2,968 research outputs found

    Efficient size estimation and impossibility of termination in uniform dense population protocols

    Full text link
    We study uniform population protocols: networks of anonymous agents whose pairwise interactions are chosen at random, where each agent uses an identical transition algorithm that does not depend on the population size nn. Many existing polylog(n)(n) time protocols for leader election and majority computation are nonuniform: to operate correctly, they require all agents to be initialized with an approximate estimate of nn (specifically, the exact value logn\lfloor \log n \rfloor). Our first main result is a uniform protocol for calculating log(n)±O(1)\log(n) \pm O(1) with high probability in O(log2n)O(\log^2 n) time and O(log4n)O(\log^4 n) states (O(loglogn)O(\log \log n) bits of memory). The protocol is converging but not terminating: it does not signal when the estimate is close to the true value of logn\log n. If it could be made terminating, this would allow composition with protocols, such as those for leader election or majority, that require a size estimate initially, to make them uniform (though with a small probability of failure). We do show how our main protocol can be indirectly composed with others in a simple and elegant way, based on the leaderless phase clock, demonstrating that those protocols can in fact be made uniform. However, our second main result implies that the protocol cannot be made terminating, a consequence of a much stronger result: a uniform protocol for any task requiring more than constant time cannot be terminating even with probability bounded above 0, if infinitely many initial configurations are dense: any state present initially occupies Ω(n)\Omega(n) agents. (In particular, no leader is allowed.) Crucially, the result holds no matter the memory or time permitted. Finally, we show that with an initial leader, our size-estimation protocol can be made terminating with high probability, with the same asymptotic time and space bounds.Comment: Using leaderless phase cloc

    Leader Election in Anonymous Rings: Franklin Goes Probabilistic

    Get PDF
    We present a probabilistic leader election algorithm for anonymous, bidirectional, asynchronous rings. It is based on an algorithm from Franklin, augmented with random identity selection, hop counters to detect identity clashes, and round numbers modulo 2. As a result, the algorithm is finite-state, so that various model checking techniques can be employed to verify its correctness, that is, eventually a unique leader is elected with probability one. We also sketch a formal correctness proof of the algorithm for rings with arbitrary size

    Uniform Partition in Population Protocol Model Under Weak Fairness

    Get PDF
    We focus on a uniform partition problem in a population protocol model. The uniform partition problem aims to divide a population into k groups of the same size, where k is a given positive integer. In the case of k=2 (called uniform bipartition), a previous work clarified space complexity under various assumptions: 1) an initialized base station (BS) or no BS, 2) weak or global fairness, 3) designated or arbitrary initial states of agents, and 4) symmetric or asymmetric protocols, except for the setting that agents execute a protocol from arbitrary initial states under weak fairness in the model with an initialized base station. In this paper, we clarify the space complexity for this remaining setting. In this setting, we prove that P states are necessary and sufficient to realize asymmetric protocols, and that P+1 states are necessary and sufficient to realize symmetric protocols, where P is the known upper bound of the number of agents. From these results and the previous work, we have clarified the solvability of the uniform bipartition for each combination of assumptions. Additionally, we newly consider an assumption on a model of a non-initialized BS and clarify solvability and space complexity in the assumption. Moreover, the results in this paper can be applied to the case that k is an arbitrary integer (called uniform k-partition)

    Stable Leader Election in Population Protocols Requires Linear Time

    Full text link
    A population protocol *stably elects a leader* if, for all nn, starting from an initial configuration with nn agents each in an identical state, with probability 1 it reaches a configuration y\mathbf{y} that is correct (exactly one agent is in a special leader state \ell) and stable (every configuration reachable from y\mathbf{y} also has a single agent in state \ell). We show that any population protocol that stably elects a leader requires Ω(n)\Omega(n) expected "parallel time" --- Ω(n2)\Omega(n^2) expected total pairwise interactions --- to reach such a stable configuration. Our result also informs the understanding of the time complexity of chemical self-organization by showing an essential difficulty in generating exact quantities of molecular species quickly.Comment: accepted to Distributed Computing special issue of invited papers from DISC 2015; significantly revised proof structure and intuitive explanation

    Fast Graphical Population Protocols

    Get PDF
    Let GG be a graph on nn nodes. In the stochastic population protocol model, a collection of nn indistinguishable, resource-limited nodes collectively solve tasks via pairwise interactions. In each interaction, two randomly chosen neighbors first read each other's states, and then update their local states. A rich line of research has established tight upper and lower bounds on the complexity of fundamental tasks, such as majority and leader election, in this model, when GG is a clique. Specifically, in the clique, these tasks can be solved fast, i.e., in npolylognn \operatorname{polylog} n pairwise interactions, with high probability, using at most polylogn\operatorname{polylog} n states per node. In this work, we consider the more general setting where GG is an arbitrary graph, and present a technique for simulating protocols designed for fully-connected networks in any connected regular graph. Our main result is a simulation that is efficient on many interesting graph families: roughly, the simulation overhead is polylogarithmic in the number of nodes, and quadratic in the conductance of the graph. As a sample application, we show that, in any regular graph with conductance ϕ\phi, both leader election and exact majority can be solved in ϕ2npolylogn\phi^{-2} \cdot n \operatorname{polylog} n pairwise interactions, with high probability, using at most ϕ2polylogn\phi^{-2} \cdot \operatorname{polylog} n states per node. This shows that there are fast and space-efficient population protocols for leader election and exact majority on graphs with good expansion properties. We believe our results will prove generally useful, as they allow efficient technology transfer between the well-mixed (clique) case, and the under-explored spatial setting.Comment: 47 pages, 5 figure

    Population Protocols for Graph Class Identification Problems

    Get PDF
    In this paper, we focus on graph class identification problems in the population protocol model. A graph class identification problem aims to decide whether a given communication graph is in the desired class (e.g. whether the given communication graph is a ring graph). Angluin et al. proposed graph class identification protocols with directed graphs and designated initial states under global fairness [Angluin et al., DCOSS2005]. We consider graph class identification problems for undirected graphs on various assumptions such as initial states of agents, fairness of the execution, and initial knowledge of agents. In particular, we focus on lines, rings, k-regular graphs, stars, trees, and bipartite graphs. With designated initial states, we propose graph class identification protocols for k-regular graphs and trees under global fairness, and propose a graph class identification protocol for stars under weak fairness. Moreover, we show that, even if agents know the number of agents n, there is no graph class identification protocol for lines, rings, k-regular graphs, trees, or bipartite graphs under weak fairness, and no graph class identification for lines, rings, k-regular graphs, stars, trees, or bipartite graphs with arbitrary initial states

    Dynamic Size Counting in Population Protocols

    Get PDF
    The population protocol model describes a network of anonymous agents that interact asynchronously in pairs chosen at random. Each agent starts in the same initial state ss. We introduce the *dynamic size counting* problem: approximately counting the number of agents in the presence of an adversary who at any time can remove any number of agents or add any number of new agents in state ss. A valid solution requires that after each addition/removal event, resulting in population size nn, with high probability each agent "quickly" computes the same constant-factor estimate of the value log2n\log_2 n (how quickly is called the *convergence* time), which remains the output of every agent for as long as possible (the *holding* time). Since the adversary can remove agents, the holding time is necessarily finite: even after the adversary stops altering the population, it is impossible to *stabilize* to an output that never again changes. We first show that a protocol solves the dynamic size counting problem if and only if it solves the *loosely-stabilizing counting* problem: that of estimating logn\log n in a *fixed-size* population, but where the adversary can initialize each agent in an arbitrary state, with the same convergence time and holding time. We then show a protocol solving the loosely-stabilizing counting problem with the following guarantees: if the population size is nn, MM is the largest initial estimate of logn\log n, and s is the maximum integer initially stored in any field of the agents' memory, we have expected convergence time O(logn+logM)O(\log n + \log M), expected polynomial holding time, and expected memory usage of O(log2(s)+(loglogn)2)O(\log^2 (s) + (\log \log n)^2) bits. Interpreted as a dynamic size counting protocol, when changing from population size nprevn_{prev} to nnextn_{next}, the convergence time is O(lognnext+loglognprev)O(\log n_{next} + \log \log n_{prev})
    corecore