key signature scheme,
such as RSA. Then, the signature associated with the block can
be used as the evidence by the reporting node to demonstrate
that the reported suspicious node has really sent this block
(given that it is infeasible to forge a public-key signature).
However, this approach requires applying public-key signa-
ture on each transmitted block, which introduces substantial
computational delays due to the expensive signature generation
and verification. Alternatively, we design a light-weight non-
repudiation transmission protocol (described in Section IV)
based on efficient one-way hash functions, which can satisfy the
above requirements with significantly higher efficiency in terms
of both computational costs and communication overheads.

Note that in mesh-structured P2P networks, cycles possible
exist. For example, in Fig. 4, F , J , and K form an infected
cycle in which each link is contaminated. In this case, since
F receives a corrupted block from K (although the corruption
of this block is caused by the bogus block injected by F ),
F can report K as a suspicious node to the servers, and
consequently the servers cannot tell which node in the infected
cycle is the origin of the corrupted blocks. To address this
problem, we let each node append to the block it produces
(say et+1,i in Si) a sequence number (denoted by Seq(et+1,i)),
which is set as the maximum sequence number of all the
received blocks (e1,i, · · · , et,i) in this segment plus one, i.e.,
Seq(et+1,i) = max1≤k≤t{Seq(ek,i)} + 1 (see Fig. 4), and
the evidence associated with et+1,i is computed based on
Seq(et+1,i) and the content of et+1,i. Then the node that has
sent a block with the smallest sequence number among all
nodes in the infected cycle is judged as the malicious node.

Our scheme can elegantly handle multiple malicious nodes,
each of which has a corresponding infected region. As long as
a node in the infected region (caused by a particular malicious
node) receives the checksum, it can initiate the process of
tracking the pollution origin, and at the end of the tracking
process the malicious node of this infected region will be
discovered. If a node belongs to multiple infected regions (e.g.,
node I in Fig. 5 is in the overlap of the infected regions of both
D and F ), it can help identify all the malicious nodes (D, F )
of these infected regions. In addition, our scheme is resistent
to collusion attacks, where multiple malicious nodes collude to
hide themselves or disparage innocent nodes. We will analyze
this in Sec. V.

Remarks. One major reason for us to seek a solution that
identifies malicious nodes rather than deals with corrupted
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Fig. 5: An example of handling multiple malicious nodes. The
infected region due to D consists of H , I , and L, while F ’s infected
region contains I , J , K, and L.

blocks is to minimize the overheads in the defense scheme,
since high efficiency is a crucial requirement for live streaming
systems. We observe that due to the “linear combination” nature
of network coding, traditional security primitives with high
efficiency (such as one-way hash functions) cannot be directly
applied to network coding, and not surprisingly, the schemes
[8]–[13] designed to meet the linear combination property
inevitably suffer from low efficiency. Our scheme is targeting
malicious nodes, instead of tackling linearly combinable blocks,
and thus we can utilize highly efficient security primitives to
construct our scheme, thereby achieving much higher efficiency.

Our scheme is not based on statistical algorithms, which
require monitoring the traffic or the behaviors of nodes for a
certain period of time before identifying the malicious nodes.
Instead, our approach is deterministic and block-based. It can
precisely and rapidly identify malicious nodes as long as they
inject a single bogus block. This ensures that the system can
quickly recover from pollution attacks.

IV. NON-REPUDIATION TRANSMISSION PROTOCOL

As we discussed before, the correctness of MIS is based on
the condition that no node can lie when reporting a suspicious
node that has sent a corrupted block, and an evidence associated
with the corrupted block is necessary to demonstrate to the
servers that the reported node has really sent the block. We
design a non-repudiation transmission protocol to achieve this.
We let X be the suspicious node, and Y be the reporting node.
Let e denote the block1 that X transmits to Y , Φ(e) denote the
evidence (referred to as evidence code) associated with e, and
Seq(e) denote the sequence number of e (used for handling
infected cycles as analyzed in Sec. III). More notations used in
this protocol are listed in Table I.

Overview. In the non-repudiation transmission protocol, be-
fore X transmits e to Y , it generates an evidence code Φ(e)
based on e and Seq(e), and then sends e|Seq(e)|Φ(e) to
Y . For security concerns, Φ(e) is producible only to X , and
verifiable to both Y and the M-server (the role of the S-
server will be described in Sec. V). The receiving node Y
checks whether Φ(e) matches e, Seq(e). If not, e is discarded.
When Y discovers that e is a corrupted block (after receiv-
ing the checksum disseminated by the servers), Y sends a
report IDX |e|Seq(e)|Φ(e)|IDY to the M-server. The M-server
judges if e is sent by X , by checking whether Φ(e) is consistent

1Here we only consider one particular block e without specifying which
segment e belongs to, so we omit the subscript of e as we used in Sec. II.



TABLE I: Notations
Φ(e) The evidence code associated with the block e

Seq(e) The sequence number of the block e
| Concatenation of two binary strings

IDX The public identifier of X (e.g., X’s IP address)
scrtX The secret that node X registers at the M-server

Υ(scrtX , scrtY ) Secret elements derived from scrtX given to Y

Υ(scrtX , scrtY ) Secret elements derived from scrtX unknown to Y
λ # of values in an evidence code (e.g., λ = 20)
π Length of each value in evid. codes (e.g., π = 8 bits)
δ # of secret elemts. in Υ(scrtX , scrtY ) (e.g., δ = 10)
F(·) A pseudo-random function that maps the input into a

δ-element subset of {1, · · · , λ}, δ < λ
H(·) A secure one-way hash function (e.g., SHA-256)

truncπ(·) A func. that truncates the input into leftmost π bits
θ The threshold used for verifying reports (e.g., θ = 4)

with e, Seq(e). If not, the report is ignored. The probability that
Y can cheat the M-server with a block e′ not sent by X or that
X can cheat Y with an evidence code Φ(e)′ inconsistent with
e, Seq(e) is negligibly small.

Protocol description. Now we describe the non-repudiation
transmission protocol. We let each of X and Y initially
register a secret (denoted by scrtX , scrtY ) with the M-server,
respectively. X will use scrtX to produce Φ(e). The M-
server provides partial information of scrtX (denoted as
Υ(scrtX , scrtY )) to Y according to the information of scrtY .
Υ(scrtX , scrtY ) can help Y verify Φ(e).

The generation of Υ(scrtX , scrtY ) is as follows. First, the
M-server maps scrtY to a δ-element subset F(scrtY , IDX)
of {1, · · · , λ}, δ < λ. For example, when λ = 6, δ =
3, F(scrtY , IDX) could be {2, 4, 5}. Second, the M-server
derives λ secret elements from scrtX by computing γi =
H(scrtX , IDY , i), 1 ≤ i ≤ λ. Third, the M-server initializes
Υ(scrtX , scrtY ) as an empty set, and then for each i∗ ∈
F(scrtY , IDX) the M-server adds γi∗ into Υ(scrtX , scrtY ).
The finally obtained Υ(scrtX , scrtY ) is given to Y . Note
that from Υ(scrtX , scrtY ), Y cannot learn any informa-
tion about scrtX or the secret elements that are derived
from scrtX but not in Υ(scrtX , scrtY ) (i.e., {γj : j ∈
{1, · · · , λ}/F(scrtY , IDX)}, denoted by Υ(scrtX , scrtY )).

The evidence code Φ(e) consists of λ values {v1, · · · , vλ},
each of which is computed by vi = truncπ(H(e|Seq(e), γi)),
1 ≤ i ≤ λ. Once receiving e|Seq(e)|Φ(e) from X , Y
verifies the validity of Φ(e) by checking if vi∗ is equal to
truncπ(H(e|Seq(e), γi∗)) for all γi∗ ’s in Υ(scrtX , scrtY ).
Only a block with a valid evidence code (all the checked values
vi∗ ’s are consistent with e, Seq(e) and ki∗ ’s) will be accepted
by Y and used in encoding new blocks.

When e is discovered as a corrupted block, Y sends a report
IDX |e|Seq(e)|Φ(e)|IDY to the M-server. To resist malicious
modification on the transmitted report, Y appends to the report
a HMAC computed with scrtY to provide authentication. The
M-server verifies if e is sent by X by checking “how much
Φ(e) matches e, Seq(e)”. In particular, the M-server sets a
counter to be zero. For each γj ∈ Υ(scrtX , scrtY ), if vj is
equal to truncπ(H(e|Seq(e), γj)), the counter is incremented.
If the counter is finally equal to or larger than a threshold θ,

scrtY
F(scrtY, IDX)={2,4,5}

M-Server

scrtX
scrtY

γi = H(scrtX, IDY, i)Verify report with {γ1, γ3, γ6}
Check block with {γ2, γ4, γ5}vi = truncπ(H(e, γi))Generate evidence code

scrtX
γ1 γ2 γ3 γ4 γ5 γ6

v1 v2 v3 v4 v5 v6
{ γ2 ,  γ4 ,  γ5}

X Y

Fig. 6: An illustration of the non-repudiation transmission protocol
with λ = 6 and δ = 3.

0 ≤ θ ≤ λ− δ (implying that “Φ(e) very matches e, Seq(e)”),
the M-server confirms that e is sent by X . Otherwise (“Φ(e)
does not quite match e, Seq(e)”), e is judged as a faked block
that is not sent by X .

The purpose of using the threshold θ to verify the evidence
code is to enable the M-server to detect the potential cheating
behaviors of both X and Y . To show this, we consider two ex-
treme cases. (1) When θ = λ−δ, the M-server rejects the report
as long as a single value (say vj′ , s.t., γj′ ∈ Υ(scrtX , scrtY ))
in Φ(e) is not equal to truncπ(H(e|Seq(e), γj′)). In this
scenario, although X does not know Υ(scrtX , scrtY ), it can
let Y accept e with an invalid evidence code Φ(e)′ with high
probability, where Φ(e)′ consists of one bogus value and λ−1
correct values that X honestly computes using e, Seq(e) and
ki’s, 1 ≤ i ≤ λ. Note that e could be a corrupted block, but
the report of Y will be rejected by the M-server. (2) When
θ = 0, the M-server does not verify any values in Φ(e), and
consequently a malicious Y can easily disparage X with a
bogus block e′ and a randomly generated evidence code Φ(e′).
In the following, we will show that by properly tuning the
parameters of θ, λ, and δ, we can make the probability that a
malicious party (either X or Y ) succeeds be very small.

A. Security Analysis

When Y is malicious, trying to cheat the M-server with a
block e′ not sent by X , Y must ensure that there are at least
θ correctly computed values in Φ(e′), for which it does not
have the corresponding knowledge (i.e., Υ(scrtX , scrtY )) to
compute. Since the probability for Y to correctly guess one
such value is ( 1

2 )π . Straightforwardly, we have
Theorem 1 (Non-repudiation of the recipient) Y can suc-

cessfully disparage X with a block not sent by X , with
probability no larger than

∑λ−δ
i=θ

(
λ−δ

i

)
( 1
2 )π·i(1− ( 1

2 )π)λ−δ−i.
As for a malicious X that tries to let Y accept a corrupted

block e with an invalid evidence code Φ(e)′, as we discussed
before, X will fail as long as Y detects any inconsistent value
in Φ(e)′ with Υ(scrtX , scrtY ) or the M-server finds over θ
consistent values with Υ(scrtX , scrtY ). Therefore, we have

Theorem 2 (Non-repudiation of the sender) X can cheat
Y with a corrupted block, with probability no larger than



maxδ≤x≤δ+θ−1 p(x), where p(x) =
∑δ

i=x−θ+1
(δ

i)(λ−δ
x−i)

2π·(δ−i)(λ
x)

.
Proof: See Appendix 1.

Table II lists the probabilities that a malicious party succeeds
in our protocol under several sample parameter selections. We
can see that our protocol introduces small space overhead –
about 20 bytes per block, which is much smaller than public key
signatures (like RSA-1024). Besides, for each incoming block,
the receiving node only needs to perform 20 ∼ 30 hash function
computations, which incurs extremely short online computa-
tional delay. These salient benefits enable us to construct a
highly efficient scheme to secure the network coding based
P2P streaming network (shown in the next section).

TABLE II: Sample parameter selections
π (bits) λ δ θ Prob X Prob Y Space Ovhd

8 21 11 4 2−18 2−23 22 bytes/blk
6 24 12 5 2−19 2−20 19 bytes/blk
6 28 14 6 2−22 2−24 22 bytes/blk

Prob X (or Prob Y) – the probability that a malicious X (or Y ) succeeds.
The space overhead includes Φ(e) and Seq(e) (one byte for Seq(e)).

V. FULL DESCRIPTION OF THE SCHEME

Our scheme (MIS) is based on the proposed non-repudiation
transmission protocol (Sec. IV). Its basic idea is as follows.

Following the non-repudiation transmission protocol, each
peer X registers a secret scrtX at the M-server, which provides
X a list of neighboring peers N1, N2, · · · , NT together with
the partial information of the secrets of these peers, i.e.,
Υ(scrtN1 , scrtX), · · · ,Υ(scrtNT

, scrtX). X uses scrtX to
generate an evidence code for each block it produces, and relies
on Υ(scrtNj , scrtX) to verify the blocks received from Nj .

A node Y decodes the original segment Si after receiving m
blocks in Si. If the decoding result does not match the formats
of the video streams (used by the media player in playback), Y
sends an alert with the segment number i to the M-server with
certain probability. The purpose of probabilistically sending
alerts is to avoid overwhelming the M-server. An ACK message
(containing i) is broadcast by the M-server to the overlay
(including the S-server) in response to the received alert. If
Y does not send an alert and receive no ACK after τ time
units (where τ is slightly larger than mRTT (the maximum
Round-Trip Time between a peer and the M-server)), it keeps
increasing the probability of sending an alert until it has sent
out an alert or received an ACK.

After receiving the ACK, the S-server generates a checksum
for Si and disseminates the checksum to the nodes using the
streaming overlay (the generation of the checksum will be
presented in the scheme description (Sec. V-A)).

Once a node Y receives the checksum, it uses the checksum
to verify if any of its received blocks in Si is corrupted. A
discovered suspicious neighbor X that sent it a corrupted block
in Si will be reported to the M-server, and then Y forwards
the checksum to X . If no corrupted blocks are discovered, Y
forwards the checksum to all its downstream neighbors.

As we discussed in Sec. III, a suspicious node that cannot
discover another suspicious peer is a malicious node. Finally,

the M-server broadcasts the result of identified malicious nodes
to the overlay, and each node receiving the result adds the
malicious nodes that are its neighbors (if any) into its blacklist
and will stop accepting any blocks from them in the future.

A. Scheme Description

Now we present MIS (some details that are duplicated
in Sec. IV are omitted for simplicity). Let PKM , PKS (or
SKM , SKS) denote the public keys (or private keys) of the M-
server and the S-server, respectively. We assume each node can
reliably obtain PKM , PKS from a trusted PKI. Let E(·,Key)
denote public-key encryption using Key, and EKey(·) denote
symmetric-key encryption with Key.

1) Bootstrapping a new node X . X chooses a ran-
dom scrtX that is long enough to resist cryptographic
attacks, and sends IDX |E(scrtX , PKM ) to the M-server.
The M-server selects T peers N1, N2, · · · , NT in the over-
lay (T is a system configuration parameter), and sends
EscrtX

({IDNj ,Υ(scrtNj , scrtX) : j ∈ [1, T ]}) back to X .
Then X decrypts the bootstrapping information with scrtX .

2) Sending blocks. Suppose X has received t blocks
e1,i, · · · , et,i in Si and needs to produce a block et+1,i for peer
Y . X first computes Seq(et+1,i) = max1≤k≤t{Seq(ek,i)}+1,
then generates Φ(et+1,i) based on et+1,i and Seq(et+1,i), and
finally transmits et+1,i|Seq(et+1,i)|Φ(et+1,i) to Y .

3) Receiving blocks. When et+1,i|Seq(et+1,i)|Φ(et+1,i) is
received by Y , Y uses Υ(scrtX , scrtY ) to verify if Φ(et+1,i)
is valid to et+1,i and Seq(et+1,i). If not, et+1,i is dropped di-
rectly. Otherwise, IDX |et+1,i|Seq(et+1,i)|Φ(et+1,i) is cached
in the receiving buffer.

4) Detecting corrupted blocks in decoding. Decoding
operation is performed by node Y as soon as it has received m
blocks in Si. The decoding result is correct (i.e., identical with
the original segment) only when there is no corrupted block
in these m blocks. We let each node detect corrupted blocks
by checking if the decoding result matches the formats of the
video stream, which are used by the media player in playback.

This detection may have false negative cases (although the
probability is very small), in which corrupted blocks exist but
the decoding result has matching formats. Note that, our goal is
just to let the M-server be aware of the existence of malicious
nodes. Since any decoding node that detects corrupted blocks
will send an alert to the M-server, this approach can detect the
existence of malicious nodes with very high probability, due to
the fact that it is infeasible for the malicious nodes to design
and supply corrupted blocks to ensure that each node in the
overlay obtains a decoding result with matching formats. 2

5) Sending alerts. If Y detects corrupted blocks in decoding
Si, it stops generating any new block in Si for its downstream

2Concerning the false negative cases, the received blocks cannot be immedi-
ately freed from the receiving buffer after the decoding, since they will help the
nodes (that have received corrupted blocks) identify suspicious neighbors. As
to be shown later, it takes at most several mRTTs for the M-server to broadcast
an ACK message in response to some nodes’ alerts. If no ACK is received,
then it is safe to erase these blocks from the receiving buffer; otherwise, they
are cached until being verified by the checksum or the M-server disseminates
the result of identifying malicious nodes.



neighbors. Besides, Y sends an alert i|IDY |AuthInfo Y to
the M-server with probability β, where AuthInfo Y is a
HMAC computed with scrtY over the segment number i and
IDY . If Y does not send an alert, it starts a timer and waits for
the ACK message (that is broadcast by the M-server in response
to some others’ alerts). If Y does not receive an ACK after τ
time units, it doubles the probability β of sending an alert. This
process is repeated until Y has sent out an alert or received an
ACK. It is not hard to see that the maximum waiting time for
Y to send out an alert is (1 + dlog2

1
β e) · τ .

6) Broadcasting ACK. When the M-server receives an alert
i|IDY |AuthInfo Y from Y , it first validates AuthInfo Y
using scrtY . If this is the first received alert for Si, the M-server
broadcasts an ACK message (containing the sequence number
i) signed with SKM to the overlay (including the S-server).
Any later received alerts for Si are ignored.

7) Generating checksum. After the S-server receives and
verifies the signed ACK message, it generates a checksum for
Si. We adopt the approach in [9] to construct the checksum.
Recall that Si consists of m blocks b1,i, · · · ,bm,i, where
bj,i = (b1,j,i, · · · , bd,j,i)>, 1 ≤ j ≤ m. The S-server first
picks a random seed Γ, and applies hash function H(·) on Γ
to generate d random numbers sk = H(Γ, k), 1 ≤ k ≤ d.
Then, for each block bj,i, 1 ≤ j ≤ m, the S-server computes
uj =

∑d
k=1 skbk,j,i, and (Γ, u1, · · · , um) forms the checksum.

The checksum can verify any coded block in Si. We suppose
the block to be verified is el,i = (e1,l,i, · · · , ed,l,i), whose
coefficient vector is (c1,l,i, · · · , cm,l,i). Then the verification
on el,i is to check if the value of

∑d
k=1 skek,l,i is equal to∑m

j=1 cj,l,iuj , where the uj’s are reconstructed from Γ. The
correctness of this verification is based on

∑d
k=1 skek,l,i =∑d

k=1 sk(
∑m

j=1 cj,l,ibk,j,i) =
∑m

j=1 cj,l,i(
∑d

k=1 skbk,j,i) =∑m
j=1 cj,l,iuj (recall that el,i =

∑m
j=1 cj,l,ibj,i and ek,l,i =∑m

j=1 cj,l,ibk,j,i). The verification is performed in GF(n).
The probability that a corrupted block is verified by the

checksum is 1
n . To decrease this probability, multiple check-

sums for Si can be used simultaneously. With µ checksums,
the probability that a corrupted block can pass the verification
is only 1

nµ (e.g., 2−24 when n = 256 and µ = 3).
8) Identifying malicious nodes. The generated checksum

is signed by the S-server and disseminated to the M-server
and the nodes using the streaming overlay. When a node Y
receives the checksum, it first verifies the appended signature,
and then uses the checksum to verify the received blocks
in Si. If all these blocks are consistent with the checksum,
Y frees them from the receiving buffer and forwards the
checksum to its downstream neighbors. If a corrupted block
el,i|Seq(el,i)|Φ(el,i) sent by peer X is discovered, Y sends
a report IDX |el,i|Seq(el,i)|Φ(el,i)|IDY |AuthInfo Y to the
M-server, and then forwards the checksum to X .

Upon receiving the report, the M-server first verifies
AuthInfo Y , and checks if el,i is a corrupted block using
the checksum received from the S-server. Then the M-server
judges whether Φ(el,i) is valid to el,i and Seq(el,i), following
the non-repudiation transmission protocol. If not, the report is

ignored. Otherwise, X is added into the suspicious node list.
If X also reports a suspicious peer with a valid evidence code,
the M-server then removes X from the suspicious node list.

Since Y sends the checksum to X right after reporting X , X
should be able to report a suspicious node to the M-server no
later than mRTT time units after X is added to the suspicious
node list. Therefore, the M-server can finish the process of
identifying malicious nodes after the suspicious node list is
unchanged for mRTT time units.

9) Releasing the result. The M-server signs and broadcasts
the result of identified malicious nodes to the overlay. After
receiving the result, each node Y erases the received blocks
in Si from the receiving buffer and adds the malicious nodes
that are its upstream neighbors (if any) into its blacklist. In
the following streaming transmissions, Y will not accept any
blocks from these malicious neighbors.

B. Discussions

Collusion attacks. We consider multiple malicious nodes
collude to hide themselves or disparage innocent nodes. If
a colluding malicious node Y is a downstream neighbor of
another malicious node X , then Y can choose not to report X .
However, X will still be identified if it sends bogus blocks to
any innocent peer. If X sends bogus blocks only to Y and Y
further produces corrupted blocks to its downstream neighbors,
then Y will be discovered and the pollution flow from X
to Y will be stopped at Y , without influencing any innocent
nodes. If X , Y are not directly conneted, they cannot help
each other hide themselves, since the reporting and tracking
processes are performed by their downstream innocent peers
without involvment of X , Y .

In addition, colluding malicious nodes may try to prevent
their downstream peers from receiving the disseminated check-
sum. However, this strategy is applicable only when there are
enough colluding malicious nodes that can entirely isolate these
peers from the overlay. One way to address this is to let each
node contact the M-server directly to update its neighboring
peers after suffering from the incapability of obtaining the
checksum or desired video content for a certain period of time.

Besides, malicious nodes may collude to disparage innocent
nodes (say Z). However, even by collusion, they cannot obtain
scrtZ due to non-invertability of the one-way hash function,
and thus they are unable to generate a valid evidence code for
a corrupted block e′ and report that e′ is sent by Z.

Non-functional malicious nodes. We say a node is a non-
functional malicious node if it exhibits malicious behaviors
but replacing it with a legitimate node will not change the
set of infected nodes. For example, in Fig. 7, D is a non-
functional malicious node. Our currently presented scheme MIS
only guarantees identifying all functional malicious nodes (e.g.,
B), whose behaviors cause harm to innocent nodes. In fact,

B DA C E

Fig. 7: An exmaple of non-functional malicious nodes (D).
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Fig. 8: Malicious node identification times and the pertentage of
identified malicious nodes.

we can rely on some advanced strategies (by recomputing the
checksum based on the discovered corrupted blocks) to detect
non-functional malicious nodes, but due to the space limitation
we explain this in detail in our journal paper.

Sending fake alerts. Sending fake alerts may trigger the
system to meaninglessly search for malicious nodes, wasting
system resources. For this, we let the M-server punish those
fake alert senders by treating them as malicious nodes if no
malicious node are discovered at the end of the search.

Transmission errors. MIS can tolerate transmission errors
and even malicious modifications on the transmitted blocks,
because each receiving node verifies the evidence code ap-
pended with the received block and a block with errors or
modifications will be directly rejected, without influencing the
decoding operations or the reporting/identification processes.

Node churn. Node churn is common in P2P networks. First,
if malicious nodes churn after injecting corrupted blocks, our
scheme can still identify them, since the process of identifying
malicious nodes is based on the evidence codes generated
before and does not require the involvement of malicious nodes.
Second, if an innocent node Y – who is a downstream neighbor
of a malicious node X – churns, then Y may not report X to
the M-server. However, as long as any other downstream peer
of X is alive, X will be identified.

VI. EVALUATION

A. Simulation

We simulate MIS in Java based on real PPLive channel
overlays with 1, 600 ∼ 4, 000 nodes, which are obtained in
our previous work [19]. We choose random propagation delay
for each overlay link in the range of [100ms, 500ms]. The
computational delay for each node to process a checksum is
5ms ∼ 10ms. The malicious nodes are selected at random
out of all the nodes, and each of them injects bogus blocks
to all its downstream neighbors. There is one S-server that
serves 5% peers directly. Each segment consists of 32 blocks,
and each block has 256 codewords in GF(256) (following the
configurations in [2]). Fig. 8 gives the time that MIS takes
to identify malicious nodes as well as the percentage of the

TABLE III: Comparisons
Schemes Comp. efficiency Space ovhd Verif. info.

distribution
Homo. hash [8] Low Large Repeated
Prob. check [9] Low Large Repeated

Trapdoor hash [10] Low Large Once
Homo. sig. [12] Low Large Once
MAC-based [14] High Very large Once

Null key [13] Very high Large* Repeated
MIS (ours) Very high Very Small Once

*Due to the repeatedly distributed verification information. The space
overhead rate is d

m
, where d is the number of codewords contained in a block

and m is the number of blocks in a segment.

malicious nodes that are discovered. The results are averaged
over 10 independent runs.

We can see that over 96% of malicious nodes are identified
by MIS, and those that are not discovered are non-funcational
malicious nodes as we discussed before. In addition, our
scheme only takes several seconds to identify these malicious
nodes, which implies that the system can recover quickly.

B. Comparison

We compare the online performance of MIS against the exist-
ing schemes based on the on-the-fly verification [8]–[10], [12]–
[14] 3. Among these previous schemes, the null key [13] has the
highest computational efficiency, which takes 1 ∼ 2us to check
a block on our machine with 2.2 Ghz dual CPUs. Yu et al. [14]
show that their MAC-based scheme takes about 2ms to sign
or verify a block. The schemes constructed from homomorphic
crypto-systems incur much longer delays, which are over 1s
according to the results given in [14]. MIS takes about 5us to
check an incoming block and 10us to generate an evidence code
for an outgoing block (implemented using Miracl with SHA-
256 on the same machine) with the parameters given in Table II.
In addition, MIS introduces the smallest space overhead – only
22 bytes per block. Whereas, the space overhead in [8], [9], [12]
is 128 bytes/block, and is 256 bytes/block in [10]. The MAC-
based scheme [14] incurs much larger space overhead, wihch is
20% ∼ 40% of the original blocks. Furthermore, MIS does not
require repeatedly distributing verification information, further
reducing the communication overheads and processing costs.
Table III summarizes the comparisons.

VII. RELATED WORK

Krohn et al. [8] initiated the study of network-coding pol-
lution attacks and proposed an on-the-fly verification scheme
based on homomorphic hashing, which has high computa-
tional expense. To mitigate computational costs, Gkantsidis
and Rodriguez [9] proposed to probabilistically check blocks
using Krohn et al.’s scheme [8], but their scheme introduces
larger communication overheads. Recently, Kehdi and Li [13]
proposed a light-weight scheme based on the null-space prop-
erty of network coding. One drawback of this scheme is the

3We do not compare our scheme with the error-correction based schemes
since they cannot guarantee the full usage of network capacity and are
applicable only when a limited number of blocks are corrupted.



vulnerability to collusion attacks, where multiple malicious
nodes can collude to infer the null keys employed in the
network and let innocent nodes accept corrupted blocks. In
all these schemes [8], [9], [13], the verification information
is derived from the blocks and thus needs to repeatedly pre-
distributed via secured channels.

To avoid redistributing verification information, Li et al. [10]
proposed a scheme based on trapdoor one-way permutation,
in which only a random seed needs to be pre-distributed
and each block carries a verificable pad computed using the
seed and the trapdoor information. Charles et al. [11] and
Yu et al. [12] proposed homomorphic signatures for network
coding. However, these schemes [10]–[12] require expensive
modular exponentiation computations at each hop, which is
unallowable for live streaming applications. Yu et al. [14]
proposed a computationally efficient scheme for XOR network
coding based on symmetric keys. However, this scheme incurs
substantial communication overheads.

Some schemes deal with corrupted blocks at decoders. Ho
et al. [15] proposed a scheme that can detect Byzantine errors
in decoding, but cannot correct them. The schemes in [16] and
[17] can correct Byzantine errors, but they are applicable only
when less than a threshold number of bogus blocks injected
into the network and the achievable flow rate is determined
by the number of contaminated links. These schemes [15]–
[17] cannot limit the behaviors of malicious nodes, which can
persistently degrade the network performance by continuously
injecting bogus blocks. Whereas, our scheme can actively
identify malicious nodes and remove them from the network.

Identifying malicious nodes have been studied in several
areas, such as botnet detection [20], Byzantine link failure
localization [21], and reputation-based networks [22]. These
approaches typically require monitoring the network traffic or
nodes’ behaviors for a certain period of time and rely on some
statistical algorithms to identify Byzantine adversaries. On the
contrary, our scheme is message-based in that the malicious
nodes can be rapidly located as long as they inject a single
false message into the network.

VIII. CONCLUSION

In this paper, we propose a novel scheme (MIS) to limit
network-coding pollution attacks by identifying malicious
nodes. MIS can fully satisfy the requirements of P2P live
streaming systems. It has high computational efficiency, small
space overhead, and the capability of handling a large number
of corrupted blocks and malicious nodes, and does not require
repeatedly pre-distributing verification information. MIS is
block-based and can repaidly identify malicious nodes, ensuring
that the system quickly recovers from pollution attacks.
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Appendix 1 (Proof of Theorem 2)
Proof: Let x denote the number of correctly computed

values in Φ(e)′. On the one hand, x should be smaller than
δ + θ; otherwise, there will be at least θ values in Φ(e)′ that
pass the M-server’s checking. On the other hand, x should be
at least δ. Otherwise, at least x− δ inconsistent values will be
detected by Y . Hence, x ∈ [δ, δ + θ − 1]. Let i be the number
of correctly computed values (in Φ(e)′) that are verificable to
Y . Hence, the number of consistent values that are checked
by the M-server is x− i, which should be smaller than θ, i.e.,
i ≥ x − θ − 1. Therefore, the probability that Y accepts the
corrupted block when there are x (∈ [δ, δ + θ − 1]) consistent

values in Φ(e)′ is p(x) =
∑δ

i=x−θ+1
(δ

i)(λ−δ
x−i)

2π(δ−i)(λ
x)

, and the best

probability is maxδ≤x≤δ+θ−1 p(x).


