10 research outputs found

    Efficient nearest-neighbor computation for GPU-based motion planning

    Full text link
    Abstract — We present a novel k-nearest neighbor search algorithm (KNNS) for proximity computation in motion planning algorithm that exploits the computational capa-bilities of many-core GPUs. Our approach uses locality sen-sitive hashing and cuckoo hashing to construct an efficient KNNS algorithm that has linear space and time complexity and exploits the multiple cores and data parallelism effec-tively. In practice, we see magnitude improvement in speed and scalability over prior GPU-based KNNS algorithm. On some benchmarks, our KNNS algorithm improves the performance of overall planner by 20−40 times for CPU-based planner and up to 2 times for GPU-based planner. I

    Efficient Configuration Space Construction and Optimization for Motion Planning

    Get PDF
    The configuration space is a fundamental concept that is widely used in algorithmic robotics. Many applications in robotics, computer-aided design, and related areas can be reduced to computational problems in terms of configuration spaces. In this paper, we survey some of our recent work on solving two important challenges related to configuration spaces

    VLSH: Voronoi-based Locality Sensitive Hashing

    Get PDF
    Abstract-We present a fast, yet accurate k-nearest neighbor search algorithm for high-dimensional sampling-based motion planners. Our technique is built on top of Locality Sensitive Hashing (LSH), but is extended to support arbitrary distance metrics used for motion planning problems and adapt irregular distributions of samples generated in the configuration space. To enable such novel characteristics our method embeds samples generated in the configuration space into a simple l2 norm space by using pivot points. We then implicitly define Voronoi regions and use local LSHs with varying quantization factors for those Voronoi regions. We have applied our method and other prior techniques to high-dimensional motion planning problems. Our method is able to show performance improvement by a factor of up to three times even with higher accuracy over prior, approximate nearest neighbor search techniques

    GPU-aided edge computing for processing the k nearest-neighbor query on SSD-resident data

    Get PDF
    Edge computing aims at improving performance by storing and processing data closer to their source. The Nearest-Neighbor (-NN) query is a common spatial query in several applications. For example, this query can be used for distance classification of a group of points against a big reference dataset to derive the dominating feature class. Typically, GPU devices have much larger numbers of processing cores than CPUs and faster device memory than main memory accessed by CPUs, thus, providing higher computing power. However, since device and/or main memory may not be able to host an entire reference dataset, the use of secondary storage is inevitable. Solid State Disks (SSDs) could be used for storing such a dataset. In this paper, we propose an architecture of a distributed edge-computing environment where large-scale processing of the -NN query can be accomplished by executing an efficient algorithm for processing the -NN query on its (GPU and SSD enabled) edge nodes. We also propose a new algorithm for this purpose, a GPU-based partitioning algorithm for processing the -NN query on big reference data stored on SSDs. We implement this algorithm in a GPU-enabled edge-computing device, hosting reference data on an SSD. Using synthetic datasets, we present an extensive experimental performance comparison of the new algorithm against two existing ones (working on memory-resident data) proposed by other researchers and two existing ones (working on SSD-resident data) recently proposed by us. The new algorithm excels in all the conducted experiments and outperforms its competitors

    Exploring Techniques for Providing Privacy in Location-Based Services Nearest Neighbor Query

    Get PDF
    Increasing numbers of people are subscribing to location-based services, but as the popularity grows so are the privacy concerns. Varieties of research exist to address these privacy concerns. Each technique tries to address different models with which location-based services respond to subscribers. In this work, we present ideas to address privacy concerns for the two main models namely: the snapshot nearest neighbor query model and the continuous nearest neighbor query model. First, we address snapshot nearest neighbor query model where location-based services response represents a snapshot of point in time. In this model, we introduce a novel idea based on the concept of an open set in a topological space where points belongs to a subset called neighborhood of a point. We extend this concept to provide anonymity to real objects where each object belongs to a disjointed neighborhood such that each neighborhood contains a single object. To help identify the objects, we implement a database which dynamically scales in direct proportion with the size of the neighborhood. To retrieve information secretly and allow the database to expose only requested information, private information retrieval protocols are executed twice on the data. Our study of the implementation shows that the concept of a single object neighborhood is able to efficiently scale the database with the objects in the area. The size of the database grows with the size of the grid and the objects covered by the location-based services. Typically, creating neighborhoods, computing distances between objects in the area, and running private information retrieval protocols causes the CPU to respond slowly with this increase in database size. In order to handle a large number of objects, we explore the concept of kernel and parallel computing in GPU. We develop GPU parallel implementation of the snapshot query to handle large number of objects. In our experiment, we exploit parameter tuning. The results show that with parameter tuning and parallel computing power of GPU we are able to significantly reduce the response time as the number of objects increases. To determine response time of an application without knowledge of the intricacies of GPU architecture, we extend our analysis to predict GPU execution time. We develop the run time equation for an operation and extrapolate the run time for a problem set based on the equation, and then we provide a model to predict GPU response time. As an alternative, the snapshot nearest neighbor query privacy problem can be addressed using secure hardware computing which can eliminate the need for protecting the rest of the sub-system, minimize resource usage and network transmission time. In this approach, a secure coprocessor is used to provide privacy. We process all information inside the coprocessor to deny adversaries access to any private information. To obfuscate access pattern to external memory location, we use oblivious random access memory methodology to access the server. Experimental evaluation shows that using a secure coprocessor reduces resource usage and query response time as the size of the coverage area and objects increases. Second, we address privacy concerns in the continuous nearest neighbor query model where location-based services automatically respond to a change in object*s location. In this model, we present solutions for two different types known as moving query static object and moving query moving object. For the solutions, we propose plane partition using a Voronoi diagram, and a continuous fractal space filling curve using a Hilbert curve order to create a continuous nearest neighbor relationship between the points of interest in a path. Specifically, space filling curve results in multi-dimensional to 1-dimensional object mapping where values are assigned to the objects based on proximity. To prevent subscribers from issuing a query each time there is a change in location and to reduce the response time, we introduce the concept of transition and update time to indicate where and when the nearest neighbor changes. We also introduce a database that dynamically scales with the size of the objects in a path to help obscure and relate objects. By executing the private information retrieval protocol twice on the data, the user secretly retrieves requested information from the database. The results of our experiment show that using plane partitioning and a fractal space filling curve to create nearest neighbor relationships with transition time between objects reduces the total response time

    Efficient configuration space construction and optimization

    Get PDF
    The configuration space is a fundamental concept that is widely used in algorithmic robotics. Many applications in robotics, computer-aided design, and related areas can be reduced to computational problems in terms of configuration spaces. In this dissertation, we address three main computational challenges related to configuration spaces: 1) how to efficiently compute an approximate representation of high-dimensional configuration spaces; 2) how to efficiently perform geometric, proximity, and motion planning queries in high dimensional configuration spaces; and 3) how to model uncertainty in configuration spaces represented by noisy sensor data. We present new configuration space construction algorithms based on machine learning and geometric approximation techniques. These algorithms perform collision queries on many configuration samples. The collision query results are used to compute an approximate representation for the configuration space, which quickly converges to the exact configuration space. We highlight the efficiency of our algorithms for penetration depth computation and instance-based motion planning. We also present parallel GPU-based algorithms to accelerate the performance of optimization and search computations in configuration spaces. In particular, we design efficient GPU-based parallel k-nearest neighbor and parallel collision detection algorithms and use these algorithms to accelerate motion planning. In order to extend configuration space algorithms to handle noisy sensor data arising from real-world robotics applications, we model the uncertainty in the configuration space by formulating the collision probabilities for noisy data. We use these algorithms to perform reliable motion planning for the PR2 robot.Doctor of Philosoph
    corecore