17,388 research outputs found

    A mosaic of eyes

    Get PDF
    Autonomous navigation is a traditional research topic in intelligent robotics and vehicles, which requires a robot to perceive its environment through onboard sensors such as cameras or laser scanners, to enable it to drive to its goal. Most research to date has focused on the development of a large and smart brain to gain autonomous capability for robots. There are three fundamental questions to be answered by an autonomous mobile robot: 1) Where am I going? 2) Where am I? and 3) How do I get there? To answer these basic questions, a robot requires a massive spatial memory and considerable computational resources to accomplish perception, localization, path planning, and control. It is not yet possible to deliver the centralized intelligence required for our real-life applications, such as autonomous ground vehicles and wheelchairs in care centers. In fact, most autonomous robots try to mimic how humans navigate, interpreting images taken by cameras and then taking decisions accordingly. They may encounter the following difficulties

    Demo : distributed video coding applications in wireless multimedia sensor networks

    Get PDF
    Novel distributed video coding (DVC) architectures developed by the IBBT DVC group realize state-of-the-art video coding efficiency under stringent energy restrictions, while supporting error-resilience and scalability. Therefore, these architectures are particularly attractive for application scenarios involving low-complexity energy-constrained wireless visual sensors. This demo presents the scenarios, which are considered to be the most promising areas of integration for IBBT's DVC systems, considering feasibility and commercial applicability

    Predictive intelligence to the edge through approximate collaborative context reasoning

    Get PDF
    We focus on Internet of Things (IoT) environments where a network of sensing and computing devices are responsible to locally process contextual data, reason and collaboratively infer the appearance of a specific phenomenon (event). Pushing processing and knowledge inference to the edge of the IoT network allows the complexity of the event reasoning process to be distributed into many manageable pieces and to be physically located at the source of the contextual information. This enables a huge amount of rich data streams to be processed in real time that would be prohibitively complex and costly to deliver on a traditional centralized Cloud system. We propose a lightweight, energy-efficient, distributed, adaptive, multiple-context perspective event reasoning model under uncertainty on each IoT device (sensor/actuator). Each device senses and processes context data and infers events based on different local context perspectives: (i) expert knowledge on event representation, (ii) outliers inference, and (iii) deviation from locally predicted context. Such novel approximate reasoning paradigm is achieved through a contextualized, collaborative belief-driven clustering process, where clusters of devices are formed according to their belief on the presence of events. Our distributed and federated intelligence model efficiently identifies any localized abnormality on the contextual data in light of event reasoning through aggregating local degrees of belief, updates, and adjusts its knowledge to contextual data outliers and novelty detection. We provide comprehensive experimental and comparison assessment of our model over real contextual data with other localized and centralized event detection models and show the benefits stemmed from its adoption by achieving up to three orders of magnitude less energy consumption and high quality of inference

    Sensor Selection and Random Field Reconstruction for Robust and Cost-effective Heterogeneous Weather Sensor Networks for the Developing World

    Full text link
    We address the two fundamental problems of spatial field reconstruction and sensor selection in heterogeneous sensor networks: (i) how to efficiently perform spatial field reconstruction based on measurements obtained simultaneously from networks with both high and low quality sensors; and (ii) how to perform query based sensor set selection with predictive MSE performance guarantee. For the first problem, we developed a low complexity algorithm based on the spatial best linear unbiased estimator (S-BLUE). Next, building on the S-BLUE, we address the second problem, and develop an efficient algorithm for query based sensor set selection with performance guarantee. Our algorithm is based on the Cross Entropy method which solves the combinatorial optimization problem in an efficient manner.Comment: Presented at NIPS 2017 Workshop on Machine Learning for the Developing Worl

    Active Learning of Gaussian Processes for Spatial Functions in Mobile Sensor Networks

    Get PDF
    This paper proposes a spatial function modeling approach using mobile sensor networks, which potentially can be used for environmental surveillance applications. The mobile sensor nodes are able to sample the point observations of an 2D spatial function. On the one hand, they will use the observations to generate a predictive model of the spatial function. On the other hand, they will make collective motion decisions to move into the regions where high uncertainties of the predictive model exist. In the end, an accurate predictive model is obtained in the sensor network and all the mobile sensor nodes are distributed in the environment with an optimized pattern. Gaussian process regression is selected as the modeling technique in the proposed approach. The hyperparameters of Gaussian process model are learned online to improve the accuracy of the predictive model. The collective motion control of mobile sensor nodes is based on a locational optimization algorithm, which utilizes an information entropy of the predicted Gaussian process to explore the environment and reduce the uncertainty of predictive model. Simulation results are provided to show the performance of the proposed approach. © 2011 IFAC
    • …
    corecore