2 research outputs found

    Augmenting IP blocks for verification and optimization

    Get PDF
    The verification of digital intellectual property (IP) blocks has always been a challenge. Simple IP blocks with straightforward test inputs, can be quite thoroughly verified with software simulators such as Modelsim. But the verification of a complex System-on-Chip (SoC) on a software simulator can last days or even weeks, and that assumes that every IP on the SoC has a working simulation model. Although modern programmable chips can be monitored in real time with tools like Altera’s Signaltap II, they still only offer monitoring capabilities for a limited amount of signals and for a limited amount of time. To overcome this deficiency, IP information registers (IIR) were developed for this thesis. These registers are used to store information pertaining to the IPs and the SoC as a whole. The information can be static or dynamic, ie. generated before or during run-time . The information itself can be used for many different purposes along with the verification of single IPs or whole SoCs. The case study in this thesis has three parts where three of those purposes are examined with Terasic’s second generation development and education (DE2) board. This physical platform was fitted with two systems, a 2D graphics system embedded with information registers and a system to monitor the first one using these registers. The first part examined the identification aspects with static information whereas the second and third part examined the dynamic aspects of the information registers with their verification and optimization capabilities. Each of these aspects was deemed to offer a good service for developers designing digital circuits
    corecore