12,447 research outputs found

    Fuzzy Query Routing in Unstructured Mobile Peer-to-Peer Networks

    Get PDF
    © 2016 IEEE. Due to the disparity between the peer-to-peer (P2P) and the physical networks, we study the challenging problems of mobile routing in unstructured P2P networks over mobile ad hoc networks (MANETs). To route queries and objects of interest, the existing mobile P2P protocols widely adopted an inflexible techniques which experience a relatively high delivery time due to remarkable network traffic, nodes mobility and broken links. The bond between routing and mobility is crucial to obtain efficient searching in mobile P2P network. To solve this problem, we proposed fuzzy search controller [1] which reduced search time but due to peer mobility the protocol causes low hit rate and high overhead. Thus, this article proposes novel fuzzy controller based possibilistic routing for unstructured mobile P2P networks to reduce routing time. The possibilistic routing is based on ultrapeer mobility, active time and location. The inference rules are defined to select the best route to forward query walker. Simulations show that the fuzzy search controller gives better performance than the competing protocols in terms of reducing response time and increasing hit rate in different mobility scenarios

    Fuzzy searching and routing in unstructured mobile peer-to-peer networks

    Get PDF
    © 2017, Springer Science+Business Media New York. Peer-to-Peer (P2P) networks offer a scalable solution for efficient query searching and sharing across the unstructured networks. With an increased overhead due to large amount of object searching and routing in unstructured P2P networks, it is a challenge to continue QoS routing among different mobile peers. Most existing mobile P2P protocols focus on inflexible techniques to route queries and discover objects of interest. Such common techniques incur a relatively high search time due to remarkable network traffic and duplication of query messages. The correlation between routing and mobility is crucial to efficiently search and route the query object in an overlay to avoid unnecessary consumption of network resources. Our previous fuzzy search controller model (Shah and Kim in 12th IEEE international conference on dependable, autonomic and secure computing (DASC), 2014) reduced the search time query processing in P2P networks, but it caused low hit rate and a high overhead due to peer mobility. Thus, this article proposes a scalable fuzzy controller based on probabilistic walk for unstructured mobile P2P networks to reduce the search time with controlled mobility. The search time is reduced by jumping a query walker to a 2-hop away ultrapeer, selected through a fuzzy scheme. Furthermore, each mobile ultrapeer shares its pong cache with its directly connected ultrapeer in order to increase the hit rate and reduce the network overhead. Simulations show that the fuzzy search controller gives better performance than the competing protocols in terms time 10% reduction in response time and 15% increase in hit rate in different mobility scenarios

    An Efficient Architecture for Information Retrieval in P2P Context Using Hypergraph

    Full text link
    Peer-to-peer (P2P) Data-sharing systems now generate a significant portion of Internet traffic. P2P systems have emerged as an accepted way to share enormous volumes of data. Needs for widely distributed information systems supporting virtual organizations have given rise to a new category of P2P systems called schema-based. In such systems each peer is a database management system in itself, ex-posing its own schema. In such a setting, the main objective is the efficient search across peer databases by processing each incoming query without overly consuming bandwidth. The usability of these systems depends on successful techniques to find and retrieve data; however, efficient and effective routing of content-based queries is an emerging problem in P2P networks. This work was attended as an attempt to motivate the use of mining algorithms in the P2P context may improve the significantly the efficiency of such methods. Our proposed method based respectively on combination of clustering with hypergraphs. We use ECCLAT to build approximate clustering and discovering meaningful clusters with slight overlapping. We use an algorithm MTMINER to extract all minimal transversals of a hypergraph (clusters) for query routing. The set of clusters improves the robustness in queries routing mechanism and scalability in P2P Network. We compare the performance of our method with the baseline one considering the queries routing problem. Our experimental results prove that our proposed methods generate impressive levels of performance and scalability with with respect to important criteria such as response time, precision and recall.Comment: 2o pages, 8 figure

    A DHT-Based Discovery Service for the Internet of Things

    Get PDF
    Current trends towards the Future Internet are envisaging the conception of novel services endowed with context-aware and autonomic capabilities to improve end users' quality of life. The Internet of Things paradigm is expected to contribute towards this ambitious vision by proposing models and mechanisms enabling the creation of networks of "smart things" on a large scale. It is widely recognized that efficient mechanisms for discovering available resources and capabilities are required to realize such vision. The contribution of this work consists in a novel discovery service for the Internet of Things. The proposed solution adopts a peer-to-peer approach for guaranteeing scalability, robustness, and easy maintenance of the overall system. While most existing peer-to-peer discovery services proposed for the IoT support solely exact match queries on a single attribute (i.e., the object identifier), our solution can handle multiattribute and range queries. We defined a layered approach by distinguishing three main aspects: multiattribute indexing, range query support, peer-to-peer routing. We chose to adopt an over-DHT indexing scheme to guarantee ease of design and implementation principles. We report on the implementation of a Proof of Concept in a dangerous goods monitoring scenario, and, finally, we discuss test results for structural properties and query performance evaluation

    Peer to Peer Information Retrieval: An Overview

    Get PDF
    Peer-to-peer technology is widely used for file sharing. In the past decade a number of prototype peer-to-peer information retrieval systems have been developed. Unfortunately, none of these have seen widespread real- world adoption and thus, in contrast with file sharing, information retrieval is still dominated by centralised solutions. In this paper we provide an overview of the key challenges for peer-to-peer information retrieval and the work done so far. We want to stimulate and inspire further research to overcome these challenges. This will open the door to the development and large-scale deployment of real-world peer-to-peer information retrieval systems that rival existing centralised client-server solutions in terms of scalability, performance, user satisfaction and freedom
    corecore