3,739 research outputs found

    Integrated information storage and transfer with a coherent magnetic device

    Get PDF
    Quantum systems are inherently dissipation-less, making them excellent candidates even for classical information processing. We propose to use an array of large-spin quantum magnets for realizing a device which has two modes of operation: memory and data-bus. While the weakly interacting low-energy levels are used as memory to store classical information (bits), the high-energy levels strongly interact with neighboring magnets and mediate the spatial movement of information through quantum dynamics. Despite the fact that memory and data-bus require different features, which are usually prerogative of different physical systems -- well isolation for the memory cells, and strong interactions for the transmission -- our proposal avoids the notorious complexity of hybrid structures. The proposed mechanism can be realized with different setups. We specifically show that molecular magnets, as the most promising technology, can implement hundreds of operations within their coherence time, while adatoms on surfaces probed by a scanning tunneling microscope is a future possibility.Comment: 12 pages, 7 figure

    Scalable Emulation of Sign-Problem-Free Hamiltonians with Room Temperature p-bits

    Full text link
    The growing field of quantum computing is based on the concept of a q-bit which is a delicate superposition of 0 and 1, requiring cryogenic temperatures for its physical realization along with challenging coherent coupling techniques for entangling them. By contrast, a probabilistic bit or a p-bit is a robust classical entity that fluctuates between 0 and 1, and can be implemented at room temperature using present-day technology. Here, we show that a probabilistic coprocessor built out of room temperature p-bits can be used to accelerate simulations of a special class of quantum many-body systems that are sign-problem-free or stoquastic, leveraging the well-known Suzuki-Trotter decomposition that maps a dd-dimensional quantum many body Hamiltonian to a dd+1-dimensional classical Hamiltonian. This mapping allows an efficient emulation of a quantum system by classical computers and is commonly used in software to perform Quantum Monte Carlo (QMC) algorithms. By contrast, we show that a compact, embedded MTJ-based coprocessor can serve as a highly efficient hardware-accelerator for such QMC algorithms providing several orders of magnitude improvement in speed compared to optimized CPU implementations. Using realistic device-level SPICE simulations we demonstrate that the correct quantum correlations can be obtained using a classical p-circuit built with existing technology and operating at room temperature. The proposed coprocessor can serve as a tool to study stoquastic quantum many-body systems, overcoming challenges associated with physical quantum annealers.Comment: Fixed minor typos and expanded Appendi

    Quantum state transfer in disordered spin chains: How much engineering is reasonable?

    Get PDF
    The transmission of quantum states through spin chains is an important element in the implementation of quantum information technologies. Speed and fidelity of transfer are the main objectives which have to be achieved by the devices even in the presence of imperfections which are unavoidable in any manufacturing process. To reach these goals, several kinds of spin chains have been suggested, which differ in the degree of fine-tuning, or engineering, of the system parameters. In this work we present a systematic study of two important classes of such chains. In one class only the spin couplings at the ends of the chain have to be adjusted to a value different from the bulk coupling constant, while in the other class every coupling has to have a specific value. We demonstrate that configurations from the two different classes may perform similarly when subjected to the same kind of disorder in spite of the large difference in the engineering effort necessary to prepare the system. We identify the system features responsible for these similarities and we perform a detailed study of the transfer fidelity as a function of chain length and disorder strength, yielding empirical scaling laws for the fidelity which are similar for all kinds of chain and all disorder models. These results are helpful in identifying the optimal spin chain for a given quantum information transfer task. In particular, they help in judging whether it is worthwhile to engineer all couplings in the chain as compared to adjusting only the boundary couplings.Comment: 20 pages, 13 figures. Revised version, title changed, accepted by Quantum Information & Computatio

    Quantum state transfer in disordered spin chains: How much engineering is reasonable?

    Get PDF
    The transmission of quantum states through spin chains is an important element in the implementation of quantum information technologies. Speed and fidelity of transfer are the main objectives which have to be achieved by the devices even in the presence of imperfections which are unavoidable in any manufacturing process. To reach these goals, several kinds of spin chains have been suggested, which differ in the degree of fine-tuning, or engineering, of the system parameters. In this work we present a systematic study of two important classes of such chains. In one class only the spin couplings at the ends of the chain have to be adjusted to a value different from the bulk coupling constant, while in the other class every coupling has to have a specific value. We demonstrate that configurations from the two different classes may perform similarly when subjected to the same kind of disorder in spite of the large difference in the engineering effort necessary to prepare the system. We identify the system features responsible for these similarities and we perform a detailed study of the transfer fidelity as a function of chain length and disorder strength, yielding empirical scaling laws for the fidelity which are similar for all kinds of chain and all disorder models. These results are helpful in identifying the optimal spin chain for a given quantum information transfer task. In particular, they help in judging whether it is worthwhile to engineer all couplings in the chain as compared to adjusting only the boundary couplings.Fil: Zwick, Analía Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Universität Dortmund; AlemaniaFil: Alvarez, Gonzalo Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universität Dortmund; AlemaniaFil: Stolze, Joachim. Universität Dortmund; AlemaniaFil: Osenda, Omar. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    A New Method for Multi-Bit and Qudit Transfer Based on Commensurate Waveguide Arrays

    Get PDF
    The faithful state transfer is an important requirement in the construction of classical and quantum computers. While the high-speed transfer is realized by optical-fibre interconnects, its implementation in integrated optical circuits is affected by cross-talk. The cross-talk between densely packed optical waveguides limits the transfer fidelity and distorts the signal in each channel, thus severely impeding the parallel transfer of states such as classical registers, multiple qubits and qudits. Here, we leverage on the suitably engineered cross-talk between waveguides to achieve the parallel transfer on optical chip. Waveguide coupling coefficients are designed to yield commensurate eigenvalues of the array and hence, periodic revivals of the input state. While, in general, polynomially complex, the inverse eigenvalue problem permits analytic solutions for small number of waveguides. We present exact solutions for arrays of up to nine waveguides and use them to design realistic buses for multi-(qu)bit and qudit transfer. Advantages and limitations of the proposed solution are discussed in the context of available fabrication techniques

    Making Classical Ground State Spin Computing Fault-Tolerant

    Full text link
    We examine a model of classical deterministic computing in which the ground state of the classical system is a spatial history of the computation. This model is relevant to quantum dot cellular automata as well as to recent universal adiabatic quantum computing constructions. In its most primitive form, systems constructed in this model cannot compute in an error free manner when working at non-zero temperature. However, by exploiting a mapping between the partition function for this model and probabilistic classical circuits we are able to show that it is possible to make this model effectively error free. We achieve this by using techniques in fault-tolerant classical computing and the result is that the system can compute effectively error free if the temperature is below a critical temperature. We further link this model to computational complexity and show that a certain problem concerning finite temperature classical spin systems is complete for the complexity class Merlin-Arthur. This provides an interesting connection between the physical behavior of certain many-body spin systems and computational complexity.Comment: 24 pages, 1 figur
    corecore