9 research outputs found

    Efficient recovery-based error estimation for the smoothed finite element method for smooth and singular linear elasticity

    Full text link
    [EN] An error control technique aimed to assess the quality of smoothed finite element approximations is presented in this paper. Finite element techniques based on strain smoothing appeared in 2007 were shown to provide significant advantages compared to conventional finite element approximations. In particular, a widely cited strength of such methods is improved accuracy for the same computational cost. Yet, few attempts have been made to directly assess the quality of the results obtained during the simulation by evaluating an estimate of the discretization error. Here we propose a recovery type error estimator based on an enhanced recovery technique. The salient features of the recovery are: enforcement of local equilibrium and, for singular problems a ¿smooth + singular¿ decomposition of the recovered stress. We evaluate the proposed estimator on a number of test cases from linear elastic structural mechanics and obtain efficient error estimations whose effectivities, both at local and global levels, are improved compared to recovery procedures not implementing these features.Stephane Bordas would like to thank the partial financial support of the Royal Academy of Engineering and of the Leverhulme Trust for his Senior Research Fellowship Towards the next generation surgical simulators as well as the financial support for Octavio A. Gonzalez-Estrada and Stephane Bordas from the UK Engineering Physical Science Research Council (EPSRC) under grant EP/G042705/1 Increased Reliability for Industrially Relevant Automatic Crack Growth Simulation with the eXtended Finite Element Method. Stephane Bordas also thanks partial financial support of the European Research Council Starting Independent Research Grant (ERC Stg grant agreement No. 279578) and the FP7 Initial Training Network Funding under grant number 289361 "Integrating Numerical Simulation and Geometric Design Technology, INSIST". This work has been carried out within the framework of the research project DPI2010-20542 of the Ministerio de Ciencia e Innovacion (Spain). The financial support from Universitat Politecnica de Valencia, PROMETEO/2012/023 and Generalitat Valenciana are also acknowledged.González Estrada, OA.; Natarajan, S.; J.J. Ródenas; Nguyen-Xuan, H.; Bordas, S. (2013). Efficient recovery-based error estimation for the smoothed finite element method for smooth and singular linear elasticity. Computational Mechanics. 52(1):37-52. https://doi.org/10.1007/s00466-012-0795-6S3752521Liu GR, Dai KY, Nguyen TT (2006) A smoothed finite element method for mechanics problems. Comput Mech 39(6): 859–877. doi: 10.1007/s00466-006-0075-4Liu GR, Nguyen TT, Dai KY, Lam KY (2007) Theoretical aspects of the smoothed finite element method (SFEM). Int J Numer Methods Eng 71(8): 902–930Nguyen-Xuan H, Bordas SPA, Nguyen-Dang H (2008) Smooth finite element methods: convergence, accuracy and properties. Int J Numer Methods Eng 74(2): 175–208. doi: 10.1002/nmeBordas SPA, Natarajan S (2010) On the approximation in the smoothed finite element method (SFEM). Int J Numer Methods Eng 81(5): 660–670. doi: 10.1002/nmeZhang HH, Liu SJ, Li LX (2008) On the smoothed finite element method. Int J Numer Methods Eng 76(8): 1285–1295. doi: 10.1002/nme.2460Nguyen-Thoi T, Liu G, Lam K, Zhang G. (2009) A face-based smoothed finite element method (FS-FEM) for 3D linear and nonlinear solid mechanics using 4-node tetrahedral elements. Int J Numer Methods Eng 78: 324–353Liu G, Nguyen-Thoi T, Lam K (2009) An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids. J Sound Vib 320: 1100–1130Liu G, Nguyen-Thoi T, Nguyen-Xuan H, Lam K (2009) A node based smoothed finite element method (NS-FEM) for upper bound solution to solid mechanics problems. Comput Struct 87: 14–26Liu G. Smoothed Finite Element Methods. CRC Press, 2010Liu G, Nguyen-Xuan H, Nguyen-Thoi T (2010) A theoretical study on the smoothed FEM (SFEM) models: Properties, accuracy and convergence rates. Int J Numer Methods Biomed Eng 84: 1222–1256Nguyen T, Liu G, Dai K, Lam K (2007) smoothed finite element method. Tsinghua Sci Technol 12: 497–508Hung NX, Bordas S, Hung N (2009) Addressing volumetric locking and instabilities by selective integration in smoothed finite element. Commun Numer Methods Eng 25: 19–34Nguyen-Xuan H, Rabczuk T, Bordas S, Debongnie JF (2008) A smoothed finite element method for plate analysis. Comput Methods Appl Mech Eng 197: 1184–1203Nguyen NT, Rabczuk T, Nguyen-Xuan H, Bordas S (2008) A smoothed finite element method for shell analysis. Comput Methods Appl Mech Eng 198: 165–177Bordas SPA, Rabczuk T, Hung NX, Nguyen VP, Natarajan S, Bog T, óuan DM, Hiep NV (2010) Strain smoothing in FEM and XFEM. Comput Struct 88(23–24): 1419–1443. doi: 10.1016/j.compstruc.2008.07.006Bordas SP, Natarajan S, Kerfriden P, Augarde CE, Mahapatra DR, Rabczuk T, Pont SD (2011) On the performance of strain smoothing for óuadratic and enriched finite element approximations (XFEM/GFEM/PUFEM). Int J Numer Methods Biomed Eng 86: 637–666Liu G, Nguyen-Thoi T, Nguyen-Xuan H, Dai K, Lam K (2009) On the essence and the evaluation of the shape functions for the smoothed finite element method (SFEM). Int J Numer Methods Eng 77: 1863–1869. doi: 10.1002/nme.2587Strouboulis T, Zhang L, Wang D, Babuška I. (2006) A posteriori error estimation for generalized finite element methods. Comput Methods Appl Mech Eng 195(9–12): 852–879Bordas SPA, Duflot M (2007) Derivative recovery and a posteriori error estimate for extended finite elements. Comput Methods Appl Mech Eng 196(35–36): 3381–3399Xiao óZ, Karihaloo BL (2004) Statically admissible stress recovery using the moving least sóuares technique. In: Topping BHV, Soares CAM (eds) Progress in computational structures technology. Saxe-Coburg Publications, Stirling, pp 111–138Ródenas JJ, González-Estrada OA, Tarancón JE, Fuenmayor FJ (2008) A recovery-type error estimator for the extended finite element method based on singular + smooth stress field splitting. Int J Numer Methods Eng 76(4): 545–571. doi: 10.1002/nme.2313Panetier J, Ladevèze P, Chamoin L (2010) Strict and effective bounds in goal-oriented error estimation applied to fracture mechanics problems solved with XFEM. Int J Numer Methods Eng 81(6): 671–700Barros FB, Proenca SPB, de Barcellos CS (2004) On error estimator and p-adaptivity in the generalized finite element method. Int J Numer Methods Eng 60(14):2373–2398. doi: 10.1002/nme.1048Nguyen-Thoi T, Liu G, Nguyen-Xuan H, Nguyen-Tran C (2011) Adaptive analysis using the node-based smoothed finite element method (NS-FEM). Int J Numer Methods Biomed Eng 27(2): 198–218. doi: 10.1002/cnmGonzález-Estrada OA, Ródenas JJ, Bordas SPA, Duflot M, Kerfriden P, Giner E (2012) On the role of enrichment and statical admissibility of recovered fields in a-posteriori error estimation for enriched finite element methods. Eng Comput 29(8)Zienkiewicz OC, Zhu JZ (1987) A simple error estimator and adaptive procedure for practical engineering analysis. Int J Numer Methods Eng 24(2): 337–357Ródenas JJ, González-Estrada OA, Díez P, Fuenmayor FJ (2010) Accurate recovery-based upper error bounds for the extended finite element framework. Comput Methods Appl Mech Eng 199(37–40): 2607–2621Williams ML (1952) Stress singularities resulting from various boundary conditions in angular corners of plate in extension. J Appl Mech 19: 526–534Szabó BA, Babuška I (1991) Finite element analysis. Wiley, New YorkBarber JR. (2010) Elasticity. Series: solid mechanics and its application, 3rd edn. Springer, DordrechtChen JS, Wu CT, Yoon S, You Y (2001) A stabilized conforming nodal integration for Galerki mesh-free methods. Int J Numer Methods Eng 50: 435–466Yoo J, Moran B, Chen J (2004) Stabilized conforming nodal integration in the natural element method. Int J Numer Methods Eng 60: 861–890Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique. Int J Numer Methods Eng 33(7): 1331–1364Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity. Int J Numer Methods Eng 33(7): 1365–1382Wiberg NE, Abdulwahab F (1993) Patch recovery based on superconvergent derivatives and eóuilibrium. Int J Numer Methods Eng 36(16): 2703–2724. doi: 10.1002/nme.1620361603Blacker T, Belytschko T (1994) Superconvergent patch recovery with eóuilibrium and conjoint interpolant enhancements. Int J Numer Methods Eng 37(3): 517–536Stein E, Ramm E, Rannacher R (2003) Error-controlled adaptive finite elements in solid mechanics. Wiley, ChichesterDuflot M, Bordas SPA (2008) A posteriori error estimation for extended finite elements by an extended global recovery. Int J Numer Methods Eng 76: 1123–1138. doi: 10.1002/nmeBordas SPA, Duflot M, Le P (2008) A simple error estimator for extended finite elements. Commun Numer Methods Eng 24(11): 961–971Ródenas JJ, Tur M, Fuenmayor FJ, Vercher A (2007) Improvement of the superconvergent patch recovery technique by the use of constraint eóuations: the SPR-C technique. Int J Numer Methods Eng 70(6): 705–727. doi: 10.1002/nme.1903Díez P, Ródenas JJ, Zienkiewicz OC (2007) Eóuilibrated patch recovery error estimates: simple and accurate upper bounds of the error. Int J Numer Methods Eng 69(10): 2075–2098. doi: 10.1002/nmeYau J, Wang S, Corten H (1980) A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity. J Appl Mech 47(2): 335–341Ródenas JJ, González-Estrada OA, Fuenmayor FJ, Chinesta F (2010) Upper bounds of the error in X-FEM based on a moving least sóuares (MLS) recovery technique. In: Khalili N, Valliappan S, Li ó, Russell A (eds) 9th World congress on computational mechanics (WCCM9). 4th Asian Pacific Congress on computational methods (APCOM2010). Centre for Infrastructure Engineering and SafetyRódenas JJ, González-Estrada OA, Díez P, Fuenmayor FJ (2007) Upper bounds of the error in the extended finite element method by using an eóuilibrated-stress patch recovery technique. In: International conference on adaptive modeling and simulation (ADMOS 2007). International Center for Numerical Methods in Engineering (CIMNE), pp 210–213Menk A, Bordas S (2010) Numerically determined enrichment function for the extended finite element method and applications to bi-material anisotropic fracture and polycrystals. Int J Numer Methods Eng 83: 805–828Menk A, Bordas S (2011) Crack growth calculations in solder joints based on microstructural phenomena with X-FEM. Comput Mater Sci 3: 1145–1156Ródenas JJ (2001) Error de discretización en el cálculo de sensibilidades mediante el método de los elementos finitos. PhD Thesis, Universidad Politécnica de ValenciaAinsworth M, Oden JT (2000) A posteriori error estimation in finite element analysis. Wiley, Chicheste

    Evaluación del daño en la vértebra lumbar L5 mediante análisis por elementos finitos

    Get PDF
    International audienceBone metastasis to the spine, pelvis, or hip in patients suffering from prostate cancer occurs in about 80% of cases. A spinal metastasis may cause pain, instability and neurological injuries. Thus, it is relevant to assess when critical conditions have been reached and bone structural integrity is compromised. Data-driven numerical methods based on the postprocessing of medical imaging provide a tool to model the material complexity of biological tissues. Computed axial tomography (CAT) together with segmentation tools allow the reconstruction of 3D models of the bone that include mechanical properties representing the anisotropic condition of the bone structures. In this work, we present the model of the L5 lumbar vertebra of a patient affected by metastasis, and evaluate biomarkers to indicate the level of damage, compared with the reference case of a healthy bone in an initial stage.La metástasis ósea a la columna vertebral, la pelvis o la cadera en pacientes con cáncer de próstata es una patología que ocurre en aproximadamente el 80% de los casos. La metástasis en la columna vertebral puede causar dolor, inestabilidad y lesiones neurológicas. Por lo tanto, es relevante evaluar cuándo se han alcanzado condiciones críticas y la integridad estructural del hueso está comprometida. Los métodos numéricos basados en datos del paciente, obtenidos mediante el postprocesamiento de imágenes médicas, proporcionan una herramienta para modelar la complejidad del material de los tejidos biológicos. La tomografía axial computarizada (TAC) junto con las herramientas de segmentación permiten la reconstrucción de modelos 3D del hueso que incluyen propiedades mecánicas, y que representan la condición anisotrópica de las estructuras óseas. En este trabajo, presentamos el modelo de la vértebra lumbar L5 de un paciente afectado por metástasis y evaluamos biomarcadores para indicar el nivel de daño, comparando con el caso de referencia del hueso sano en una etapa inicial. Palabras clave: daño óseo; segmentación ósea; vértebras; metástasis; FEA basado en imagen

    Stress recovery for the polygonal finite element method

    Get PDF
    El método de los elementos finitos es una de las herramientas numéricas más utilizadas para el diseño en ingeniería. En los últimos años se han desarrollado nuevas aproximaciones numéricas para extender el uso del método de elementos finitos a mallas poligonales. Dichas aproximaciones mejoran la precisión de la solución y aumentan la flexibilidad en el mallado. Sin embargo, como toda aproximación, es necesario cuantificar el valor del error inducido para poder validar los resultados obtenidos. En este trabajo se presenta el uso de una técnica de estimación del error de discretización para mallas de elementos finitos poligonales. La técnica está basada en la reconstrucción de la solución en tensiones mediante un procedimiento de mínimos cuadrados ponderados que considera la influencia de las ecuaciones de equilibrio. Se ha utilizado un problema con solución exacta para evaluar la efectividad del estimador, obteniendo buenos resultados a nivel local y global. The finite element method is one of the most used numerical tools for engineering design. In recent years, novel numerical approximations have been proposed to extend the finite element method to meshes using arbitrary polygons. Such approximations are aimed to improve accuracy and increase the flexibility during the meshing process. However, as any approximation, they exhibit an error that requires to be quantified in order to validate the numerical results. In this paper, we present a technique to estimate the discretization error in energy norm for arbitrary polygonal finite element meshes. This recovery-based technique uses a moving least squares approach that considers constraints to represent the equilibrium equations.  We use two benchmark problems to evaluate the effectivity of the error estimator, with good results both locally and globally.&nbsp

    Stress recovery for the polygonal finite element method

    Get PDF
    El método de los elementos finitos es una de las herramientas numéricas más utilizadas para el diseño en ingeniería. En los últimos años se han desarrollado nuevas aproximaciones numéricas para extender el uso del método de elementos finitos a mallas poligonales. Dichas aproximaciones mejoran la precisión de la solución y aumentan la flexibilidad en el mallado. Sin embargo, como toda aproximación, es necesario cuantificar el valor del error inducido para poder validar los resultados obtenidos. En este trabajo se presenta el uso de una técnica de estimación del error de discretización para mallas de elementos finitos poligonales. La técnica está basada en la reconstrucción de la solución en tensiones mediante un procedimiento de mínimos cuadrados ponderados que considera la influencia de las ecuaciones de equilibrio. Se ha utilizado un problema con solución exacta para evaluar la efectividad del estimador, obteniendo buenos resultados a nivel local y global. The finite element method is one of the most used numerical tools for engineering design. In recent years, novel numerical approximations have been proposed to extend the finite element method to meshes using arbitrary polygons. Such approximations are aimed to improve accuracy and increase the flexibility during the meshing process. However, as any approximation, they exhibit an error that requires to be quantified in order to validate the numerical results. In this paper, we present a technique to estimate the discretization error in energy norm for arbitrary polygonal finite element meshes. This recovery-based technique uses a moving least squares approach that considers constraints to represent the equilibrium equations.  We use two benchmark problems to evaluate the effectivity of the error estimator, with good results both locally and globally.&nbsp

    Finite element computations over quadtree meshes : Strain smoothing and semi-analytical formulation

    Get PDF
    In this paper, we discuss two alternate techniques to treat hanging nodes in a quadtree mesh. Both the techniques share similarities, in that, they require only boundary information. Moreover, they do not require an explicit form of the shape functions, unlike the conventional approaches, for example, as in the work of Gupta (Int J Numer Methods Eng 12:35, 1978) or Tabarraei and Sukumar (Finite Elem Anal Des 41:686, 2005). Hence, no special numerical integration technique is required. One of the techniques relies on the strain projection procedure, whilst the other is based on the scaled boundary finite element method. Numerical examples are presented to demonstrate the accuracy and the convergence properties of the two techniques

    Efficient recovery-based error estimation for the smoothed finite element method for smooth and singular linear elasticity

    No full text
    An error control technique aimed to assess the quality of smoothed finite element approximations is presented in this paper. Finite element techniques based on strain smoothing appeared in 2007 were shown to provide significant advantages compared to conventional finite element approximations. In particular, a widely cited strength of such methods is improved accuracy for the same computational cost. Yet, few attempts have been made to directly assess the quality of the results obtained during the simulation by evaluating an estimate of the discretization error. Here we propose a recovery type error estimator based on an enhanced recovery technique. The salient features of the recovery are: enforcement of local equilibrium and, for singular problems a “smooth+singular” decomposition of the recovered stress. We evaluate the proposed estimator on a number of test cases from linear elastic structural mechanics and obtain efficient error estimations whose effectivities, both at local and global levels, are improved compared to recovery procedures not implementing these features

    Mesh adaptivity driven by goal-oriented locally equilibrated superconvergent patch recovery

    Full text link
    [EN] Goal-oriented error estimates (GOEE) have become popular tools to quantify and control the local error in quantities of interest (QoI), which are often more pertinent than local errors in energy for design purposes (e.g. the mean stress or mean displacement in a particular area, the stress intensity factor for fracture problems). These GOEE are one of the key unsolved problems of advanced engineering applications in, for example, the aerospace industry. This work presents a simple recovery-based error estimation technique for QoIs whose main characteristic is the use of an enhanced version of the Superconvergent Patch Recovery (SPR) technique previously used for error estimation in the energy norm. This enhanced SPR technique is used to recover both the primal and dual solutions. It provides a nearly statically admissible stress field that results in accurate estimations of the local contributions to the discretisation error in the QoI and, therefore, in an accurate estimation of this magnitude. This approach leads to a technique with a reasonable computational cost that could easily be implemented into already available finite element codes, or as an independent postprocessing tool.This work was supported by the EPSRC Grant EP/G042705/1 "Increased Reliability for Industrially Relevant Automatic Crack Growth Simulation with the eXtended Finite Element Method". Stephane Bordas also thanks partial funding for his time provided by the European Research Council Starting Independent Research Grant (ERC Stg Grant Agreement No. 279578) "RealTCut Towards real time multiscale simulation of cutting in non-linear materials with applications to surgical simulation and computer guided surgery". This work has received partial support from the research project DPI2010-20542 of the Ministerio de Economia y Competitividad (Spain). The financial support of the FPU program (AP2008-01086), the funding from Universitat Politecnica de Valencia and Generalitat Valenciana (PROMETEO/2012/023) are also acknowledged. All authors also thank the partial support of the Framework Programme 7 Initial Training Network Funding under Grant No. 289361 "Integrating Numerical Simulation and Geometric Design Technology."González Estrada, OA.; Nadal Soriano, E.; Ródenas, J.; Kerfriden, P.; Bordas, S.; Fuenmayor Fernández, FJ. (2014). Mesh adaptivity driven by goal-oriented locally equilibrated superconvergent patch recovery. Computational Mechanics. 53(5):957-976. https://doi.org/10.1007/s00466-013-0942-8S957976535Ainsworth M, Oden JT (2000) A posteriori error estimation in finite element analysis. Wiley, ChichesterBabuška I, Rheinboldt WC (1978) A-posteriori error estimates for the finite element method. Int J Numer Methods Eng 12(10):1597–1615Cottereau R, Díez P, Huerta A (2009) Strict error bounds for linear solid mechanics problems using a subdomain-based flux-free method. Comput Mech 44(4):533–547Larsson F, Hansbo P, Runesson K (2002) Strategies for computing goal-oriented a posteriori error measures in non-linear elasticity. Int J Numer Methods Eng 55(8):879–894Díez P, Parés N, Huerta A (2003) Recovering lower bounds of the error by postprocessing implicit residual a posteriori error estimates. Int J Numer Methods Eng 56(10):1465–1488Verfürth R (1996) A review of a posteriori error estimation and adaptive mesh-refinement techniques. Wiley, ChichesterStein E, Ramm E, Rannacher R (2003) Error-controlled adaptive finite elements in solid mechanics. Wiley, ChichesterDíez P, Egozcue JJ, Huerta A (1998) A posteriori error estimation for standard finite element analysis. Comput Methods Appl Mech Eng 163(1–4):141–157Zienkiewicz OC, Zhu JZ (1987) A simple error estimator and adaptive procedure for practical engineering analysis. Int J Numer Methods Eng 24(2):337–357Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recovery and a posteriori error estimates. Part 1: the recovery technique. Int J Numer Methods Eng 33(7):1331–1364Bordas SPA, Duflot M (2007) Derivative recovery and a posteriori error estimate for extended finite elements. Comput Methods Appl Mech Eng 196(35–36):3381–3399Bordas SPA, Duflot M, Le P (2008) A simple error estimator for extended finite elements. Commun Numer Methods Eng 24(11):961–971Ródenas JJ, González-Estrada OA, Tarancón JE, Fuenmayor FJ (2008) A recovery-type error estimator for the extended finite element method based on singular+smooth stress field splitting. Int J Numer Methods Eng 76(4):545–571Duflot M, Bordas SPA (2008) A posteriori error estimation for extended finite elements by an extended global recovery. Int J Numer Methods Eng 76:1123–1138Prange C, Loehnert S, Wriggers P (2012) Error estimation for crack simulations using the XFEM. Int J Numer Methods Eng 91:1459–1474Hild P, Lleras V, Renard Y (2010) A residual error estimator for the XFEM approximation of the elasticity problem. Comput Mech (submitted)González-Estrada O, Natarajan S, Ródenas J, Nguyen-Xuan H, Bordas S (2012) Efficient recovery-based error estimation for the smoothed finite element method for smooth and singular linear elasticity. Comput Mech 52(1):37–52González-Estrada O, Ródenas J, Bordas S, Duflot M, Kerfriden P, Giner E (2012) On the role of enrichment and statical admissibility of recovered fields in a-posteriori error estimation for enriched finite element methods. Eng Comput 29(8):2–2Díez P, Ródenas JJ, Zienkiewicz OC (2007) Equilibrated patch recovery error estimates: simple and accurate upper bounds of the error. Int J Numer Methods Eng 69(10):2075–2098Ródenas JJ, González-Estrada OA, Díez P, Fuenmayor FJ (2010) Accurate recovery-based upper error bounds for the extended finite element framework. Comput Methods Appl Mech Eng 199(37–40):2607–2621Oden JT, Prudhomme S (2001) Goal-oriented error estimation and adaptivity for the finite element method. Comput Math Appl 41(5–6):735–756Ladevèze P (2006) Upper error bounds on calculated outputs of interest for linear and nonlinear structural problems. Comptes Rendus Mécanique 334(7):399–407Ladevèze P, Pelle JP (2005) Mastering calculations in linear and nonlinear mechanics. Mechanical engineering series. Springer, BerlinRüter M, Stein E (2006) Goal-oriented a posteriori error estimates in linear elastic fracture mechanics. Comput Methods Appl Mech Eng 195(4–6):251–278Ladevèze P, Rougeot P, Blanchard P, Moreau JP (1999) Local error estimators for finite element linear analysis. Comput Methods Appl Mech Eng 176(1–4):231–246de Almeida JPM, Pereira OJBA (2006) Upper bounds of the error in local quantities using equilibrated and compatible finite element solutions for linear elastic problems. Comput Methods Appl Mech Eng 195(4–6):279–296Cirak F, Ramm E (1998) A posteriori error estimation and adaptivity for linear elasticity using the reciprocal theorem. Comput Methods Appl Mech Eng 156(1–4):351–362Verfürth R (1999) A review of a posteriori error estimation techniques for elasticity problems. Comput Methods Appl Mech Eng 176:419–440Zienkiewicz OC, Taylor R (2000) The finite element method: the basis, vol 1, 5th edn. Butterworth-Heinemann, OxfordLadevèze P, Leguillon D (1983) Error estimate procedure in the finite element method and applications. SIAM J Numer Anal 20(3):485–509Pled F, Chamoin L, Ladevèze P (2012) An enhanced method with local energy minimization for the robust a posteriori construction of equilibrated stress fields in finite element analyses. Comput Mech 49(3):357–378Blacker T, Belytschko T (1994) Superconvergent patch recovery with equilibrium and conjoint interpolant enhancements. Int J Numer Methods Eng 37(3):517–536González-Estrada OA, Nadal E, Ródenas JJ, Kerfriden P, Bordas SPA (2012) Error estimation in quantities of interest for XFEM using recovery techniques. In: Yang ZJ (ed)20th UK National Conference of the Association for Computational Mechanics in Engineering (ACME). The University of Manchester, Manchester, pp 333–336Pannachet T, Sluys LJ, Askes H (2009) Error estimation and adaptivity for discontinuous failure. Int J Numer Methods Eng 78(5):528–563Ródenas JJ, Tur M, Fuenmayor FJ, Vercher A (2007) Improvement of the superconvergent patch recovery technique by the use of constraint equations: the SPR-C technique. Int J Numer Methods Eng 70(6):705–727Szabó BA, Babuška I (1991) Finite element analysis. Wiley, New YorkGiner E, Tur M, Fuenmayor FJ (2009) A domain integral for the calculation of generalized stress intensity factors in sliding complete contacts. Int J Solids Struct 46(3–4):938–951Ródenas JJ (2005) Goal Oriented Adaptivity: Una introducción a través del problema elástico lineal. Technical Report, CIMNE, PI274, Barcelona, SpainGonzález-Estrada OA, Ródenas JJ, Nadal E, Bordas SPA, Kerfriden P (2011) Equilibrated patch recovery for accurate evaluation of upper error bounds in quantities of interest. Adaptive Modeling and Simulation. In: Aubry D, Díez P, Tie B, Parés N (eds) Proceedings of V ADMOS 2011. CIMNE, ParisVerdugo F, Díez P, Casadei F (2011) Natural quantities of interest in linear elastodynamics for goal oriented error estimation and adaptivity. Adaptive Modeling and Simulation. In: Aubry D, Díez P, Tie B, Parés N (eds) Proceedings of V ADMOS 2011. CIMNE, ParisRódenas JJ, Giner E, Tarancón JE, González-Estrada OA (2006) A recovery error estimator for singular problems using singular+smooth field splitting. In: Topping BHV, Montero G, Montenegro R (eds) Fifth International Conference on Engineering Computational Technology. Civil-Comp Press, Stirling, ScotlandNadal E, Ródenas JJ, Tarancón JE, Fuenmayor FJ (2011) On the advantages of the use of cartesan grid solvers in shape optimization problems. Adaptive Modeling and Simulation. In: Aubry D, Díez P, Tie B, Parés N (eds) Proceedings of V ADMOS 2011. CIMNE, ParisNadal E, Ródenas J, Albelda J, Tur M, Fuenmayor FJ (2013) Efficient Finite Element methodology based on Cartesian Grids. Application to structural shape optimization. Abstr Appl Anal 2013(Article ID 953786):1–19.Moumnassi M, Belouettar S, Béchet E, Bordas SPA, Quoirin D, Potier-Ferry M (2011) Finite element analysis on implicitly defined domains: an accurate representation based on arbitrary parametric surfaces. Comput Methods Appl Mech Eng 200(5–8):774–796Belytschko T, Parimi C, Moës N, Sukumar N, Usui S (2003) Structured extended finite element methods for solids defined by implicit surfaces. Int J Numer Methods Eng 56(4):609–635Moës N, Cloirec M, Cartraud P, Remacle JF (2003) A computational approach to handle complex microstructure geometries. Comput Methods Appl Mech Eng 192(28–30):3163–3177Gordon WJ, Hall CA (1973) Construction of curvilinear co-ordinate systems and applications to mesh generation. Int J Numer Methods Eng 7(4):461–477Sevilla R, Fernández-Méndez S (2008) NURBS-enhanced finite element method ( NEFEM ). Online 76(1):56–83Béchet E, Moës N, Wohlmuth B (2009) A stable Lagrange multiplier space for stiff interface conditions within the extended finite element method. Int J Numer Methods Eng 78:931–954Schweitzer M (2011) Stable enrichment and local preconditioning in the particle-partition of unity method. Numerische Mathematik 118(1):137–170Menk A, Bordas S (2011) A robust preconditioning technique for the extended finite element method. Int J Numer Methods Eng 85(13):1609–1632Hiriyur B, Tuminaro R, Waisman H, Boman E, Keyes D (2012) A quasi-algebraic multigrid approach to fracture problems based on extended finite elements. SIAM J Sci Comput 34(2):603–626Gerstenberger A, Tuminaro R (2012) An algebraic multigrid approach to solve xfem based fracture problems. Int J Numer Methods Eng 94(3):248–272Ladevèze P, Marin P, Pelle JP, Gastine JL (1992) Accuracy and optimal meshes in finite element computation for nearly incompressible materials. Comput Methods Appl Mech Eng 94(3):303–315Coorevits P, Ladevèze P, Pelle JP (1995) An automatic procedure with a control of accuracy for finite element analysis in 2D elasticity. Comput Methods Appl Mech Eng 121:91–120Li LY, Bettess P (1995) Notes on mesh optimal criteria in adaptive finite element computations. Commun Numer Methods Eng 11(11):911–915Fuenmayor FJ, Oliver JL (1996) Criteria to achieve nearly optimal meshes in the h-adaptive finite element method. Int J Numer Methods Eng 39:4039–4061Abel JF, Shephard MS (1979) An algorithm for multipoint constraints in finite element analysis. Int J Numer Methods Eng 14(3):464–467Farhat C, Lacour C, Rixen D (1998) Incorporation of linear multipoint constraints in substructure based iterative solvers. Part 1: a numerically scalable algorithm. Int J Numer Methods Eng 43(6):997–1016Bordas SPA, Moran B (2006) Enriched finite elements and level sets for damage tolerance assessment of complex structures. Eng Fract Mech 73(9):1176–1201Bordas S, Conley J, Moran B, Gray J, Nichols E (2007) A simulation-based design paradigm for complex cast components. Eng Comput 23(1):25–37Bordas SPA, Nguyen PV, Dunant C, Guidoum A, Nguyen-Dang H (2007) An extended finite element library. Int J Numer Methods Eng 71(6):703–732Wyart E, Coulon D, Duflot M, Pardoen T, Remacle JF, Lani F (2007) A substructured FE-shell/XFE-3D method for crack analysis in thin-walled structures. Int J Numer Methods Eng 72(7):757–779Wyart E, Duflot M, Coulon D, Martiny P, Pardoen T, Remacle JF, Lani F (2008) Substructuring FEXFE approaches applied to three-dimensional crack propagation. J Comput Appl Math 215(2):626–63
    corecore