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ABSTRACT 

Increasing numbers of people are subscribing to location-based services, but as the 

popularity grows so are the privacy concerns. Varieties of research exist to address these privacy 

concerns. Each technique tries to address different models with which location-based services 

respond to subscribers. In this work, we present ideas to address privacy concerns for the two 

main models namely: the snapshot nearest neighbor query model and the continuous nearest 

neighbor query model.  

First, we address snapshot nearest neighbor query model where location-based services 

response represents a snapshot of point in time. In this model, we introduce a novel idea based 

on the concept of an open set in a topological space where points belongs to a subset called 

neighborhood of a point. We extend this concept to provide anonymity to real objects where each 

object belongs to a disjointed neighborhood such that each neighborhood contains a single 

object. To help identify the objects, we implement a database which dynamically scales in direct 

proportion with the size of the neighborhood. To retrieve information secretly and allow the 

database to expose only requested information, private information retrieval protocols are 

executed twice on the data. Our study of the implementation shows that the concept of a single 

object neighborhood is able to efficiently scale the database with the objects in the area. 

The size of the database grows with the size of the grid and the objects covered by the 

location-based services. Typically, creating neighborhoods, computing distances between objects 

in the area, and running private information retrieval protocols causes the CPU to respond slowly 

with this increase in database size. In order to handle a large number of objects, we explore the 
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concept of kernel and parallel computing in GPU. We develop GPU parallel implementation of 

the snapshot query to handle large number of objects. In our experiment, we exploit parameter 

tuning. The results show that with parameter tuning and parallel computing power of GPU we 

are able to significantly reduce the response time as the number of objects increases. To 

determine response time of an application without knowledge of the intricacies of GPU 

architecture, we extend our analysis to predict GPU execution time. We develop the run time 

equation for an operation and extrapolate the run time for a problem set based on the equation, 

and then we provide a model to predict GPU response time. 

As an alternative, the snapshot nearest neighbor query privacy problem can be addressed 

using secure hardware computing which can eliminate the need for protecting the rest of the sub-

system, minimize resource usage and network transmission time. In this approach, a secure 

coprocessor is used to provide privacy. We process all information inside the coprocessor to 

deny adversaries access to any private information. To obfuscate access pattern to external 

memory location, we use oblivious random access memory methodology to access the server. 

Experimental evaluation shows that using a secure coprocessor reduces resource usage and query 

response time as the size of the coverage area and objects increases. 

Second, we address privacy concerns in the continuous nearest neighbor query model 

where location-based services automatically respond to a change in object’s location. In this 

model, we present solutions for two different types known as moving query static object and 

moving query moving object. For the solutions, we propose plane partition using a Voronoi 

diagram, and a continuous fractal space filling curve using a Hilbert curve order to create a 



 

v 

  

continuous nearest neighbor relationship between the points of interest in a path. Specifically, 

space filling curve results in multi-dimensional to 1-dimensional object mapping where values 

are assigned to the objects based on proximity. To prevent subscribers from issuing a query each 

time there is a change in location and to reduce the response time, we introduce the concept of 

transition and update time to indicate where and when the nearest neighbor changes. We also 

introduce a database that dynamically scales with the size of the objects in a path to help obscure 

and relate objects. By executing the private information retrieval protocol twice on the data, the 

user secretly retrieves requested information from the database. The results of our experiment 

show that using plane partitioning and a fractal space filling curve to create nearest neighbor 

relationships with transition time between objects reduces the total response time. 
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CHAPTER ONE: INTRODUCTION 

Advancement in mobile technology and wireless communication has provided 

opportunities for developers to create complex applications. This new computing paradigm is 

driven by the high-powered GPS enable mobile devices with location information access 

capability. Examples of this type of application includes: (1) the store locator application 

described in [1] that allows users to quickly find store location with the help of location 

intelligence; (2) the proximity-based marketing which allows companies to send advertisements 

to individuals within a specific geographic location; (3) the travel information application that 

updates subscribers with traffic or weather information. Other examples include the nearest 

neighbor locator which allows users to locate nearest point of interest (POI), and the reverse 911 

used to alert subscribers in times of emergencies. These types of applications are referred to as 

location-based services (LBS) and are growing in popularity and becoming ubiquitous. 

LBS-Nearest Neighbor Query  

Location-based services are information and entertainment services that are accessible 

through portable device and mobile network. LBS providers deliver the service through user 

mobile device using the base transceiver station (BTS) that the mobile device is communicating 

with [2], or by the more accurate global positioning system (GPS) satellite. In [2], the services 

were classified into push and pull. In push, users within target areas receive solicitation from 

advertisers or solicitors without requesting. Some examples are: (1) shoppers in a department 

store alerted of items on sale when within the targeted section of the store; (2) travelers on an 
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international trip informed of a discounted international phone plan when within the international 

terminal of the airport.  

In a pull system, user actively requests information before receiving it. For example, a 

traveler driving through a city may decide to spend the night in the city and requests for the 

nearest lodging place. Other examples include visitors to an area who wish to dine on an ethnic 

cuisine and requests for the specific nearest ethnic restaurant, or a commuter walking around 

searching for the nearest taxi. Specifically, user issues a query referred to as nearest neighbor 

query (NNQ) to the LBS provider requesting for the nearest POI to their location. LBS responds 

in one of two types of NNQ called snapshot or continuous nearest neighbor query. Snapshot 

nearest neighbor query (SNNQ) is the response to a user query that represents a snapshot of a 

point in time. Basically, user issues a query to the LBS requesting for the nearest POI, when the 

nearest POI changes, another query is required from the user. Continuous nearest neighbor query 

(CNNQ) on the other hand is the response that continuously updates the user with the nearest 

POI as the user location or the nearest POI changes without another query from the user. To 

customize the service, user has to disclose some personal information. Though LBS have 

provided convenience and information access that is unimaginable years ago; nevertheless, 

privacy advocates have raised concerns on the negative fallout from a possible collusion between 

LBS provider and an adversary. Some users will be reluctant to use the service for fear that doing 

so will compromise their personal information and expose them to danger, embarrassment or 

reprisal. Therefore, protecting user personal information is necessary for these types of services. 

Note that POI and user are interchangeable for object. 
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Protecting Private Information in LBS-NNQ 

Nearest neighbor query is a query issued in order to locate the nearest POI assuming the 

objects are statically or dynamically restricted within the edges of a spatial network 𝑆𝑁. A user 

that wish to receive from the LBS the nearest POI to its location within the SN has to disclose to 

the LBS together with the service request (SR) message the raw position information which will 

allow the LBS to customize the request. If for instance a user SR message is represented as 

SR(23.53’28”N, 71. 42’36”W,q(i)) which contains user location (23.53’28”N, 71.42’36”W) and 

desired information q(i), SR exposes the raw position data of the user. An untrustworthy provider 

or third party intermediary can collaborate with adversary to misuse this information. NNQ is 

considered private if a user such as Alice issues a query to request for the nearest casino to her 

location and Bob is unable to determine Alice’s location or information she requested. This 

requires that Alice location and desired information remains anonymous to all parties. Providing 

anonymity to user private information is a challenge, but it has been receiving lots of attention 

from researchers. Interestingly, SNNQ and CNNQ pose different challenges when it comes to 

protecting user private information. It is important to note that privacy requirement varies for 

different users and type of information desired. For instance, a user looking for the nearest gas 

station may have different privacy requirement from a user looking for the nearest gambling 

place. In the rest of this chapter, we briefly describe the different areas covered in our work with 

our contributions. 
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Providing Privacy in SNNQ 

In a SNNQ, a user device issues a query to the LBS server requesting the nearest POI 

such as a gas station, restaurant or hospital. Server responds to the user request and terminates 

the session. As the nearest POI changes due to a change in the user or the POI location, the user 

does not receive update. Any update due to a change in location will require that the user issue 

another query. To protect private information of the user, several proposals like [3] assume the 

existence of other k -1 users with similar profiles as the target user which allows the system to 

aggregate the queries in order to obscure the profile of the target user. Other methods rely on the 

honesty of the server or third party [4], while some of the methods release too many database 

information to the user and therefore require the user to filter through the data to find its nearest 

POI as in [5]. While each of these solutions has proven to be effective, we found various 

limitations to the techniques. For instance, a query may never be answered for lack of existence 

of other k -1 users in the target area. Also, releasing large amount of database information 

engages resources longer than may be desired, and LBS may not want to release too many of 

their valuable information if there is no financial benefit. To address this, we introduce space 

mapping model based on abstracting the concept of an open set in a topological space where 

points in the space belongs to a subset called neighborhood of a point. We combine it with a 

database design that dynamically scales in direct proportion with size of the object to help a user 

relate a position with the location of information in the database. We execute private information 

retrieval (PIR) protocol twice on the data in the database to secretly retrieve the information and 
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minimize the amount of information released. The design allows us to scale the database server 

based on the size of the area and number of objects for performance. 

Contributions 

The main contributions are summarized as follows:  

1. We propose a new model to protect user private information based on abstraction of sets 

in a topological space as a solution to cloaking and reliability on a server or third party. 

2. We propose to scale the database in direct proportion with the size of the object to 

obscure and relate object position with information in the database. 

3. We provide experimental evaluation of our proposal with respect to the execution time 

and complexity to show feasibility and scalability of the methodology and compare the 

complexity with related work. 

Parallel Implementation of a Private SNNQ 

The increasing popularity of LBS-NNQ results in rapid increase in the number of 

subscribers and information processed. This increase results in the growth of the size of the 

database. Usually, the security protocol used to encrypt the data, creating neighborhoods, 

computing distances between objects in the area causes the CPU to respond slowly with the 

increase in database. A faster computation mechanism therefore is required to support this 

growth. Interestingly, several researches address this issue by implementing multi-threading in a 

CPU [6]; however, the limited number of cores in CPU limits the amount of improvement that 
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can be derived from it. We propose to use the array of streaming multiprocessors (SM) in 

graphical processing unit (GPU) and the inherent parallel computation capability of the GPU to 

reduce the processing time. To do that, we exploit computation sharing by running operation in 

parallel where necessary to reduce computational workload and speed up the computation. The 

challenge in GPU computing is to find enough parallelism in the algorithm that will account for 

the transfer overhead between the CPU and the GPU device.  

Contributions 

The main contributions are as follows:  

1. We propose to use the streaming multiprocessors of GPU and the parallel computing 

platform and programming model of compute unified device architecture (CUDA) to 

address the increase in response time as the size of the database increases. 

2. We provide experimental evaluation of our parallel implementation and compare with 

CPU serial implementation to show the speedup of GPU over CPU. 

3. We conduct performance evaluation of the GPU, and then provide analysis and model to 

predict GPU execution time. 

Providing Privacy in SNNQ with Tamper-Resistant Hardware 

As an alternative to space mapping and to minimize resource usage and network 

transmission time, we explore hardware approach by using secure coprocessor (SC) computing 

technology to obscure user private information. Commercially available secure coprocessor was 
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shown in [7] to assist privacy. This approach can support traditional query and can have lower 

overhead. Secure coprocessor is a tamper-resistant hardware device designed such that upon a 

break-in the intruder cannot learn or change the internal state except through normal I/O 

channels or by forcibly resetting the entire secure coprocessor. Lately, there has been significant 

research on using this method to protect data; however, most are implemented to protect data in a 

cloud computing environment. The work in [8] and [9] set up a secure channel between user and 

trusted processor to transmit data. However, the solution fails to prevent leakage of information 

that could assist adversary to determine the type of memory access, memory location accessed, 

or what data is read or written by the client. Proposal in [10] seem effective but only hides user’s 

location.  

We propose to use secure coprocessor in LBS-SNNQ to protect both user location and 

information accessed. We propose to implement oblivious random access memory (ORAM) 

methodology to obfuscate database access pattern. ORAM is a probabilistic random access 

memory (RAM) with a memory access pattern that allows a client to obscure its access pattern to 

a remote storage server. The secure coprocessor accesses LBS server through the ORAM 

methodology and secretly computes user desired information and then exchange encrypted 

information with the user.  

Contributions 

Our contributions are as follows: 
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1. We propose to process user query using secure coprocessor to hide both user location and 

information accessed and minimize size of data transferred. 

2. We propose to access LBS server using ORAM methodology to obfuscate database 

access pattern. 

3. We provide analysis of the emulation of the secure coprocessor to show improved 

performance over software approach as the size of the object increases. 

Providing Privacy in CNNQ 

In a spatial network the position of a mobile object will change as the object moves from 

one point to another. Depending on the trajectory or the object motion, the change may lead to a 

change in the nearest POI to a user position. For a user to issue a query each time a change 

occurs will be inefficient. CNNQ supports this mobility, that is, user device issues a query for the 

nearest POI, server responds to the initial request, but also continues to update the user with the 

most current nearest POI as the user or the POI location changes. Processing private nearest 

neighbor query for a moving object is not an easy task. Proposals in [11], [12], [13] and [14] 

have been suggested to find nearest neighbor but with no consideration on user privacy. While 

these suggestions were effective and extends the research in the area of CNNQ, users in LBS-

CNNQ still runs the risk of having their private data exposed which can be misused by 

adversaries. Solutions based on snapshot query as some researchers suggested will be cost 

prohibitive as the frequency of the changes increases. Proposal in [15] introduces privacy 

technique for LBS-CNNQ, though effective, it works like SNNQ. As stated in [11] and [16], it is 

inefficient and infeasible for a moving object to issue a query at every point of the line segment 
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as in SNNQ. The problem gets more complex when we consider that the mobility of the objects 

involved can affect relationships in a CNNQ. This relationship leads to what is referred as 

mobile query static object (MQSO) (e.g. a user searching for the nearest gas station while driving 

through a city), moving query moving object (MQMO) (e.g. a user driving through a town 

searching for nearest friend who may be driving through the town), and static query mobile 

object (SQMO) (e.g. a user at a bus station searching for the nearest bus to the station). In our 

work, we only consider MQSO and MQMO.  

In MQSO-CNNQ, the user (query) is dynamic while the object (POI) is static. If for 

instance, the nearest neighbor to a user at a location l is 𝑝1, and 𝑝1is the POI, as the user moves 

to another location l’, its nearest neighbor at this location may change depending solely on the 

motion and trajectory of the user.  

In MQMO-CNNQ, both the user and the POI are dynamic within a spatial network. If the 

nearest POI to a user at a location l is 𝑝1 the nearest POI at a future location l’ depends on the 

trajectory and motion of both the user and the POI. Location of the user and the POI can change 

simultaneously. POI location is only known to the server at time t. To guarantee that server 

returns nearest POI, the location of the POI at a future time t’ should also be known by the 

server. Server cannot be updated offline as in MQSO due to the possibility of a change in the 

POI location after a query has been initiated. In order for server to continuously respond with the 

precise POI, the location of the query and the POI at time t and t’ must be known. Given the 

frequency of updates that may be involved in this type of query, privacy technique used in 

SNNQ will be too costly to implement. In order to implement the same privacy technique as in 
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SNNQ, large amount of information has to be exchanged between the user and the server 

throughout the query segment. 

As a solution, we propose plane partitioning using Voronoi diagram to bind objects in a 

region, and use continuous fractal space filling curve to determine proximity and create 

relationships between the objects in a path. We also implement a database that dynamically 

adjusts to match the size of the objects in the path. We also execute PIR protocol twice on the 

data to secretly retrieve the information and minimize the amount of information released. 

Contributions  

Our contributions to private CNNQ are as follows: 

1. We propose plane partitioning and continuous fractal space filling curve using Voronoi 

diagram and Hilbert curve order to create nearest neighbor relationship through a path. 

2. We treat object location as a function of time and introduce the concept of transition and 

update time that indicates where and when a nearest neighbor will change to deal with 

inefficiencies of multiple queries caused by the constant changes in object location. 

3. We provide experimental evaluation with respect to complexity and network 

communication time to show an efficient scalable design. 

4. We implement previous work and compare the response time with our design to show 

that our design reduces the total response time. 
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Organization of the Dissertation 

The rest of the work is organized as follows: In chapter 2, we review related works 

starting with existing approaches to privacy in LBS-SNNQ. We then discuss the direction taken 

by researchers to reduce the response time in a NNQ. We discuss works on alternative method of 

privacy using hardware, and finally in chapter 2, we present previous works on privacy in LBS-

CNNQ. In chapter 3, we explore privacy technique in LBS-SNNQ starting with the problem 

definition. We then present the model for our solution and implementation. We follow with 

experimental evaluation. In chapter 4, we discuss parallel computing using GPU and CUDA 

architecture to address the increase in response time in the SNNQ due to the increase in the size 

of the database, and then follow with our implementation of the SNNQ. We then conduct 

experimental analysis to compare serial and parallel implementation of our proposal. Then, we 

present GPU Run-time modelling for the snapshot query. In chapter 5, we explore the idea of a 

tamper-resistant hardware using secure coprocessor computation to protect private information in 

LBS. We discuss the experimental evaluation and compare with software approach. Chapter 6 

discusses LBS-CNNQ and presents our privacy solutions for MQSO and MQMO types of 

CNNQ. We follow with experimental analysis of the implementation. We then implement related 

work and compare with our design. Then, we present analysis on the impact of large prime in 

software approach. Finally in chapter 7, we followed with conclusion and future work. 
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CHAPTER TWO: RELATED WORKS 

In this chapter, we review relevant works on private LBS-NNQ and other works on data 

privacy and parallel computing. We start by presenting previous privacy techniques on LBS-

SNNQ. We follow with work on parallel implementation of a NNQ. We then discuss alternative 

approach to privacy using tamper-resistant hardware and then finish with work done on LBS-

CNNQ. 

Snapshot Nearest Neighbor Query 

As stated in [17], three main models are used to protect user private information in LBS-

NNQ. Among them are: two-tier spatial transformation, three-tier spatial transformation and 

cryptographic technique.  

Two-tier spatial transformation approach provides direct communication between user 

and the LBS. It is mostly implemented through technique like k-anonymity. In this model, the 

LBS are prevented from distinguishing user query from other k-1 queries by generalizing the 

query. Shin et al [18] designed two-tier system based on anonymizing user profile. User specifies 

the extent that location and profile information should be generalized such that the generalized 

area includes at least other k-1 users with identical profile as the user. This will prevent the LBS 

from determining the exact query origin. Another two-tier approach was proposed in [3], [4] and 

[19]. In these techniques user specifies the minimum level of anonymity desired, the desired 

maximum spatial and temporal resolution, and the acceptable waiting interval. If other k-1 users 

exist in the region within this interval, all the queries will be combined into a cloaking region and 

then send to LBS server. If on the other hand no other query exists in the area within this 
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interval, the user query will be dropped. Cloaking region was proposed in [20] to increase the 

location privacy of the user at additional computation. The problem with these techniques is the 

dependency on other queries and large coverage area. There is no guarantee that another query 

will exist in the region within the time interval, and even when they exist the profile may be 

substantially different than that of the target query. Therefore, there is a possibility the query 

may go unanswered.  

Three-tier spatial transformation is another way to protect user private information in 

LBS. As implemented in [21] and also in [4] using a trusted third party, user communicates 

directly with the trusted server which then redacts user information before transmitting to LBS. 

Kalnis et al. [22] proposed three-tier idea by using trusted anonymizer. The trusted anonymizer 

collects user current location and anonymizes the query before sending to LBS. User locations 

are sorted and grouped using Hilbert Space-filling curve order. Each user can decide level of 

anonymity required ranging from 1 (no privacy required) to user cardinality (maximum privacy). 

Idea that allows the entire mobile node to communicate with external server through a central 

anonymity server was proposed in [23]. The central server is part of the trusted computing base. 

During initialization, mobile nodes will set up authenticated encryption connection with the 

anonymity server. The anonymity server will then decrypt the message, removes any identifiers, 

and distorts the position data according to the prescribed cloaking algorithm to reduce the re-

identification risk. However, these techniques rely on total honesty of the third party server and 

also provide a single point of failure. 
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Another technique used in LBS-NNQ to protect user private information is cryptography. 

This model is implemented through encryption of user information. Cryptography in most cases 

provides direct communication between user and LBS sever thereby eliminating the need for a 

third party. It encrypts user query prior to sending to the server. A hybrid technique combining 

oblivious transfer (OT) and homomorphic encryption to protect user location information and 

user profile was proposed in [24]. It introduced a proxy party that interacts with multiple services 

and collects payment from subscribed users. The proxy then distributes the money to the services 

on behalf of the users without the proxy or the services learning the exact relationship between 

user and LBS. Since this protocol uses a proxy, privacy depends on the honesty of the proxy. The 

focus of [25] is on improving the work of [24]. The authors use OT twice to eliminate the need 

for a proxy. It requires multiple LBS providers to coordinate with a central server. It uses 

symmetric encryption which makes it hard for key management as number of users increase.  

The most relevant to our approach is the method proposed in [5] and [26]. The technique 

is based on the design of a database represented as a square matrix of size n and PIR protocol 

that relies on quadratic residuousity assumption (QRA). User encrypts its request to the server. 

Server runs PIR protocol on user request and responds to the user. The user decrypts the 

response using prior knowledge of some large prime. However, as used in [5], it reveals too 

many information to the user. It also increases transmission time and user computation.  

Our proposal is based on the single database design and computational private 

information retrieval (cPIR) protocol of [27]. We use space mapping technique that creates 

single object neighborhood that scales to the database server and then implement PIR protocol 
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twice to minimize the amount of information released by returning only the requested 

information to the user. It also reduces the server transmission and user computation cost.  

Parallel Computing in a Nearest Neighbor Query 

Increase in the number of LBS subscribers result in increase in the information processed 

by the LBS and subsequently increase in the size of the database. Finding distances between 

points, sorting computed distances, selecting reference points, searching and updating locations, 

query processing on Voronoi-based index, and a host of other technique used in nearest neighbor 

search can be computational intensive as a result of this increase. Several parallel 

implementations have been suggested to reduce this computational burden involved in 

processing nearest neighbor query. CPU multicore architecture was proposed in [28] where the 

architecture has a primary site and a number of secondary sites. The relevant sites are activated 

simultaneously. It traverses R-trees in parallel to collect the most promising nearest neighbor. 

The upper tree level is maintained in the primary site, while the leaves and corresponding data 

objects are stored in the secondary sites. The efficiency measure was the response time of a 

given query. However, this method may not be ideal for LBS private query since computation is 

distributed among multiple sites. In [6], database search of age-wise groups similar to k-NN 

search was performed on a desktop using multicore processor to take full advantage of parallel 

programming. While computation cost can be significantly reduced through multithreading in a 

multicore CPU; nevertheless, the limited number of cores in average CPU limits the 

improvement that can be achieved through multithreading. GPU provides the needed 

improvement. GPU parallel implementation was used in [29]. It uses hashing to construct k-NN 
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algorithm exploiting the multiple cores and data parallelism to achieve linear space and time 

complexity. In [30], NVIDIA CUDA API was used in k-NN.  

Our proposal is similar to [30] leveraging GPU inherent parallel computation capability 

and CUDA API to reduce the computational burden in SNNQ as a result of the increase in 

database size. We took advantage of the independent of the data points to maximize the 

parallelization. We experimented with parameter tuning to determine a more efficient parameter 

size for GPU computation. The algorithm is split between CPU and GPU. The part where the 

output data points cannot be represented without relation to each other is implemented on the 

CPU, while the part where the output data is independent is implemented on the GPU. The 

massive reduction in the GPU computation compensates for the data transmission between CPU 

and GPU thereby reducing the overall run time. 

Tamper-Resistant Hardware Private Data Computation 

Alternative technique to protect private information is to use tamper-resistant hardware. 

Several tamper-resistant hardware techniques have been proposed to protect private information. 

In [7], it was shown that privacy can be achieved using commercially available coprocessor 

through algorithm that both provides asymptotically optimal performance and also promises 

reasonable performance in real implementations. A prototype that gives reasonable performance 

on dataset sizes up to about 10, 000 was implemented in [31]. In [32], diverse tools that ranged 

from ORAM to switching networks and the snort network intrusion detection system (NIDS) 

were used to build a trusted computing secure hardware that enhanced client privacy. Tamper 

resistant hardware that uses a secure trusted coprocessor to process private information was 
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proposed in [8] and [9]. It works by a user setting up a secure channel with a trusted coprocessor. 

This approach has been stated to perform better than cryptographic technique [33]. However, 

none of these techniques was implemented for LBS private query. Also, some of them do not 

prevent information leakage that could assist adversary to determine the type of memory access 

which could lead to revealing information accessed. In [10] and [34], idea of a trusted platform 

module (TPM) using secure hardware-aided PIR to provide privacy in LBS was proposed. User 

sends encrypted location information to query scheduler. The scheduler forwards the encrypted 

information to the TPM who decrypts the message and then uses PIR to retrieve information 

form LBS database. It encrypts the request and sends back to the user. This proposal does not 

prevent disclosure of the information accessed. It only hides the location. It also does not hide 

access pattern which can leak information that may compromise location privacy. A proposal 

that uses SC to encrypt and shuffle the entire database was implemented in [35]. SC blindly 

retrieves user request from the database and encrypts it before sending it back to the user. It then 

stores the information in a cache. Each subsequent request is first checked in the cache before 

accessing the database to prevent the server from deciphering information accessed based on 

consecutive query. However, cache can quickly fill up. It also focuses on location privacy and 

not requested information privacy.  

We explore tamper resistant hardware as an alternative to protect private information in 

LBS-SNNQ. Specifically, we use secure coprocessor to perform operation on a user request. The 

SC and the user encrypt their information before transmitting. The SC accesses database 

information using path ORAM of [36]. This technique optimizes the system by focusing on a 

path rather than the entire database. 
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Continuous Nearest Neighbor Query 

Several solutions including [15] have been suggested to prevent query from divulging 

user private information in CNNQ. The proposal partitions area into cells using Voronoi graph. 

The contents of each cell form cooperative group with centered common server (CS). User sends 

request to CS. The CS takes its own location and a neighbor CS location that the user is heading 

to as two anchor points and chooses other continuous anchors in the line segment between them. 

The CS organizes users to form cooperative k-anonymity group according to their moving trend, 

it removes user identity and actual location, and then sends request to LBS. The CS sends each 

snapshot query of continuous query request with an anchor which the user has not yet passed. 

The problem with this technique is that it issues query at each segment of the anchor point. It 

also depends on third party which may not be trustworthy and can provide single point of failure. 

Another downside is that it depends on other users having similar moving pattern. A design that 

issues query based on pre-determined uniformly distributed static point was proposed in [37]. It 

finds the vertex of a cloaked area and the nearest static point to the vertex, and then finds the 

nearest object to the static query point as an approximate answer for the vertex. It repeats the 

same process when the nearest neighbor changes. This technique works like snapshot query. The 

query response will be approximate and not exact nearest neighbor. Also, privacy depends on 

third party anonymizer. Chow and Mokbel in [38] propose k-sharing region. A cloaked spatial 

region contains at least k users, and the region is also shared by at least k of these users. Query is 

issued based on the cumulative cloaked region which will stop adversary from linking query to a 

specific user. However, it does not say how a user continuously receives nearest neighbor from 
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LBS. It will also be difficult to maintain exactly k users in the entire cloaked region; therefore, 

query may never be answered.  

We propose idea that combines Voronoi diagram and Hilbert curve order to create 

nearest neighbor relationships. We then create transition time to determine the point where 

nearest neighbor will change. Server runs PIR protocol of [27] on user request and creates a data 

queue in increasing order. At each transition point, server pops data from the queue and updates 

the user with the nearest neighbor. 
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CHAPTER THREE: PROVIDING PRIVACY IN LBS-SNNQ 

This chapter presents the details of our proposed technique to protect private information 

in LBS-SNNQ. The problem definition is such that given points of interests 𝑃 = {𝑝1, 𝑝2, ⋯ , 𝑝𝑛} 

where n is the number of p contained in an area A and 𝑝𝑖 is a single POI. If a user u positioned in 

a location 𝑙 which is inside 𝐴 issues a query to receive the nearest 𝑝 from LBS, a private SNNQ 

should allow LBS server to return to the user u located in l a p whose distance to u is ≤ to all 

other (𝑃 − 𝑝𝑖) ∈ 𝐴 without revealing the l or the 𝑝𝑖 to the server or any other party. 

Anonymizing user private information based on cloaking a region as in [3] is an effective way to 

implement private query in LBS-SNNQ. Nevertheless, the growing popularity of LBS has led to 

increase in the size of area and objects covered. This growth will lead to a rise in the amount of 

information in the database which may increase database response time. We view this problem 

as one that can be represented as points in a Hausdorff space where each point belongs to a 

subset and the database scaled to the size of the subset in the space.  

Specifically, we address the issue by adopting the concept of points in a set where each 

point belongs to a subset called neighborhood of the point that satisfies Hausdorff axioms of 

topological space. A space is said to be Hausdorff if for any two distinct points in a topological 

space there exists disjoint open sets containing the two points. Neighborhood of a point is a set 

containing the point where the point can be moved some amount without leaving the set. We 

abstract this concept to create object space where object space represents an area A which 

contains the POI P.  
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Solution for SNNQ 

The idea is to impose a √𝑛  𝑥 √𝑛 grid G over a target area and then map the objects in the 

grid such that each object is contained in its own neighborhood, and then scale the database to 

the size of the neighborhoods in the area. Since a user is located in one of the neighborhoods, a 

user position can be related with location of information in the database. This will allow the 

database server to return to the user the exact nearest object contained in the same neighborhood 

with the user without revealing location information or any other POI.  

To help explain our design methodology, we first define Hausdorff axiom of topological 

space. Hausdorff space is a topological space if any two distinct points in the space can be 

separated into disjoint neighborhoods. A set S is considered a topological space if each point x ∈ 

S assigned to a non-empty family of subsets of S called the neighborhood U of x satisfies the 

following axioms: 

1. Each point x belongs to a neighborhood, i.e., x ∈ 𝑈. 

2. Any set which contains a neighborhood of a point is a neighborhood of that point, i.e., 

every superset of a neighborhood of a point x ∈ S is a neighborhood of x.  

3. The intersection of any two neighborhoods of a point is a neighborhood of that point. 

4. Any neighborhood 𝑈 of x contains a neighborhood W of x such that 𝑈 is a neighborhood 

of each point in W  

We extend this concept to our object space. We first define the object space in terms of a set O, 

where O is the set for all the p contained in A. We also define 𝑉 = {𝑣1, 𝑣2, ⋯ , 𝑣𝑚}  to be the 

subsets of O, where 𝑣𝑖 denotes a set that contains all p located in a cell c. We define 𝑁𝐻𝐷 =
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{𝑁𝐻𝐷1
, 𝑁𝐻𝐷2

, ⋯ , 𝑁𝐻𝐷𝑘
} subsets of 𝑉 to be the neighborhood of a 𝑝. Each 𝑝 ∈ 𝑂 belongs to a 

subset called neighborhood 𝑁𝐻𝐷 of 𝑝.  

Neighborhood Creation 

The design is based on dividing an area into neighborhoods that contains the objects in 

the area such that each neighborhood contains only one object. We first map an area A into a 

square grid G of cells c similar to Ghinita et al. in [5], and we assign identification number to 

each c (A is the area covered by the LBS, while G is the grid imposed over the area, and c is the 

grid cells). Figure 1 is an example of an area mapped into a 4x4 grid and a cell within the grid 

containing 4 POIs. The user u is contained in one of the grid cell. For this example, each c in the 

grid must contain 4 POIs and will be padded if necessary to maintain a cell of size 4. Each c is 

identified with a unique identifier. The cells c from 𝑐1, 𝑐2, ⋯ , 𝑐𝑛(n represents the size of the grid) 

are assigned the value of a unique identifier 𝐶𝐼𝑑, i.e., 𝑐1 = 𝐶𝐼𝑑1
, 𝑐2 = 𝐶𝐼𝑑2

, and 𝑐𝑛 = 𝐶𝐼𝑑𝑛
. 

 

Figure 1 Area covered by a 4x4 grid with a cell containing four points of interests 
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Each 𝑣 is divided into neighborhoods 𝑁𝐻𝐷 that satisfy Hausdorff space such that each p has its 

own neighborhood and ∀𝑁𝐻𝐷 ∃! 𝑝 ∈ 𝑁𝐻𝐷.  

We let the separation distance of 𝑝 which is represented as Sd(𝑝) (distance from 𝑝 to the end 

point of its 𝑁𝐻𝐷) be 
𝐷𝐼

2
, where DI is the diameter of the area of the 𝑁𝐻𝐷. For each 𝑁𝐻𝐷 and 𝑝 we 

assign location data 𝑙𝑁𝐻𝐷
 and 𝑙𝑝 respectively based on the geographical coordinate of the area of 

the neighborhood and the POI. Each p ∈ 𝑣𝑖 is assigned the coordinate location data (𝑙𝑁𝐻𝐷) of the 

NHD that contains it to prevent a user from identifying the exact location of the objects in the 

area.  

      ∴ 𝑙𝑁𝐻𝐷𝑗
(𝑝𝑖)⇒ 𝑙𝑝𝑖  

However, since 𝑁𝐻𝐷𝑗
≇𝑝𝑖, 

      ∴ 𝑙𝑝𝑖  ⇏ 𝑙𝑁𝐻𝐷𝑗
(𝑝𝑖) 

Each 𝑁𝐻𝐷  is associated with a c. The 𝑁𝐻𝐷 is identified by the CId of the containing c and the 𝑙𝑁𝐻𝐷
 

of the 𝑁𝐻𝐷. Since 𝑁𝐻𝐷  is represented by 𝐶𝐼𝑑 and 𝑙𝑁𝐻𝐷
 so is the 𝑝 contained in the 𝑁𝐻𝐷, i.e. 

    𝑁𝐻𝐷𝑖
 = f(𝐶𝐼𝑑𝑖

, 𝑙𝑁𝐻𝐷𝑗
) ⇒ 𝑝𝑖 = f(𝐶𝐼𝑑𝑖

, 𝑙𝑁𝐻𝐷𝑗
) 

but not vice versa. The p is now related to its 𝑁𝐻𝐷. For example and as shown in Figure 2, if 

restaurant 𝑅1 in a cell with a 𝐶𝐼𝑑 of 64 is contained in 𝑁𝐻𝐷 with a location data of 28.8 and 77.0 

obtained from the conversion of the spherical coordinate of 𝑙𝑁𝐻𝐷
 to decimal degree, the 𝑅1will be 

assigned the value 𝑙𝑁𝐻𝐷
and identified as 𝑅1(64, 28.8, 77.0). It is also assigned an integer t (t 

from 1 ⋯ 𝑘) indicating the order of the location of information in the database, where k is the 
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number of POI in a cell. The entire restaurant in the cell will be identified with the same 𝐶𝐼𝑑 and 

their respective t value together with 𝑙𝑁𝐻𝐷
 of their respective neighborhood. The restaurant 𝑅1 for 

t = 1 will therefore be identified as 𝑅1(64, +1, 28.8, 77.0). 

This information is stored in the database which aligns with G such that the database tuples are 

stored in a matching order with G. 

 

 

Figure 2 Identifying objects with their cell id and location data 

Database Design 

Our database design is similar to the work of [5] and [26] using single database design 

proposed in [27]. The design is such that the tuples are stored in a manner that will allow a user 

to relate the position with the location of information in the database. The database D is of size 

n-bit binary string and represented as a square matrix 𝑀 =  √𝑛  𝑥 √𝑛 and indexed by 𝐷𝑖, 

where 𝐷 = {𝑝1, 𝑝2, 𝑝3, ⋯ 𝑝𝑛}. 𝑀𝑎,𝑏 is the matrix element corresponding to 𝐷𝑖, where a and b is 

the index for the matrix row and column respectively. To prevent inference from the number of 

bits transferred, each matrix element is represented by equal number of bits m. This is equivalent 
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to m matrices M[1] , M[2] , M[3]. . .M[m] one for each bit of the object in a cell. The 

computation cost for this will be O(mn). Objects in the grid are aligned with information in the 

database. Each cell can contain multiple objects; therefore, the same concept is applied for k 

objects in a cell. In this case 𝑀𝑎,𝑏will correspond to 𝐷𝑖𝑗→𝑘
, where j is from 1 to k, and (k = 1) 

⇒𝐷𝑖𝑗
= 𝐷𝑖. Each neighborhood contains a single object which is equivalent to m

k
 matrices (M[1] 

, (M[2]) , (M[3]) . . . , (M[m]))
k
 one for each bit of the object in a neighborhood. This will bring 

the computation cost to O(mn)
k
. The design is such that the database can be scaled with the size 

of the objects for performance. User will request for the i-th bit value of D.  

Private Information Retrieval 

When a user wants to find the i-th bit value of Di, to maintain privacy, the user will send 

encrypted query q(i) to the LBS server. Server will run PIR protocol on user request and 

responds with r(𝐷𝑖) where r is used for encryption. User will compute Di from r(𝐷𝑖) to determine 

i. PIR is a protocol that allows a user to retrieve and interpret the value of the information 

retrieved from a database without revealing the exact information retrieved. Different flavors 

have been proposed over the years. The earlier version introduced in [39] requires replication of 

database. In our work, we explore computational private information retrieval (cPIR) protocol 

introduced by Kushilevitz and Ostrovsky in [27] which requires single database tuple 

distribution. It is based on the premise that there is no known function in polynomial bounded 

time that will allow a database of size n to differentiate between queries for i-th
 
bit and j-th 

bit ∀1 ≤ 𝑖, 𝑗 ≤ 𝑛. This is based on the assumption that the computational resources in relation to 
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the running time of the encryption and decryption including adversary algorithms is bounded by 

some polynomial function in k.  

The PIR scheme is such that for a database D of n bit string from which a user wishes to 

obtain bit Di while keeping secret index i from the database it requires that the user query divulge 

no information about i. As described in [27], cPIR is based on Quadratic Residuosity Assumption 

(QRA). Goldwasser and Bellare used QRA in [40], and it states that it has become 

computationally infeasible to determine the quadratic residues in modulo arithmetic of a large 

composite number N = q*q’, where q, q’ are large primes. For instance, if N is a natural number 

define 

ℤ∗
𝐍  =  {𝒙 | 𝟏 ≤  𝒙 ≤  𝑵, 𝒈𝒄𝒅(𝑵, 𝒙)  =  𝟏} (1) 

Define Quadratic Residuosity Predicate as QN(y) = 0 if ∃𝑥 ∈ ℤ𝑵
∗  x

2
 = y mod N is true, and 

QN(y) = 1 if ∃𝑥 ∈ ℤ𝑵
∗  x

2
 = y mod N is not true. If QN(y) = 0 (i.e., y is a square y) y is said to be 

quadratic residue (QR), and if QN(y) = 1 (i.e., y is a non-square y) y is said to be quadratic non-

residue (QNR). 

If the equation 

ℤ+𝟏
𝐍 = {𝐲 ∈ ℤ𝐍

∗ | (
𝒚

𝑵 
) = 𝟏}  (2) 

is true, then half of the numbers in ℤ+1N  are ∈ 𝑄𝑅, and half are ∈ 𝑄𝑁𝑅. If q and q’ are large 

enough 
𝑘

2
 bit prime, then for every constant c and a family of computational bounded polynomial 

function 𝑓𝑘0
(𝑦) there exists an integer 𝑘0 such that ∀𝐾 > 𝑘0  

Pry∈ ℤ𝐍
+𝟏[𝒇𝒌𝟎

(𝑵, 𝒚) = 𝑸𝑵(𝒚)] <  
𝟏

𝟐
+

𝟏

𝒌𝒄   (3) 
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If equation 3 is true and 𝑘0 is large enough, then the probability of differentiating between QR 

and QNR is not better than guessing, i.e., the server will not be able to decipher the information 

requested by the user by trying to find out if y ∈ 𝑄𝑅 or y ∈ 𝑄𝑁𝑅. Readers interested in number 

theory or a good reference on quadratic residuosity predicate can read [41] and [42] respectively. 

We ran PIR protocol twice on user request to prevent the server from finding out user requested 

information and to minimize the amount of information released to the user. 

Processing SNNQ 

The following steps as shown on the high level architecture of Figure 3 will be followed 

in the processing of a private snapshot nearest neighbor query. 

Step 1: Server in the offline phase maps the grid as described on the neighborhood creation 

section of this chapter and stores the information in the database.  

 

Figure 3 High level system architecture showing interactions between user and LBS 
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Step 2: When a user initiates a query for the nearest POI, server sends the grid and the POIs 

information to the user which is actually neighborhood information. User finds the cell it belongs 

to and focus only on the neighborhood contained in that cell. User then generates her own 

location data 𝑙𝑢 based on its location. For each neighborhood in the user cell user computes with 

O(1) to O(k) the absolute difference in the distance |𝑙𝑁𝐻𝐷
(𝑝) − 𝑙𝑢| to determine the closest 

neighborhood to the user location. Remember that the user will not know the exact location of 𝑝 

until server responds with the exact location. Initially, user only have the information of the 

neighborhood that contains the 𝑝.  

Step 3: When a user determines the object closest to its location, it sends a cryptic request to the 

server. For example, for s = ⌈√𝑛⌉ and a database D organized as an s x s matrix M let 𝐺2,3 be the 

grid that contains the user and let 𝑀𝑏,𝑐   be the matrix element of interest to the user, user 

randomly generates modulus N = q*q’ (equivalent to public key used in asymmetric 

cryptography) with a query message 𝑦 = [𝑦1, 𝑦2 ⋯ , 𝑦𝑠] and 𝑥 = [𝑥1, 𝑥2 ⋯ , 𝑥𝑠] such that 𝑦𝑐 ∈

𝑄𝑁𝑅 and ∀𝑗 ≠ 𝑐 𝑦𝑗 ∈ 𝑄𝑅. Also 𝑥𝑏 ∈ 𝑄𝑁𝑅 and ∀𝑟 ≠ 𝑏 𝑥𝑟 ∈ 𝑄𝑅. User sends a query message 

PIR(c, b) to the server. Let the matrix column multiplication be represented as 

𝑧𝑟 = ∏ 𝑤𝑟,𝑗
𝑠
𝑗=1  (4) 

and the row as 

𝑍𝛼 =  ∏ 𝑧𝑟(𝑟,𝑗)
𝑠
𝑟=1  (5). 

where 𝑍𝛼 is a product of 𝑧𝑟 and 𝑥𝑟 within the range, 

𝑤𝑟,𝑗= 𝑦𝑗
2

 if 𝑀𝑟,𝑗   = 0, otherwise 𝑤𝑟,𝑗    = 𝑦𝑗 if 𝑀𝑟,𝑗  = 1 for all j = 1 → s. Also, 𝑧𝑟(𝑟,𝑗) =  𝑥𝑟
2 if 𝑀𝑟,𝑗= 

0, else = 𝑧𝑟(𝑟,𝑗) =  𝑥𝑟  if 𝑀𝑟,𝑗= 1 for all r = 1 → s. Server runs PIR protocol twice on the user 
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request. For every column and row server computes equations 4 and 5 respectively. It returns 𝑍𝛼 

to the user with O(1) ≪ O(s) in [5]. User will then as was previously in [43] determine 𝑍𝛼 value 

by computing equation 6. 

(𝑍∝

𝑞−1

2  = 1 mod q1) ^ (𝑍∝

𝑞′−1

2  = mod q1) (6) 

It will be easier to compute equation 6 since user knows q and q’. If equation 6 is true, 𝑍𝛼 ∈ 𝑄𝑅 

else 𝑍𝛼 ∈ 𝑄𝑁𝑅. Therefore, 𝑀𝑏,𝑐 computes to 0 if 𝑍𝛼 ∈ 𝑄𝑅, else 𝑀𝑏,𝑐 computes to 1 if 𝑍𝛼 ∈

𝑄𝑁𝑅. Remember that LBS server is unable to tell if the query encryption (𝑦, 𝑥) ∈ 𝑄𝑁𝑅 or QR 

due to the computational intractability of a large prime.  

Analysis and Results 

In this section, we present the analysis and results for the experimental evaluation of our 

design. We start by describing the experimental setup. In the experimental study we present the 

results of the implementation with respect to the execution time. We conduct experiments to 

study the scalability of the design for database performance. We also analyze the complexity of 

the design and compare with [5]. We first study CreateObjectNeighborhood which we use for 

mapping objects to a neighborhood.  

Note: Evaluation of the PIR cryptosystem is not part of this work since it has been proven to be 

secure in [27]. 
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Experimental Setup 

The algorithm was developed in C and C + + languages. All experiments (client and 

server side) were conducted on a windows 7 PC running Intel quad-core i5-2410M processor at 

2.3GHz with 4GB RAM. We used as an input to our mapping algorithm the raw data provided 

by United States Board on Geographic Names (USBGN) [44]. All coordinates are given in the 

WGS 84 coordinate reference system. WGS 84 is the latest revision of the World Geodetic 

System which is used in mapping and navigation including GPS satellite navigation system. We 

use the map of Boston, Massachusetts an area of United States with geographic coordinate of 42° 

21’ 29”N and 71° 03’ 49”W having approximately 48 square miles of land and 41 square miles 

of water.  

For segmentation, we use the neighborhoods of Boston from list of the neighborhoods in 

Boston [45]. Two datasets were needed in the experiments: points of interests for which we use a 

set of spatial datasets provided by the City of Boston in [46], and user locations which were 

randomly generated since user location varies within the coverage area. Figure 4 shows part of 

the algorithm that updates object location as it is identified. Different sizes of grid n and objects k 

were used in our experiment to validate database scalability and performance. Different 

combinations of k and n were used to evaluate the design. We use Haversine Formula in [47] to 

calculate in decimal degree the distance between two points. Haversine Formula does not 

consider the non-spheroidal (ellipsoidal) shape of the Earth; therefore, we disregard the problem 

of overestimating trans-polar distances and underestimating trans-equatorial distances. 
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Initially, object location information is obtained and maintained in a binary search tree 

(BST), where object location information in node y (node on left sub tree of x) means that 

x.key>y.key and vice versa for node y (node on right sub tree of x). BST is used by the 

UpdateDatabaseMatrix routine. After initial creation, update of new location information is 

handled through insertion sort to the appropriate node to preserve the sorted order of the tree. 

 

Figure 4 Algorithm updating objects locations 

Execution Time 

We conduct series of experiments to determine execution time to create neighborhoods 

for the objects so that each neighborhood contains no more than one object. Neighborhoods are 

created in the algorithm shown in Figure 5, and the execution time results are shown in Figure 6. 

In the first experiment we measure and analyze the execution time to create neighborhoods for 

the objects in order to show performance impact of various sizes of grid and object.  
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Figure 5 Algorithm creating neighborhoods 

It is important to note that execution time will vary slightly based on operating systems 

allocation of threads to the processor; therefore, for measuring execution time we averaged the 

time taken over 100 runs. Figure 6 shows the execution time to create neighborhoods over an 

area mapped into a grid of size 16. As shown in the figure, object size has minimal impact on the 

computation time. As the number of objects in a cell increases by 4 (from 4 to 32), execution 

time fluctuates between 139ms and 237ms. The execution time seems to be independent of k. We 

averaged execution time over the range of different k values which resulted in 166ms for each k 

for k from 4 − 32 for a given n. We observe steady increase in execution time as we increase the 

size of the grid; however, as shown in Figure 6 and Figure 7 (n = 16 and n = 64 respectively) the 

proportionality of the increase is less than 1. It is interesting to note that since the increase is less 

than 1 for n in the range of 16 to 64, the system will scale well for different populations. The 

significant of this is that we can adjust k and n within this range and the execution time will not 
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be far from the average time. Figure 8 shows the execution time in milliseconds for different 

sizes of grid n and relatively small k values. It shows that time is also unaffected by k. This is 

very important in a densely populated area. Since k has little effect on the execution time, we can 

appreciate the impact in an area with large concentration of k since we can reduce the size of n to 

the smallest possible value and increase the size of k in a cell and still achieve desirable result. 

 

Figure 6 Computation time (ms) to create neighborhoods as k changes over an area with n=16 

There are three observations to be deduced from Figure 9. First, when n is small, an increase 

between (1.5 and 2.5)n has little impact on execution time. Second, if n is large, same increase 

has more significant change in execution time. Third, for the same n the time difference is more 

noticeable for large n than small n as k increases. Similarly, Figure 10 shows the time for large k. 

These observations play a significant role in mapping an area in order to achieve better 

performance. For instance, in the first observation, for a small densely populated area with large 
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concentration of k, increasing the size of k in a cell and reducing the size of n will produce less 

execution time. Increase in n within the threshold will result in negligible increase in execution 

time. In the second and third observations, increasing n for a large value of n will have 

significant increase in execution time as k increases; however, if the area is large enough to 

create multiple segments of small n where the aggregate will result in significant increase in 

computation time, then single segment with large n which will result in smaller k will be more 

desirable. In the alternative, we can create multiple databases for each segment while still 

keeping k small for a more improved performance.  

 

Figure 7 Computation time (ms) to create neighborhoods as k changes over an area with n=64 

We also study the performance trend on the execution time for finding nearest POI in the 

FindNearestNeighbor module. The results are presented in Figure 11 and Figure 12 for the 

different values of n when k is set to 36 and with user location changing within the grid. Figure 

11 shows computation time as user moves from cell to cell. We can see from the result that two 
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things impact execution time: First, the grid size, and second, the cell number user belongs to, 

i.e., the time for a user to determine its location on the grid. In Figure 12, we vary k from 4 to 40. 

Again, the object size is less significant on the execution time. This also is very important 

because it provides opportunity for scaling the database in the case of a densely populated area. 

 

Figure 8 Computation time (ms) for various k =20, 24 and 32 as n gets large 

Figure 13 shows the result for a case where user cell c remains the same as n and k varies. We 

observe a small change in computation time as the range of n changes from 16 upwards to 1225, 

and the ranges for k changes from 4 upwards to 40. Similarly, Figure 14 shows the result for a 

very large increase in k (up to 300 in a cell) while the user location changes within the grid and 

the size of the grid remains constant at16. In Figure 13 and Figure 14, we can see the impact of 

the size of n for users in the same cell. When n is small, execution time is reduced compare to 

large n. As the figures also show, significant time is spent by the user to determine the cell it 

belongs to. However, large k also shows significant impact on execution time. Therefore, size of 
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n should be balanced with k to avoid small n that will result in large k, or for a very small k that 

will result in large n.  

 

Figure 9 Large changes in n shows more significant change in time (ms) than small change in n 

 

 

Figure 10 Large k showing very little change in time (ms) 

 



 

37 

  

The results in Figure 15 and Figure 16 is for n = 16 and n = 64 respectively with Figure 

15 having a lower c number. As shown in in the figures, k has impact in execution time. 

Therefore, for a large area where k is sparsely located, creating a big size grid which will result 

in a few numbers of n and similarly small numbers of k will be more desirable. The lesson here 

is to make n reasonably small which will result in a relatively small number of cells thereby 

reducing the time for a user to find the cell it belongs to. 

 

Figure 11 Computation time (ms) impacted only by n and user cell c for k=36 
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Figure 12 Computation time (ms) impacted only by n and user cell c for varying k (4,8…40) 

 

Scalability 

We describe scalability in terms of the ability to scale our design based on the size of the 

object and the area to achieve desirable performance. This is important in the case of urban area 

where objects concentrate in a fairly small quarters, or large area where objects are sparsely 

located. It allows us to scale the area to a few grids with a large concentration of objects in a 

grid, or create more grids with few objects contained in a grid. The database can then be scaled 

accordingly for performance. As shown in Figure 9 and Figure 10, during neighborhoods 

creation computation time remains fairly the same (with few outliers) as k increases. Similar 

observations were made as shown in Figure 15 and Figure 16 when finding nearest neighbor 

where we observed modest increase in computation time as k increases. 
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Figure 13 Computing time (ms) when n = (16,36,…1225), and k = (4,8,…40), and constant c. 

 

 

Figure 14 Time (ms) for large variation of k and constant n = 16, and varying c. 
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Complexity and Comparison 

We analyze computation and communication complexity and compare with [5]. The 

results are shown in Table 1. In the comparison, we consider user side communication for 

sending PIR and the computation for decrypting server response. We also consider computation 

and the transmission cost on the server. As already established, the database is organized as a 

√𝑛 𝑥 √𝑛 matrix where each matrix element is m-bit long.  

 

Figure 15 Computation time (seconds) for n=16, constant low c value, and varying k 

The encryption modulus is p bits, and f(p) is the polynomial function used to denote the 

computation cost on the value of the p bits. We use double PIR which results in server 

computation cost of O(f(p)m√𝑛) ∗ 2, which represents the cost for computing 𝑍 =  ∏ 𝑧𝑟(𝑟,𝑗)
𝑠
𝑟=1 . 

This is more than the cost in [5]. However, the reduced cost in [5] comes at the expense of 

revealing and transmitting too many information to a user. Our computation cost for a user to 
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decrypt the server response is reduced to O(f(p)m) since the double PIR allows the server to 

transmit only the desired POI. The same operation takes O(f(p)m√𝑛) in [5] because it sends the 

entire matrix column to the user which requires user to compute through the entire column in 

order to retrieve a single nearest neighbor. The downside in our design can be seen for very 

small √𝑛 where [5] will perform better. However, that will require √𝑛 to be 1 (single-

dimensional matrix) which is less likely for the database representation.  

Table 1 Computation and Communication Cost Comparison 

Cost Type Our Scheme Ghinita et.al. 

Computation (server) 𝑂(𝑓(𝑝)𝑚√𝑛)2 𝑂(𝑓(𝑝)𝑚√𝑛) 

Computation (user) 𝑂(𝑓(𝑝)𝑚) 𝑂(𝑓(𝑝)𝑚√𝑛) 

Communication (server) 𝑂(𝑝𝑚) 𝑂(𝑝𝑚√𝑛) 

Communication (user) 𝑂(𝑝𝑚) ∗ 2 𝑂(𝑝𝑚) 

 

Server communication cost in our protocol is O(pm), while [5] is O(pm√𝑛). The improvement 

comes from implementing double PIR in the server which results in the server sending only the 

requested POI against the entire column of POI sent in [5]. For the communication complexity, 

in our design user has to send two PIR moduli p each for column and row encryption. The cost 

of communication for this transaction is O(pm) ∗ 2 against O(pm) in [5].  
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Figure 16 Computation time (seconds) for n=64, constant high c value, and varying k 

In general, our design specifically creates neighborhood that satisfies Hausdorff axiom of 

topological space for each of the POI. Location data is assigned to the neighborhood which is 

then assigned to the POI contained in the neighborhood. This will prevent the user from 

deciphering the exact location of the POI from the information sent with the grid. The position of 

the location data of the neighborhood in the database is aligned such that when a user determines 

the closest neighborhood, it can match the position with the location of information in the 

database. The double PIR ensures that only the requested information is released to the user. By 

adopting the concept of Hausdorff space in our design we were able to divide an area into 

neighborhoods that contain a single POI. The design allows us to scale the database to the size of 

the neighborhood in the area so that a user can relate its location to information in the database 

thereby allowing the server to run PIR protocol on the information in the database and returns to 

the user only the desired information. Compare to design of [5], server sends the entire grid to 

the user with information of the POIs. User searches the entire data to find the POI with the 
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shortest distance to its location. This technique exposes too many of the database information to 

the user, involves increase in the transmission cost, and increases the computation cost on the 

user.  

Double PIR protocol used in our design is to minimize the amount of data revealed by the 

server as seen in [5] and to reduce the communication cost for transferring the data back to the 

user. User will only have information on the nearest object and no other object. Nonetheless, PIR 

has some obvious challenges, it has been criticized for been too costly to implement. For 

instance, large modulus is preferred for enhanced security, but as the size of the modulus 

increases so is the cost both in time and complexity.  The increase in the object and size of the 

grid also leads to increase in the size of the database which increases the cost of the 

implementation. In later chapters, we will explore parallel computing and hardware approach to 

address these issues.  
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CHAPTER FOUR: PARALLEL COMPUTING IN SNNQ  

We first design CPU serial implementation of the snapshot nearest neighbor query. Due 

to the limited resources and computational limitation of the CPU the response time increases as 

the size of the grid and the object increases. The increase in response time will affect quality of 

service in LBS. We address this issue by utilizing GPU and CUDA API to break the algorithm 

into smaller parts which are computed simultaneously in order to reduce the total computation 

time. GPU has been gaining lots of traction in the research community mainly due to its inherent 

parallel design. GPU is a device present in most modern PCs. They are designed for high speed 

graphics which are inherently parallel. It is made up of array of streaming multiprocessors which 

currently have cores up to 48 for Fermi, and 192 for Kepler architectures [48]. This allows 

scaling of the processor. Figure 17 is a sample GPU architecture depicting the host and device 

memory where CPU and GPU codes respectively execute.  

 

Figure 17 Sample GPU architecture showing streaming multiprocessors and the scalar processors 
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The P1, P2 ⋯ , P𝑛 in the figure represent single instruction scalar processor (SP) inside the SMs. 

Each SM is equipped with its own L1 cache, and the L1 caches are connected to an L2 cache. 

The challenging part of GPU computing is to determine where and what to parallelize. 

Gieseke et al in [49] propose using GPU to implement nearest neighbor search on a refined 

classical k-d tree called buffer k-d tree. Proposed in [50] is a CUDA based parallel 

implementation of nearest neighbor search using GPU which achieved a speedup over serial 

implementation of the same algorithm. Silvestri et al in [51] exploited GPU in a continuous 

range queries and location update to achieve a 20x speedup over serial computation of the same 

dataset. They utilized CPU/GPU in all the computation phase to preprocess the data set such that 

objects in the same index grid cell are stored consecutively to optimize memory access. They 

also produce and transfer in parallel the list of object ids for each issued query. Though effective, 

the method that was used to apply parallelism to the cells may lead to load imbalance. Our 

design of single object neighborhoods helps to create data independent which is crucial for 

parallelization. The CPU computes the serial part of the algorithm. Using CUDA API, CPU code 

spurns thread the size of the total independent computation needed to perform the operations on 

the GPU. The threads run concurrently. At the completion of the operation, the data is transferred 

back to the CPU. 

Not every application is suitable for parallel computing. Applications that qualify for 

parallel processing should have scalability, speedup, and efficiency. The amount of speedup that 

can be achieved in application is directly related to percentage of the program that can be 

parallelized. Amdahl’s law in [52] states that a small portion of a program which cannot be 
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parallelized will limit the overall speedup available from parallelization. If β represents the 

fraction of a running time a program spends on non-parallelizable parts and N is the number of 

processors; then, 

lim
𝑁→∞

1

1 − 𝛽
𝑁 +  𝛽

=  
1

𝛽
 

represents the maximum speed-up that can be achieved by parallelizing the program. If P is the 

proportion of a program that can be parallelized, (1 − P) = β represent the fraction of running 

time spent on non-parallelizable parts. Maximum speedup that can be achieved by using N 

processors can also be represented as  

𝑆(𝑁) =  lim
𝑁→∞

1

(1 − 𝑃) +  
𝑃
𝑁

=  
1

(1 − 𝑃)
 

This is how much faster the computation runs on parallel hardware. 

Graphical Processing Unit 

According to [53], CPU will idle if there are not enough processes to keep it busy. If 

there are too many small tasks with each blocking after a short period, the CPU will spend most 

of its time context switching and very little time doing useful work. With CPU, scheduling 

policies are often time multiplexing (dividing the time equally among the threads). The 

percentage of time spent context switching is directly proportional to the number of threads; 

therefore, large increase in number of threads decreases efficiency. In contrast, GPU requires 

thousands of threads to work efficiently. GPU is designed to handle stall conditions which are 

expected to happen with high frequency. With available pool of work GPU always has 
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something useful to work on. When a GPU hits a memory fetch operation or has to wait on the 

result of a calculation, the streaming processors will switch to another instruction stream and 

return to the stalled instruction stream sometime later.  

For the most part, CPU run single thread programs and are mostly dual or quad core 

devices. It calculates a single data point per core per iteration. GPU; however, runs in parallel by 

default. Instead of calculating just a single data point per SM, GPU calculates 32 data points per 

SM. This provides a 4x advantage in terms of number of cores over a typical quad core CPU, and 

also a 32x advantage in terms of data throughput. GPU provides high speed memory (shared 

memory) next to the SM which allows the programmer to safely leave data in this memory 

knowing that the data will not be destroyed by the hardware. It also serves as the primary 

communication mechanism among threads. Cook in [53] stated that there are two major 

differences in the task execution model of a GPU. The first is that groups of N SPs execute in a 

lock-step basis running the same program but on different data. The second is that because of the 

GPU huge register file switching threads have effectively zero overhead. GPU can support a very 

large number of threads and is designed in this way. Over the years, GPU has steadily 

outperformed CPU [54]. 

Compute Unified Device Architecture 

CUDA is an extension of the C language that allows GPU code to be written in regular C. 

The code is written for the host processor (CPU) or the device processor (GPU). The host 

processor spawns kernels or multithreads tasks onto the GPU device. The GPU through its 

internal scheduler allocates the kernels to the GPU hardware. Cook in [53] explained that CUDA 
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is ideal for problems that are extensively parallel, and that it can be used if a problem can be 

constructed and the output data points represented without relation to each other. This is ideal for 

our protocol where the output data are independent. CUDA splits problems into grids of blocks, 

each of the blocks contain multiple threads. The blocks can run in any order, however, only a 

limited number of blocks will execute at any point in time determined by the resource 

requirement of a thread block. Blocks execute end to end in any one of the SMs. It is normally 

done in a round-robin basis to allow equity distribution of blocks among the SMs. In its basic 

form, a grid made up of threads is split into blocks, and the blocks are split into warps. To 

perform action, the kernel provides some action and data, each thread then works on its 

individual part of the problem. Threads can swap data with one another under the coordination of 

either the warp or the block, but any thread coordination with the blocks can only be performed 

by the kernel.  

CUDA program runs on the CPU and transfers needed data to the GPU, the GPU 

performs execution and returns the data to the CPU. The process continues until the application 

terminates. Based on this process, the total execution time 𝑇𝑒𝑥𝑡𝑖𝑚𝑒  can be broken into parts as 

follows: 

𝑇𝑒𝑥𝑡𝑖𝑚𝑒 =  𝛽 +  𝑡𝐻𝐷 +  𝛼 + 𝑡𝐷𝐻 (7) 

 The β in equation 7 represents the serial portion of program executed by the CPU. The parallel 

part executed by the GPU is represented by α, while 𝑡𝐻𝐷is the time required to transfer the data 

from the host to the device, and 𝑡𝐷𝐻 represents the time needed to transfer the data from the 

device back to the host. Equation 7 seems contradictory to improving speedup when compared to 
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β, however, significant reduction in β accounts for the improvement. Note that equation 7 is 

correct if there are no overlaps between data transfer and kernel execution. 

Task Model 

Ideal algorithm for a GPU should be able to have enough parallelization that will 

significantly account for 𝑡𝐻𝐷  and 𝑡𝐷𝐻. The algorithm in Figure 18 for the CPU-based code loops 

through the gridSize and the objectSize and creates and assigns objects to neighborhoods within a 

cell c contained in the grid G. The struct of each object has array called objectNeighborhood[ ] 

which maintains a list of all objects of a given neighborhood. The loop through the 

cellNumber.size() and objectSize identifies each neighborhood with their object and their cell 

number. For the GPU-based implementation, computecellArea and CreateCells are still present 

and execute on the CPU, the loops are performed by the GPU by first allocating memory and 

copying over the data using cudaMalloc and cudaMemcpy respectively. 

Implementation 

We create a sorted linear binary search tree (BST) that holds object locations. The 

crtObjNHood module creates the neighborhoods by computing the difference between the 

positions of two adjacent objects such that the spatial distance from object 𝑝𝑖 to the edge of the 

neighborhood is 
|𝑙𝑝[𝑖]−𝑙𝑝[𝑖+1]|

2
, i.e., 

lN𝐻𝐷
(𝑗) ≡  𝑙𝑝(𝑖) +  

|𝑜𝑏𝑗(𝑙𝑝[𝑖]− 𝑙𝑝[𝑖+1])|

2
 (8) 
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For object i the location value 𝑙𝑝(𝑖) is lN𝐻𝐷
(𝑗). The piece of code in Figure 18 runs on the CPU. 

Line number 11 launches CUDA kernel function that executes on GPU. The CUDA kernel in the 

algorithm of Figure 19 stores the value of the neighborhood which is assigned to the object for a 

given index in the variable lN𝐻𝐷
[𝑗] for that same index. The “for” loop iterates “tid” times 

(index 1 to tid). This is translated to “size” threads in CUDA. Each thread executes the line 

𝑙𝑁𝐻𝐷
[𝑗] =  𝑙𝑝[𝑖] +  

|𝑜𝑏𝑗(𝑙𝑝[𝑖] −  𝑙𝑝[𝑖 + 1])|

2
 

This is made possible by the design of the algorithm which creates no dependency between the 

iterations. The _global prefix tells the compiler to generate a GPU code rather than CPU during 

compilation. The GPU function is called with 

“crtObjnHood<<<blocksPerGrid,threadsPerBlock>>>(𝑙𝑁𝐻𝐷
,lp, SIZE)”. The “blocksPerGrid” 

parameter tells the GPU the number of blocks to be allocated for the thread execution, and 

“threadsPerBlock” tells the GPU how many threads in a block. Line 11 of algorithm of Figure 

18 calls the GPU “crtObjNHood” module “SIZE” times and each call is made with a different 

thread. Each thread does four reads from memory, one subtraction, two additions, and one store 

operation, and then terminates. 
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Figure 18 Code that runs on the CPU and launches kernel function 

Analysis and Results 

We provide analysis for the GPU parallel implementation of the SNNQ and compare the 

results with the CPU implementation. We did not start to define the core of our performance 

model in order to predict the GPU execution time. Our goal is to conduct statistical analysis 

based on performing variety of simulations and compare it with CPU execution time, and then 

define the performance model based on actual experiment. The testing computer is Aliewnware 

X51 R2 running windows 7 operating system and equipped with Intel core i7-4770 processor 

with 12G RAM. Available in the system is NVIDIA GeForce GTX 760 Ti with 2G GDDR5. 

Table 2 shows the rest of the GPU specification. The threads are grouped into 32 thread groups 

called warp. Each warp is placed into the SM to be executed by the number of the SPs available 

in the SM. Understanding GPU architecture is important to avoid blocks that does not make full 
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use of the hardware which could lead to drop in performance [53]. The values of the data sets 

used in our simulation were chosen to maximize performance. For the most part, the number of 

threads per block was based on achieving 100% utilization factor of a compute capability 3.0 

GPU as prescribed in [53], and to maximize the number of threads to reduce the effect of 

memory latency.  

 

Figure 19 Piece of code that runs on GPU to create neighborhoods 

We create blocks with thread counts that are a round multiple of the warp size in order to 

have enough active warps in each streaming multiprocessor to sufficiently hide all of the 

different memory and instruction pipeline latency of the architecture in order to achieve 

maximum throughput. For instance, we create 512 threads (32 threads per warp) which results in 

16 warps so that we can schedule up to 64 warps (32 x 64) for a total of 2,048 threads at a time in 

a single SM. For the most part, we chose our thread size to ensure that we have the maximum 

number of threads running in the SM. The size of the thread is also intended to minimize number 
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of blocks with the hope of reducing the time for GPU to add and remove each block from the 

SM. As previously stated, the grid size in our protocol has to be a square. This presents some 

challenges when processing data which are not multiple of the kernel launch parameter. We use 

padding to fill those that are less than warp size. For instance, 8,100 threads were needed to be 

processed in one instance; however, this does not equate to a perfect multiple of a warp, we 

therefore padded it with 92 extra threads to make it perfect multiple of a warp. Our goal is also to 

make use of all the available SMs in every execution. For example, we have 5,376 threads to 

compute, we split it into 384 threads per block and then we have a total of 14 blocks to be 

allocated to the SMs. This will require each SM to have two complete blocks and no left over 

block. Since all the SMs are running the same kernel, it is likely their execution time will be the 

same. All the SMs will be available at the same time. Assumption here is that the allocation is 

done on a round-robin basis since NVIDIA does not disclose the methods of scheduling used. 

Also, in some cases we create large number of blocks to reduce the size of threads in a block 

when the blocks are not multiple of SMs in order to avoid the time delay for the leftover block to 

execute due to large kernels. 
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Table 2 GPU System Specification 

Unit Specification 

CUDA Cores 1344 

Stream Multiprocessors 

(SM) 

7 

Maximum Thread per 

Block 

1024 

Maximum Thread per SM 2048 

Graphic Clocks (MHz) 915 

Processor Clock (MHz) 980 

Memory Clock 6.0Gbps 

Memory Interface GDDR5 

Standard Memory Config 2G 

Memory Interface 256-bit 

GDDR5 
Memory Bandwidth 

(GB/sec) 

192.2 

Compute Capability 3.0 

 

Comparing CPU and GPU Performance 

We show here the results of the simulation we ran as the size of the database increases 

and compare the differences in performance between GPU and CPU with respect to run time. We 

studied the impact of parameter tuning for making CUDA calls to examine the effect on GPU 

execution time, and we provide analysis for deciding the right thread and block size. We then 

provide a model for predicting GPU execution time. Figure 20 and Figure 21 depicts 

computation time between CPU and GPU. It shows the result for the serial computation 

performed in two different computers with different specifications. The first computer was only 

used for CPU serial execution since it does not have CUDA-enabled GPU. We performed both 

CPU serial and GPU parallel computation using the second computer. The results show that 
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GPU significantly reduces the response time as the size of the database increases. GPU shows on 

the average an improvement factor of 23.9 over CPU using the same hardware.  

Results of our experiment show that creating a small size threads per block for a 

maximum occupancy of the SM performed better when the size of the objects were small. The 

same observation was made for small size threads per block with 94% SM occupancy. However, 

the results also show that when the size of the objects are large, better performance will be 

achieved by creating large size threads per block that result in a 100% utilization factor. This is 

likely due to global memory latencies from GPU adding and removing each block from the SM. 

In other words, small thread size in a block performs better when the size of the objects are 

small, while large thread size in a block performs better when the size of the objects are large.  

Some challenges were observed in our GPU implementation. Dealing with large data sets 

is one of them. As the size of the grid increases, so does the size of the database matrix and the 

modulus used for the encryption. These data which are stored in the system RAM are transferred 

to the GPU. The data easily exceeds the size of the system RAM causing data to be retrieved 

from the disk before sending to the GPU thereby causing transfer delays. Another challenge is 

the database structure which requires square matrix that may not always map to a perfect 

multiple of warp thereby requiring extra padding in the kernel launch parameter in order to 

create a thread that is multiple of a warp. 
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Figure 20 Time difference between GPU/CPU for thread size of 1024 

 

 

Figure 21 Time difference between GPU/CPU for thread size of 384 
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Modelling GPU Run-Time 

Some work has been performed on GPU run time modelling. The work provided in [54] 

modelled execution time in multiple GPUs for algorithms whose GPU work scales linearly as the 

number of mobile objects increases. Other GPU modeling like the one in [55] modelled existing 

algorithm not similar to our work. Our goal is to create a model specifically for our algorithm 

and similar algorithms in order to provide a guide for determining the size of the parameters to 

achieve optimal result without knowledge of the intricacies of the GPU architecture. 

We set to predict the execution time based on the size of the parameter use in the CUDA 

calls. We start by developing run time equation for an object using the run time for a block and 

for each additional block. We extrapolate the run time for a problem set based on the equation 

and then determine query execution time for a single object. This would be the time to create one 

neighborhood. To find query execution time for a single object, we first find out block execution 

time 𝑇𝐵𝐸𝑥𝑒. This is done by running several operations. We determine the block processing time 

𝐾𝑡 for adding and removing blocks to the SMs by running operations first with a single block 

and then by adding blocks to the SMs. The execution time 𝑇𝐸𝑥𝑒 for a single object is then 

represented as follows: 

𝑇𝐸𝑥𝑒 =  
𝑇𝐵𝐸𝑥𝑒

𝑇ℎ𝑑𝑆𝑖𝑧𝑒
 (9) 

𝑇𝐵𝐸𝑥𝑒 is the execution time for a single block of the given problem, and 𝑇ℎ𝑑𝑆𝑖𝑧𝑒  is the size of 

thread in a block. From equation 9, we can extrapolate the GPU execution time 𝑇𝐺𝑃𝑈  for a given 

problem. Let the number of blocks be 𝐵𝑁𝑢𝑚, let 𝑃𝑠  be the problem set, where 𝑃𝑠 = 𝑇ℎ𝑑𝑆𝑖𝑧𝑒 ∗ 

𝐵𝑁𝑢𝑚. If 𝑁𝑆𝑀  is the number of SMs contained in the GPU, 
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𝑇𝐺𝑃𝑈(𝑃𝑠) =  𝑇𝐸𝑥𝑒 ∗  𝑇ℎ𝑑𝑆𝑖𝑧𝑒 ∗  ⌊
𝐵𝑁𝑢𝑚

𝑁𝑆𝑀
⌋ +  𝐾𝑡 ∗ 𝐵𝑁𝑢𝑚 + 𝑇𝐸𝑥𝑒 ∗  𝑇ℎ𝑑𝑆𝑖𝑧𝑒 (10) 

Equation 10 represents the total time a given problem will take to execute on the GPU with 𝑁𝑆𝑀   

SMs. Note that 𝑇𝐸𝑥𝑒  will be the same for each object since the same thread is being executed. 

Also, the last part of equation 10 (𝑇𝐸𝑥𝑒 ∗  𝑇ℎ𝑑𝑆𝑖𝑧𝑒) is the time to execute the last block in the 

problem set. From equation 10 we can see the importance of creating blocks that are multiple of 

the SMs, because the whole operation waits for the last block to complete. We can also see that 

the optimal 𝑇ℎ𝑑𝑆𝑖𝑧𝑒  and 𝐵𝑁𝑢𝑚 depends on 𝑇𝐸𝑥𝑒   (which depends on the complexity of the 

operation) and 𝐾𝑡. As shown in Table 3, this model has shown to be quite accurate for different 

object sizes. The large number of objects used in our model allows us to provide a precise 

average run time for the objects thereby giving a highly accurate approximation of the expected 

run time. It is important to note that this model will accurately predict GPU run time for 

applications which GPU execution scales similarly to ours. 

 

Table 3 Run time (ms) for different thread sizes in a block 

Total Object 1024/Blk 768/Blk 512/Blk 384/Blk 256/Blk 

100,000 64.302 64.473 64.350 64.310 64.311 

200,000 69.772 69.710 69.663 69.662 69.798 

300,000 78.445 78.522 78.455 78.522 78.455 

400,000 80.972 80.920 80.872 81.006 80.915 

1,000,000 98.202 98.227 98.152 98.189 98.177 

2,000,000 128.003 127.987 127.971 127.962 127.954 

4,000,000 199.522 199.510 194.522 199.509 199.497 
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CHAPTER FIVE: HARDWARE ASSIST PRIVATE INFORMATION 

PROTECTION IN LBS-SNNQ 

Alternatively, tamper-resistant hardware can be used to protect private information in 

LBS-SNNQ. Tamper-resistant hardware computing technology with secure coprocessor allows 

usage of onboard chip or microprocessor to carry out cryptographic operation thereby 

eliminating the need for protecting rest of the sub-system. In general, secure coprocessor refers 

to a physically secure subsystem of a larger host computer. The idea is for the coprocessor to 

provide a secure means of computation and data storage against an adversary even when they 

have access to the host system. Smartcards and Trusted Platform Module (TPM) are some of the 

ways that secure coprocessor can be deployed. In the design proposed in [56], [57], and [58] only 

the coprocessor is considered secure while the rest of the system including operating system 

(OS) is considered vulnerable to software attack. Other application of secure coprocessor 

technology is in cloud computing where network of remote servers hosted over the internet are 

used to store and process data. In this work, we propose to use secure coprocessor to protect user 

private information in LBS-SNNQ. This will help to minimize the amount of information 

transferred while still allowing a user to obtain the nearest POI to its location without adversary 

having the ability to decipher user location or the information obtained. This is achieved through 

encryption of transmitted information, obfuscated instruction execution using hardware 

architecture proven to be secure, and engaging in obscure access to a remote storage device. A 

user sends encrypted query to a secure coprocessor. The secure coprocessor processes user 

information and engages in a periodic and coordinated access to a remote server to obtain user 

requested information using ORAM methodology. It is important to note that using a secure 
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coprocessor is different from using a trusted third party. In the remainder of this chapter, we 

explain the secure coprocessor and the tools used to implement our design. We provide 

experimental analysis and compare with the software approach. 

Secure Coprocessor  

A secure coprocessor contains CPU, bootstrap ROM, and secure non-volatile memory 

which cannot be physicality penetrated [59]. It is designed to meet rigorous security 

requirements that assure unobservable and unmolested running of the code residing in it even in 

the physical presence of an adversary [7]. The Input-Output (I/O) interface to the module is the 

only way to gain access to the internal state [59]. The device is equipped with hardware 

cryptographic accelerators that enable efficient and fast implementation of cryptographic 

algorithms such as DES and RSA [35]. Secure coprocessor [7] provides protection for code to 

execute and carry high-speed encryption process. Crucial for its operations are: resource 

management, communication, key management, and encryption services. A secure coprocessor 

is designed such that upon a break-in the intruder cannot learn or change the internal state except 

through normal I/O channels or by forcibly resetting the entire secure coprocessor [59]. 

Nonetheless, the security of a coprocessor can be breached through physical or software 

attack. In a physical attack the adversary have access to the hardware [33] and can dictate 

problem behavior by tampering with the hardware pins through the means in [60]. Software 

attack involves malicious use of software to remotely launch attack without physical access to 

the hardware such as the cache attack addressed in [61], [62], and [63]. In this work, we consider 

attack by an adversary from a remote location. The coprocessor considered meets the 
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requirement for oblivious computation which includes: (1) same amount of work and time will 

be spent for each operation (i.e., all operations including saving information in the internal 

memory and discarding information cannot be differentiated). (2) Each user thread owns the 

coprocessor the entire time, therefore, no other thread will be able to access information been 

computed for another user. (3) Coprocessor actions and operations for external request must be 

obfuscated. The coprocessor accesses the server through ORAM methodology.  

Oblivious Random Access Memory 

ORAM is defined in [64] as a probabilistic random access memory (RAM) which has 

memory access distribution pattern independent of the input. It allows a client to obscure its 

access pattern to a remote storage server through continuous reshuffle and re-encrypt of the 

information stored in the remote server. It prevents any leakage of information that could assist 

adversary to determine the type of memory access (read or write), location accessed, or what 

data is read or written by the client. Different flavors of ORAM have been proposed, like the 

ones in [64], [65], [66], [67], [68], [69], [70], [36] and used in [71] to build a secure coprocessor 

architecture called Ascend which guarantees privacy for data stored in a cloud computing 

environment. ORAM model defined in [66] consists of a basic RAM decoupled into two 

interactive machines (CPU and memory module) which acted as Interactive Turing-Machine 

(ITM). The read-only communication tape of the CPU is associated with the write-only 

communication tape of the memory, and vice versa. The ORAM algorithm is such that an 

adversary can observe the physical storage locations accessed, but, it ensures that the adversary 

has negligible probability of learning anything about the true access pattern. Another flavor of 
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ORAM discussed in this chapter is known as Path ORAM. It is designed for optimization by 

focusing on a path rather than the entire database information.  

Path-ORAM  

To obfuscate the exact information accessed, most ORAM techniques are based on 

streaming the entire database. For our work, we implement Path ORAM of [36] to reduce the 

computational burden of streaming the entire database each time query is issued thereby 

reducing the access time. The design is based on security principles defined in [68]. It requires 

that no information be leaked about which data is being accessed, the last time data was 

accessed, if the same data has been accessed, access pattern (random, sequential, round-robin 

etc.), or whether the access is read or write. It is implemented with a binary tree data structure of 

height H and 2𝐻 leaves. Data is stored in the tree node called bucket. Each bucket contains up to 

Z blocks, and the buckets are padded if necessary to always maintain block of size Z. 

The sequence of data request as described in [68] is as follows: 

�⃗� ∶= ((𝑜𝑝𝑀, 𝛼𝑀, 𝑑𝑎𝑡𝑎𝑀), ⋯ , (𝑜𝑝1, 𝛼1, 𝑑𝑎𝑡𝑎1)) (11) 

M is the length of data request sequence, and each 𝑜𝑝𝑖 represents operations 𝑟𝑒𝑎𝑑(𝛼𝑖) or 

a 𝑤𝑟𝑖𝑡𝑒(𝛼𝑖, 𝑑𝑎𝑡𝑎). In other words, 𝛼𝑖 is the identifier of the block been read or written, while 

𝑑𝑎𝑡𝑎𝑖 is the data been written. The first index represents the most recent load or store data, and 

the last index M represents the oldest load or store operation. Given a sequence of data request �⃗� 

such that 𝐴(�⃗�) is the random sequence of access to the remote storage place, secure ORAM is 

defined such that any two data request sequences �⃗� and �⃗� with access pattern 𝐴(�⃗�) and 𝐴(�⃗�) 

cannot be computationally distinguished by anyone except the client. The construction is correct 
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if given an input �⃗� ORAM returns with a probability ≥ 1 − 𝑛𝑒𝑔𝑙(|�⃗�|) data which is consistent 

with �⃗�. The data path is defined such that 𝑖 ∈ {0,1, ⋯ , 2𝐻 − 1} represents i-th leaf node, where H 

is the height of the binary tree, and 𝑖 = 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛[𝛼] represents the block 𝛼 currently associated 

with leaf node i. Leaf node i defines a unique path from leaf i to the root, and 𝜌(𝑖) denote sets of 

buckets along the path from i to the root. Also 𝜌(𝑖, ℎ) represents the bucket in 𝜌(𝑖) at height h in 

the tree. 

 The path ORAM client maintains two data structures: stash S, and location map. The 

stash is used locally by the client to store a small number of overflow data blocks from the 

server. The client also stores location map where 𝑖 = 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛[𝛼] corresponds to block 𝛼 

currently mapped to i-th leaf node, i.e., block 𝛼 resides in some bucket in the path 𝜌(𝑖) or in the 

client stash. During initialization (client stash is empty) server encrypts some dummy blocks and 

randomly assigns it to the buckets. The location map for the client contains random numbers 

between 0 and 2𝐻 − 1. The read and write processes are as follows: 

𝑟𝑒𝑎𝑑 ← 𝐴𝑐𝑐𝑒𝑠𝑠(𝑟𝑒𝑎𝑑, 𝛼, 𝑛𝑜𝑛𝑒) from block 𝛼, and 𝐴𝑐𝑐𝑒𝑠𝑠(𝑤𝑟𝑖𝑡𝑒, 𝛼, 𝑑𝑎𝑡𝑎) to block 𝛼. The 

position of block 𝛼 is remapped to a new random position. For a read operation if i is the old 

position for the block, then, read path 𝜌(𝑖) that contains block 𝛼. For a write operation update the 

data for block 𝛼, write back the path and any additional block from the stash. Block 𝛼′is placed 

in a bucket at h if 𝜌(𝑖, ℎ) ∩ 𝜌(𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛[𝛼′], ℎ). 

Note that all the Z blocks are read from the bucket during a read operation and decrypted. For a 

write operation the encrypted blocks are written back into the bucket and padded if necessary to 

create size Z block. Path ORAM security as stated in [36] is such that if �⃗� is the sequence used 

for requesting size M data, the sequence of access 𝐴(�⃗�) as seen by server is  
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𝑃 = 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑀[𝛼𝑀], 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑀−1[𝛼𝑀−1], ⋯ , 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛1[𝛼1]) (12) 

and 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑗[𝛼𝑗] represents the address location 𝛼𝑗for the position map of the j-th load or store 

operation including paths 𝜌 (𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑗(𝛼𝑗)) ∀𝑗, 1 ≤ 𝑗 ≤ 𝑀 encrypted using random encryption. 

Each 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑖(𝛼𝑖) is randomly remapped after it is revealed to the server; therefore, 

𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑖(𝛼𝑖) is statistically independent of 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑗(𝛼𝑗) for 𝑖 < 𝑗 ≤ 𝑀 𝑎𝑛𝑑 (𝛼𝑗) = (𝛼𝑖). Also, 

since address locations are independent of one another; hence, for 𝑖 < 𝑗 ≤ 𝑀 𝑎𝑛𝑑 (𝛼𝑗) ≠ (𝛼𝑖) 

𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑖(𝛼𝑖) is independent of 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑗(𝛼𝑗). Therefore,  

Pr(𝑃) = ∏ Pr (𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑗(𝛼𝑗)𝑀
𝑗=1 ) = (

1

2𝐻)𝑀 (13) 

If equation 13 is true, then, 𝐴(�⃗�) cannot be computationally distinguished from a random 

access 𝐴(�⃗�). 

System Architecture 

Our model is based on a secure coprocessor accessing external memory under the control 

of LBS server using path ORAM. Figure 22 depicts system high level interaction between user, 

secure coprocessor, and the LBS server. The problem solved in this model is the same as 

previously stated in software cryptography, i.e., protecting user private information from been 

disclosed to another party in LBS snapshot nearest neighbor query. Our technique is based on 

coprocessor technology that supports computation of arbitrary programs. The coprocessor serves 

as a client to the LBS server through path ORAM methodology access. The coprocessor can be 

located inside or external of a server. Our model consists of a single server with coprocessors. 
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Figure 22 High level architecture of the interaction between user, secure coprocessor, and the 

server. 

The coprocessor maintains a stash as in [36]. Each record is stored as a unit pair 

(𝐼𝑛𝑓𝑜𝑖(𝑙𝑜𝑐𝑖, 𝑝𝑖)) in unsecured storage device outside the coprocessor, where 𝑙𝑜𝑐𝑖 is the location 

information of the object 𝑝𝑖. The coprocessor interacts with the server to obtain information 

stored in the server using ORAM methodology. Object location information stored in the server 

is represented with a binary search tree (BST) data structure. All information must have the same 

number of bytes B. The BST is such that all buckets are of equal size blocks. Buckets are padded 

with dummy blocks if necessary. We use location data for the BST keys. Location data on the 

nodes on the left sub-tree are smaller than the key, while location data on the nodes to the right 

are larger than the key. Location information is stored by the LBS server. Random locations are 

picked in a balanced manner by the coprocessor. The location data of these random locations are 

used as key to the tree and stored in the coprocessor stash. For example, suppose three location 

data randomly picked and used for the keys are 𝑘𝑒𝑦1 (28.2N, 72.5W), 𝑘𝑒𝑦2 (28.5N, 72.8W), and 

𝑘𝑒𝑦3 (28.8N, 81.0W). The tree is such that all location data 𝑘𝑒𝑦1 < 𝑙𝑜𝑐𝑖 <  𝑘𝑒𝑦2 is left of 𝑘𝑒𝑦2, 
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while all 𝑘𝑒𝑦2 < 𝑙𝑜𝑐𝑖 < 𝑘𝑒𝑦3 is to the right of 𝑘𝑒𝑦2. The coprocessor will use this structure to 

determine the access path for the user required information. 

Assumptions 

The assumptions include the following: 

1. The secure coprocessor features a software architecture that allows developers to 

install and update their applications onto the device in a way that protects the privacy 

and security interests of the developer. 

2. Attacker has no physical access to the hardware or that a direct physical access will 

not interfere with the computation. 

3. The coprocessor is a tamper proof black box designed to satisfy requirements for 

oblivious computation as in [66] and stated in [71]. 

Algorithm Design 

Secure coprocessor like IBM 4758 model runs its code on the application layer of the 

card. In our work, we follow similar design of [7] and build a framework that emulates a secure 

coprocessor card that runs the code to perform the task. The algorithm is designed to ensure 

oblivious conditions are met in the secure coprocessor operations. The first condition is satisfied 

by allocating to each thread equal amount of time for operations. Same amount of time will be 

spent writing to the memory information considered to be a hit and discarding information 

considered to be a miss. For instance, if X amount of information is processed by the secure 
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coprocessor (where 𝑋 = 𝑥1, 𝑥2, ⋯ 𝑥𝑛), for 𝑥𝑖 ≠ 𝑥𝑗 if 𝑥𝑖 is the desired information the same 

amount of time will be spent to write 𝑥𝑖 to the internal memory and to discard 𝑥𝑗. The 

implementation is such that the time and effort spent for all operations will be indistinguishable. 

This will prevent adversary from distinguishing the type of operation performed. The 

coprocessor maintains two tables: 𝑇𝑎𝑏𝑙𝑒1 and 𝑇𝑎𝑏𝑙𝑒2. User initiates a query and sends a request 

to the coprocessor. The coprocessor implemented by the module Sim_Secure_Coprocessor() 

generates a unique id for the user and calls the RSA key generating function in line 1 of the 

algorithm in Figure 23 to generate a key. It stores the Uid of the user in 𝑇𝑎𝑏𝑙𝑒1 as 

 𝑡𝑎𝑏𝑙𝑒𝐴𝑟𝑟𝑎𝑦1[ 𝑈𝑠𝑖][𝑈𝑖𝑑] and sends (Uid,key) to the user.  User then calls similar function to 

generate its own key, determines the desired information, and calls line 8 of the algorithm in 

Figure 23 to perform RSA encryption on the data. It then sends (Enc(Uid,loc,info),key) to the 

coprocessor, where Enc(Uid,loc,info) is the encrypted user query which contains user 

identification number, location, and information desired. Coprocessor receives the information 

and creates the process to perform the operation by calling “pthread_create(tid, NULL, 

&process, NULL)”. The coprocessor locks the process by executing pthread_mutex_lock() until 

after the thread execution. During the execution the coprocessor decrypts the information and 

checks if Uid exists in 𝑇𝑎𝑏𝑙𝑒1. If Uid exists it will store in 𝑇𝑎𝑏𝑙𝑒2 the user information as 

(Uid,loc,info). The coprocessor uses the key derived from loc to read from Memory[i...] up to 

Memory[...k] where k is the length of data request sequence. The simplest way to emulate 

memory is to treat it as a plain array of bytes as shown below: 
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𝐷𝑎𝑡𝑎 = 𝑀𝑒𝑚𝑜𝑟𝑦[𝑘𝑒𝑦][𝑖𝑛𝑓𝑜]; /∗  𝑅𝑒𝑎𝑑 𝑓𝑟𝑜𝑚 𝐴𝑑𝑑𝑟𝑒𝑠𝑠1 ∗/ 
𝑀𝑒𝑚𝑜𝑟𝑦[𝑘𝑒𝑦][𝑖𝑛𝑓𝑜] = 𝐷𝑎𝑡𝑎; /∗  𝑊𝑟𝑖𝑡𝑒 𝑡𝑜 𝐴𝑑𝑑𝑟𝑒𝑠𝑠2  ∗/ 
 

The array stores the key and data (POI). The key determines the path of the information to be 

read and processed.  

 

Figure 23 Encryption and decryption algorithm 

The coprocessor runs through the loop to look for user desired information, 

for(i=1;i<=sizeof(k);i++) (k is the size of data read from memory) save 𝐼𝑛𝑓𝑜𝑖 in 𝑇𝑎𝑏𝑙𝑒2 (𝐼𝑛𝑓𝑜𝑖 

is the information read from memory). If 𝑞𝑖 = 𝐼𝑛𝑓𝑜𝑖 continue to save 𝑞𝑖 in 𝑇𝑎𝑏𝑙𝑒2 till the end of 

the loop (𝑞𝑖 is the user desired information). For the first execution of the loop 

Sim_Secure_Coprocessor()  calls x=PAPI_get_real_cyc() to determine the amount of clock 

cycle for the operation. For the rest of the operation it uses the x amount of clock cycles for the 

execution. This satisfies the first oblivious condition. After streaming the entire path and 

performing the operation to determine user request, the memory is randomly reshuffled and 
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remapped in a write operation. This satisfies the third condition. Application for each user query 

allocates separate address space that contains entire streamed path. The 

pthread_mutex_unlock(&c) is called at the end to release the resource and allow other threads to 

execute. This satisfies the second condition. A pending request is created and queued for any 

request prior to the expiration of the clock cycle. This will ensure that no two threads are granted 

access to the coprocessor at the same time. Performance is degraded by the wait, but it helps to 

enforce the oblivious condition. 

Using ns-3 node class we create three nodes for the secure coprocessor, the LBS server, 

and the user. We provide methods for managing the versions of the abstractions for all the nodes. 

We use specializations of class Application called UdpEchoClientApplication and 

UdpEchoServerApplication for data transmission between user and the secure coprocessor. The 

coprocessor tasks include: key management, encryption, data computation, data transfer, data 

read and write on the host memory. For encryption we implemented RSA since most existing 

commercial secure coprocessor already implements RSA. We use OpenSSL for the 

cryptographic functionality. The sample RSA algorithm shown in Figure 23 does the encryption 

and decryption process and returns the encrypted data.  

Processing SNNQ 

Suppose a user wants to receive the nearest POI to its location, the user and the coprocessor 

engages in the following protocol: 
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1. Initialization phase: User declares its intention for the nearest POI, the coprocessor 

creates address space for the user with a unique id and generates random key (𝑐𝑝𝑢𝑏𝑘𝑒𝑦
 

and 𝑐𝑝𝑟𝑖𝑘𝑒𝑦
) following the guides provided in [72], and send 𝑐𝑝𝑢𝑏𝑘𝑒𝑦 

to the user.  

2. User identifies its location and desired POI and creates query message 𝑞. User generates 

its own key (𝑢𝑝𝑢𝑘𝑒𝑦
 and 𝑢𝑝𝑟𝑘𝑒𝑦

) and encrypts the query using 𝑐𝑝𝑢𝑏𝑘𝑒𝑦
 and sends 

(𝜀𝑢(𝑐𝑝𝑢𝑏𝑘𝑒𝑦𝑖
, 𝑞)𝑢𝑝𝑢𝑘𝑒𝑦

) which contains the encrypted message and its own public key to 

the coprocessor. Only the coprocessor will be able to decrypt the message since it has 

the 𝑐𝑝𝑟𝑖𝑘𝑒𝑦
. If 𝑐𝑝𝑢𝑏𝑘𝑒𝑦

 or 𝑢𝑝𝑢𝑘𝑒𝑦
is compromised the attacker will still not be able to 

obtain any useful information. 

3.  The coprocessor uses 𝑐𝑝𝑟𝑖𝑘𝑒𝑦
 to decrypt the message, and saves it in the internal data 

structure. 

4. The coprocessor uses path ORAM to obtain from the server information desired by the 

user. It first identifies the key that relates to the user desired information. It streams the 

entire path looking for the block with correct record with 𝑂(log(𝑁)) search, where N is 

the total block size on the tree. If the number of blocks in a path is 𝑃𝑏𝑙𝑘 then for 1 ≤ 𝑗 ≤

𝑃𝐵𝑙𝑘 if 𝑗 = 𝑞𝑖 (𝑞𝑖 is the information desired by the user and stored in the block) it will 

save the information in the internal memory; otherwise,  it will discard the information 

with the same amount of work and time equal to the time to save it as in [7]. Each user 

thread owns the coprocessor the entire time; therefore, no other thread will be able to 

access information been computed for another user.  
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5. Once a path is accessed it is completely remapped to a new location according to process 

in [36]. The coprocessor sends to the user encrypted query response using 𝑢𝑝𝑢𝑘𝑒𝑦
 

as 𝜀𝑐𝑝 (𝑢𝑝𝑢𝑘𝑒𝑦𝑖
(𝑞𝑖)). It deletes the information from the internal memory. 

6. User upon receipt of the information decrypts it with its private key to find its nearest 

POI. The same process is repeated for subsequent queries 

Summary of Results 

We evaluate our design by emulating the secure coprocessor card. The host machine runs 

Ubuntu 9.04 with Intel i5-2540M CPU running at 2.60GHz and 4GB of RAM. The coprocessor 

capacity is based on working size of 4GB. Our script integrates with udpEechoClient and 

udpEechoServer module of the ns-3 network simulator. We evaluate the performance from the 

initialization phase with regards to response time and compare with software technique. For a 

fair comparison, we evaluate the software technique for the snapshot query on the same host 

machine running Ubuntu OS. We ignore all offline computations. The evaluation took into 

consideration all latencies caused by hardware emulation. Since the size of grid and object can 

have impact on performance, we examined two different objects and grid sizes. Table 4 shows 

the steps involved in each of the techniques compared excluding the offline phases. The comparison 

is based on the sequence of events (not necessarily similar) involved in the eventual retrieval of users 

nearest POI. For instance, in the hardware technique the coprocessor transmits the key to the user so 

user can encrypt the request. This is equivalent to server transmitting the entire grid to the user in the 

software approach to protect user location. Finally, we conduct complexity analysis. 
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Comparing Response Time 

Table 5 shows the results for the two different approach when we compare the response 

time for n = 16 with k = 5, and n = 225 with k = 15 using 1024 bits key. The experiments show 

that the different n and k values have impact only on the software approach. It shows that the 

execution time using hardware approach is slightly over that of the software. However, while the 

time remains the same in all cases for the hardware approach, the same cannot be said of the 

software approach. We observe significant increase in cost for n = 225 with k = 15. The results 

show that software approach will be desirable over hardware when n is small, but as the size of n 

and k increases, hardware seems to be a better option than software technique. We deduced from 

the experiments that when it comes to initial transmission cost, the size of the area and object has 

impact on the software approach while there is no observable impact on hardware technique. The 

improvement observed in the hardware technique can partially be attributed to the fact that we 

are no longer hiding the object location or desired information to the server by sending the entire 

grid. Sending the entire grid proved to be costly as the size of the grid increases.  

Complexity 

We also conduct complexity analysis. Three design points affect complexity in the 

hardware approach. The first one is the external access to host memory (LBS server) through 

ORAM. In this face, coprocessor streams data from the database with 𝑂(𝑛), where n is the total 

size of record in the database. Since we implement path ORAM which streams only a subset of 

the database the complexity of our design is 𝑂(log(𝑛)). This shows an improvement of (𝑂(𝑛) −
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𝑂(log(𝑛))) over techniques like [66]. The second design point is remapping the entire database 

which takes 𝑂(𝑛). The third one is finding and encrypting user desired information. If the length 

of the key is p bits while f(p) is the computation function for the p bits and if each POI is m bit 

long, it will take the coprocessor (𝑂(log(𝑛)) + 𝑂(𝑛) + 𝑂(𝑓(𝑝)𝑚)) to search for user desired 

POI, remap the database, and run the encryption protocol. The equivalent process for the 

software approach takes 𝑂(2𝑓(𝑝)𝑘𝑚√𝑛). In general, tamper resistant hardware performs better 

than software approach as the size of the area and object increases.  

Table 4 Steps compared between hardware and software approach 

Tamper Resistant Hardware Software Cryptography 

Coprocessor generates key and sends to the user. Server sends grid and the POIs information to the user. 

User identifies its location and desired POI and creates 
query message. User generates its own key and 
encrypts the query using key from coprocessor. 

User finds the cell it belongs to and generates its own 
location data. For each neighborhood in user cell, user 
computes the absolute difference in the distance 
between neighborhood and its location. User 
randomly generates modulus N and query message 
and sent to the server. 

Coprocessor decrypts the message, and saves it in the 
internal data structure. 
 

Server runs PIR protocol on the user request, and for 
every column and row it computes two equations and 
returns 𝑍𝛼 to the user. 

Coprocessor engages path ORAM server to obtain 
information desired by the user. It first identifies the 
key that matches the location of the user; it then 
streams in the entire path looking for the block with 
correct record. 

User then determines 𝑍𝛼 value by computing equation 
6. 

Coprocessor completely remaps the path to a new 
location. 

 

User upon receipt of the information decrypts it with 
its private key to find its nearest POI. 
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Table 5 Response time for software and hardware techniques 

 Response Time 
n = 16, k = 5 

Response Time 
n = 225, k = 15 

Tamper Resistant Hardware 2751ms 2751ms 

Software Cryptography 2431ms 5464ms 
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CHAPTER SIX: PRIVATE CONTINUOUS NEAREST NEIGHBOR 

QUERY  

In this chapter, we extend our privacy protecting technique to address user private 

information protection in continuous nearest neighbor query. Protecting user private information 

in a continuous nearest neighbor query poses different type of challenge compare to a snapshot 

nearest neighbor query. Nearest point of interest to a user may change based on the movement of 

the user and the point of interest. In some instances, only one object changes its position, while 

in some both objects change their position simultaneously. Figure 24 shows two depictions of a 

continuous nearest neighbor query where in (a) only the user location changes, and in (b) the 

location of user and point of interest changes. The first instance is referred to as moving query 

static object (MQSO), while the second is known as moving query moving object (MQMO). 

Examples illustrated in Figure 24 shows a user u located in location 𝑙1 with 𝑝1as the nearest POI. 

For MQSO in the top of the figure when u location changes from 𝑙1 to 𝑙3 the nearest POI changes 

to 𝑝6, while for MQMO in the bottom of the figure when u location changes from 𝑙1 to 𝑙3 the 

nearest POI is still 𝑝1due to the simultaneous movement of the user and the POI.  

The problem in a CNNQ is defined such that a user u and POI p located in location l 

contained in an area A at time T and moving at their own respective velocity v is at a new 

location l’ at a future time T’. If p is the nearest POI to u in l  located in A at time T then as the 

objects moves from l → l’ at time T → T’ private CNNQ shall continuously return to u the static 

or dynamic p located in A whose distance (d) from u ≤  ∀ 𝑝 located in A as u or p moves within 

the spatio-temporal network until query termination without disclosing l, l’ or p to another party.  
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Some of the suggested ideas for anonymity in CNNQ include issuing a query at every point of a 

line segment. However, it is very inefficient to issue a query at each point of a line segment as in 

SNNQ discussed in [16] and [73]. Chow and Mokbel in [37] suggested interesting idea based on 

cumulative cloaked region that prevent linking query to a specific user. This suggestion demands 

the presence of other users in the area which may cause some delays in issuing a query. We view 

the problem as one that can be represented as a continuous vector in a space.  

 

Figure 24 Moving query and static object (a) and Moving query and moving object (b) 

We propose plane partitioning using Voronoi diagram and continuous fractal space filling 

curve using Hilbert curve order to create nearest neighbor relationship within a path of 

movement such that upon a single query server will continuously update a user with the nearest 

POI as the user or the POI location changes within the path without giving up user private 

information. We treat user location as a function of time to project transition time interval within 

the path where nearest POI will change. Additionally, we extend the concept in MQMO-CNNQ 

to deal with moving POI. Specifically, we introduce the concept of update time which is when 

the server updates current POI location. We also implement dynamically adjusting database that 
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scales with the objects to help a user hide a location and relate it to information in the database. 

Finally, we execute private information retrieval protocol twice in the database to retrieve 

desired information.  

Solutions for MQSO-CNNQ and MQMO-CNNQ 

Our design strategy is to determine the next nearest neighbor to each of the POI in a path 

based on their proximity to one another by utilizing Voronoi diagram and Hilbert curve order. 

The distances between the points of interests is determined and used to determine where the 

nearest POI will change. Location of the objects within the spatial network is treated as a 

function of time, and the nearest POI will depend on the object velocity and elapsed time. A user 

issues a query to LBS server and specifies the time interval when the nearest POI will change. At 

each time interval the server will update the user with the nearest POI in the user’s path without 

the need for the user to issue another query as object location changes. To help understand our 

design, we first explain the different models and tools that were used in the design.  

Modelling Dynamic Object 

To account for the location of the objects at all time, we treat the position of the objects 

as a function of time. A spatial network (SN) consists of a user u and a POI p. Both objects are 

statically or dynamically restricted within the edges of the SN. If v is the velocity of a moving 

object (user) at a location 𝑙 ∈ 𝑆𝑁, then the object position after t time can be represented as  

𝑙𝑢(𝑡𝑖) = 𝑓(𝑣 ∗ 𝑡) (14) 

Consequently object (POI) location can also be represented as follows: 
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𝑙𝑝(𝑡𝑖) = 𝑓(𝑣 ∗ 𝑡) (15) 

 Where I in equations 14 and 15 represents the i-th location of a u and the p after time 𝑡𝑖, while t 

is the elapsed time.   

Note that v is a vector and therefore has magnitude and direction. From equations 14 and 15 we 

can see that it is possible for the same POI to be the nearest neighbor to a user at different places 

at different time in the same segment 𝑠𝑒̅̅̅̅ . 

We assume that a u and the p are contained in the same 𝑠𝑒̅̅̅. If we know 𝑙𝑢 and 𝑙𝑝 at time 𝑡𝑖 we 

will be able to determine the nearest POI to a user at all time in  𝑠𝑒̅̅̅̅ . This requires that server 

updates database information each time object location changes. 

Modelling Distance 

Finding distances between moving objects are challenging. A brute force approach can be 

used to calculate the distances. This approach is effective but inefficient. Work in [11] modelled 

distances of moving object with a directional weighted graph G(V,E), where V is the vertex and 

E is a single directed edge. If E is the empty set that contains no vertex and R is the set for all the 

single directed edges then all elements E ∈ R corresponds to a single directed edge. If we assign 

the edges weight w(vi , vi+1), the length of a path P ∀𝐸 ∈ 𝑅 is 

P =  ∑ 𝑤(𝑣𝑖 ,  𝑣𝑖+1)  (16) 

We use this approach to model distances between objects. We represent vertices as nodes (POIs), 

and the edges are the distances between the POIs. The distance between two POIs is the number 

of edges in the shortest path connecting them. The shortest distance 𝑑(𝑛𝑖, 𝑛𝑗) between two nodes 
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is therefore defined as min w(P) for all paths between 𝑛𝑖and 𝑛𝑗, where 𝑛𝑖 and 𝑛𝑗 are the i-th and 

j-th node respectively. If a user u is located between path 𝑛𝑖, 𝑛𝑗  then, the nearest POI to the u is 

the POI with minimum w(P) from the user. The w(P) is represented as a time interval between 

the POIs. 

Indexing Continuous Nearest Neighbor Query 

As mentioned in [74], the result of a query q through a path contains a set < 𝑆𝑖, 𝑇𝑖 > 

tuples where 𝑆𝑖 = 𝑝1, 𝑝2⋯𝑝𝑘 is the ordered list of the POI (k is the number of POI in the query 

path), 𝑇𝑖 represents the time interval during which 𝑆𝑖 is the nearest POI to a user through the 

path. POIs are ordered by their increasing distance to u, i.e., 𝑝𝑖 is the closest POI to u, while 𝑝𝑖+1 

is the next closest POI to u, and 𝑝𝑘 is the k-th POI closest to u in the interval 𝑇𝑖,𝑇𝑖+1 and 𝑇𝑘, 

respectively. The returned sets through the path in the interval or segment 𝑠𝑒̅̅̅ satisfy the 

conditions: 

∪𝑖 𝑇𝑖 = [𝑡𝑠, 𝑡𝑒]  

and 

𝑇𝑖  ∩  𝑇𝑗 =  ∅, ∀𝑖 ≠ 𝑗 

where [𝑡𝑠, 𝑡𝑒] is the query interval divided into non-intersecting sub-intervals n in the 

intervals 𝑇𝑖 = [𝑡𝑠, 𝑡1] and 𝑇𝑛 = [𝑡𝑛−1, 𝑡𝑒] for (𝑡𝑠 < 𝑡1 < 𝑡𝑛−1 < 𝑡𝑒). The time stamps 

(𝑡1, 𝑡2 ⋯ 𝑡𝑛−1) are used for the split or the transition time interval where the nearest POI to u will 

change. 
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Voronoi Partition 

To help understand the proximity relationship between points in a plane, we provide an 

overview of Voronoi diagram. Voronoi diagram shown in Figure 25 is a way of dividing space 

into regions. It is a special kind of decomposition of a metric space determined by distances to a 

specified discrete set of objects in space. A set of spots is specified beforehand and for each spot 

there will be a corresponding region consisting of all points closer to that spot than to any other 

[15]. It is one of the most fundamental constructs defined by a discrete set of points [75] and 

[76]. Given a number of points in a plane Voronoi diagram divides the plane according to the 

nearest-neighbor rule, and each point is associated with the region of the plane closest to it. 

Aurenhammer in [77] defined Voronoi diagram in terms of dominance of two distinct 

points x and y. Let S denote a set of n points in a plane, for two distinct points 𝑥 and 𝑦 ∈ 𝑆 the 

dominance of 𝑥 over 𝑦 is defined as the subset of the plane which is at least as close to 𝑥 as to 𝑦, 

i.e. 

𝑑𝑜𝑚(𝑥, 𝑦) = {𝑟 ∈  𝑅2|𝛿(𝑟, 𝑥)  ≤  𝛿(𝑟, 𝑦)} , where 𝛿 is the distance function. 
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Figure 25 Voronoi diagram showing 9 points of interest on a plane 

Therefore, 𝑑𝑜𝑚(𝑥, 𝑦) is a closed half plane bounded by a perpendicular bisector of 𝑥 and 𝑦. All 

points of the plane closer to 𝑥 are separated from the points in 𝑥 by this bisector termed the 

separator. The region of a point  𝑥 ∈ 𝑆 is the portion of the plane lying in all of the dominances 

of 𝑥 over the remaining points in S, i.e. 

𝑟𝑒𝑔(𝑥) = ⋂ 𝑑𝑜𝑚(𝑥, 𝑦)

𝑦∈𝑆−𝑥}

 

As [77] stated, since the regions are coming from intersecting n – 1 half planes they are convex 

polygons. Therefore, the boundary of a region consists of at most n – 1 edge(s) (maximal open 

straight-line segments) and vertices (their endpoints). Each point on an edge is equidistant from 

exactly two points, and each vertex is equidistant from at least three points. As a result, the 

regions are edge to edge and vertex to vertex, i.e., they form a polygonal partition of the plane. 

Therefore, 𝑟𝑒𝑔(𝑥) cannot be empty since it contains all points of the plane at least as close to 𝑥 

as to any other points in S, therefore 𝑥 ∈ 𝑟𝑒𝑔(𝑥). 
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Applying Voronoi Diagram  

We modelled our design after Network Voronoi Diagram (NVD). NVD as described in 

[75] and used in [43] has been extensively used to evaluate various spatial proximity queries 

[78]. Kolahdouzan in [79] implemented NVD similar to our work based on network distance 

where the results set were generated incrementally assuming all object to be static as noted in 

[11]. Okabe et al. in [75] defined NVD as specialized Voronoi diagram where objects location 

are restricted to the links that connect the nodes of the graph and the distance between objects are 

defined as the length of the shortest distance (shortest path or shortest time) in the network 

distance rather than Euclidean. In our work, we modelled the network as weighted graphs where 

the intersections are represented by nodes of the graph, and the roads are represented by the links 

connecting the nodes. The weights are the distances between the nodes that represent the time it 

takes to travel between the nodes assuming a constant velocity. We assume that all the POIs in a 

segment are pre-determined. For example, all the gambling centers from town A to town B are 

pre-determined.   

We map an area to a √𝑛  × √𝑛 grid and super-impose Voronoi diagram over the grid. All 

the POIs in the area are bounded to a cell in the grid. The contents of the cells represent the two 

endpoints of a query line segment 𝑠𝑒, where 𝑠𝑒 contains 𝑝1→𝑘 (k is the set of points in 𝑠𝑒) and 

dominance of 𝑝1 over 𝑝2 and dominance of 𝑝2 over 𝑝1 exist, i.e., 

𝑑𝑜𝑚(𝑝1, 𝑝2) = {𝑥 ∈  𝑅2|𝛿(𝑥, 𝑝1)  ≤  𝛿(𝑥, 𝑝2)} and 

𝑑𝑜𝑚(𝑝2, 𝑝1) = {𝑥 ∈  𝑅2|𝛿(𝑥, 𝑝2)  ≤  𝛿(𝑥, 𝑝1)} are true.  

Each cell c now contains k POIs which is the answer set returned after all the points that intersect 
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a Voronoi cell are bounded to c. This leads to the heuristics from [16] and stated below. 

Heuristic HC2: For a given query segment 𝑠𝑒 𝑘𝑁𝑁(𝑠) = {𝑂𝑠𝑖
, 𝑖 ∈ [1, 𝑘]} 𝑎𝑛𝑑 𝑘𝑁𝑁(𝑒) =

{𝑂𝑒𝑖
, 𝑖 ∈ [1, 𝑘]}, then {𝑂𝑠𝑖

, 𝑂𝑒𝑖
, 𝑖 ∈ [1, 𝑘]} ⊆ 𝐶𝑘𝑁𝑁(𝑠𝑒). 

Since s and e are the two endpoints in the query line segment, the k points between these line 

segments are part of the answer set. 

Heuristic HC3: For a given query segment 𝑠𝑒 if 

𝑘𝑁𝑁(𝑠) = 𝑘𝑁𝑁(𝑒) = {𝑂𝑖 , 𝑖 ∈ [1, 𝑘]}, then 𝑘𝑁𝑁(𝑠𝑒) = {𝑂𝑖, 𝑖 ∈ [1, 𝑘]}. 

Proof: Following [80], for k=1 HC3 can be shown with Voronoi diagram. If Vor(𝑂𝑖) represents 

the Voronoi cell for object 𝑂𝑖 for any query point the object must be located within one Vor. 

Vor(𝑂𝑖) and object 𝑂𝑖 must be the nearest neighbor to that query point. As in Figure 25, the 

Voronoi diagram partitions the space into 9 parts based on the object positions. The area Vor(1) 

is the corresponding Voronoi cell for object 𝑂1, i.e., 𝑂1is the only nearest neighbor to any query 

point inside Vor(1). Based on the computational geometry in [80] Vors are convex. Since 

𝑘𝑁𝑁(𝑠) = 𝑘𝑁𝑁(𝑒) =  𝑂1 for k=1 both endpoints and the entire query line segment (𝑠𝑒) lie 

inside the Vor of object 𝑂1. Therefore, 𝑂1is the nearest neighbor to any query point along the 

query line segment. For every cell c of the grid server determines all Voronoi cell intersecting it 

and adds the corresponding object to c. Cell c contains all the potential nearest neighbor to a 

query through a path which we denote as set X. The cells are padded if necessary to create cells 

of equal size. All objects in M have equal bits (M is the matrix representation of the database 

information). The number of bits can be of any size so long as they are consistent in M to avoid 

inference of the requested object by the server based on the number of bits transferred. 
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Hilbert Space Filling Curve  

Hilbert curve order is used to map all the POIs in a c. It is a continuous fractal space 

filling curve that preserves spatial proximity [81]. If 𝐼 = {𝑡|0 ≤ 𝑡 ≤ 1} represent the unit interval 

on a space and 𝑄 = {(𝑥, 𝑦)|0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 1} is the unit square as in [82], for each positive 

integer n the interval I is partitioned into 4
n 

subintervals of lengths 4
-n

 and the square Q into 4
n
 

sub-squares of sides 2
-n

. A one to one correspondence between the subintervals of I and sub-

squares of Q are constructed to meet the following conditions:  

Adjacency, adjacent subintervals correspond to adjacent sub-squares while sharing a common 

edge.  

Nesting, if at the n-th partition the subinterval 𝐼𝑛𝑘
 corresponds to sub-square 𝑄𝑛𝑘

 then at the 

(n+1)-st partition the 4 subintervals of 𝐼𝑛𝑘
 must correspond to the 4 sub-squares of 𝑄𝑛𝑘

. 

Hilbert curve as shown in Figure 26 visits every point in n-dimensional grid space exactly 

once without crossing itself [73]. It is used for mapping multi-dimensional space to one-

dimensional space while still preserving locality [43]. For instance, if x and y are the coordinates 

of a point within the unit square and d is the distance along the curve when it reaches that point, 

the points that have nearby d values will also have nearby (x, y) values [83]. That is, if two points 

are close in the 2-D space they are likely to be close in the Hilbert ordering as well. Analysis by 

[84] shows that Hilbert curve is good in preserving proximity. 
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Figure 26 Hilbert Curve of (a) order 1 and (b) order 2 

Applying Hilbert Type Space Filling Curve 

After we bind all POIs to c using Voronoi diagram, we map all POIs in c using Hilbert 

curve order. All the points 𝑝𝑖 ∈ 𝑋 for i from 1 to k in the intervals I are mapped to Hilbert Curve 

order as in [43] and partially in [85] such that a one to one correspondence between the 

subintervals of I and sub-squares of Q satisfy adjacency and nesting conditions which determines 

a continuous function 𝑤𝑓 that maps I onto Q [82].  

Following [82], a one way function 𝑤𝑓  𝐼 → 𝑄 is stated as follows: 

1.  If there is 𝑡 ∈ 𝐼 which is not the endpoint of any subintervals of I then there is a t 

which is part of a closed nested subintervals{ 𝐽𝑢 }1
∞ one from each partition with 

lengths approaching zero. A unique point 𝑝 = {𝑝1, 𝑝2} ∈ 𝑄 is determined by the 

corresponding sequence of closed nested squares { 𝑆𝑢 }1
∞ with a diameter that 

approaches zero. Define a function 𝑤𝑓(𝑡) = 𝑝 where t =0 and t = 1 are similar. 
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2. If for some value u, for instance, u=v, 𝑡 ∈ 𝐼 is common to two adjacent 

intervals 𝐽𝑢, 𝐽𝑢
′ , then ∀𝑢 ≥ 𝑣, t is common to two adjacent intervals 𝐽𝑢, 𝐽𝑢

′  and 

therefore belong to two nested sequences { 𝐽𝑢 }𝑣
∞ and {𝐽𝑢

′ }1
∞. The corresponding 

sequences of squares {𝑆𝑢}𝑣
∞ and {𝑆𝑢

′ }𝑣
∞ determine the same point 𝑝 ∈ 𝑄 since the 

squares are adjacent and their diagonals approach zero [82]. For such t we 

define 𝑤𝑓(𝑡) = 𝑝. To show that the function  𝑤𝑓 is continuous, if |𝑡1 − 𝑡2| ≤ 4−𝑢 

then 𝑡1and 𝑡2 must lie on the same interval or in two adjacent intervals of the u-th 

partition. The corresponding images should be in the adjacent squares that form a 

rectangle with sides 2−𝑢 and 2 ∙ 2−𝑢. 

Therefore, 

‖𝑤𝑓(𝑡1) − 𝑤𝑓(𝑡2)‖ ≤ √5 ∙ 2−𝑛  (17) 

Since there is a correspondence between points in the intervals and squares, all the points are 

assigned Hilbert values. Remember that all the points in a path are contained in one cell of the 

grid. For a path with 9 POIs c will contain 9 POIs, and all POIs are assigned Hilbert value H 

based on their distance to one another. For example, points 𝑝1, 𝑝2, 𝑝3, 𝑝4 have H values of 5, 15, 

20, and 10 respectively. Points with closer values are closer in space. 

Database Design 

We transform the H values which represents set of points in a multi-dimensional space 

into records in a database akin to [86] . Queries on the records are queries on the sets of points 

which are represented by their Hilbert values. We represent the database D as a √𝑛 × √𝑛 matrix 
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M, and we use R-tree data structure for the geometric data storage. R-tree is the most widely 

used geometric data structure suitable for storage on a disk [87]. The idea is to group nearby 

objects and represent them with minimum bounding rectangle (MBR) in the next higher level of 

the tree and have nodes of high degree that fit exactly into one block. The bounding rectangle is 

used to determine whether or not to search inside a sub-tree. Figure 27 depicts one-level R-tree 

with nodes of size 3. Each key value is greater or equal to the values in the left node which are 

Hilbert’s. The index key is the maximum Hilbert value in the segment concatenated with the cell 

id so that when a user identifies its cell the user can then use the value to determine which query 

set belongs to its path. R-tree performs very well and has a linear worst case scenario. It was 

shown in [88] that R-tree on n-points in d-dimensional space will visit Ω((𝑛 𝐵⁄ )1−1 𝑑⁄ + 𝑔 𝐵⁄ ) 

blocks, where 𝑔 is the number of query answers. A version shown in [89] called PR tree was said 

to achieve the same bound when the stored objects and query objects are axis-parallel hyper-

rectangles [80]. Readers interested in R-tree structure can read [90]. 

 

Figure 27 R-Tree representation of a database for k=3 
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The cells are identified by the cell id, and each cell contains k POI in the segment 𝑠𝑒 representing 

the path of travel by a user. Each cell contains equal k and is padded if necessary to prevent 

server inference from number of k transmitted. Stored in the database with the POIs are the 

weights w which represent the average distance between adjacent POIs in 𝑠𝑒 which will be used 

to determine the split or the transition point which will indicate the point where the nearest POI 

to a user will change. 

Processing MQSO-CNNQ 

The following steps will be followed to answer MQSO-CNNQ:  

Step 1: Following the process described above server creates location data record in the database 

represented with R-tree geometric data storage where the keys are the maximum Hilbert value 

for the segment. 

Step 2: User in location l initiates a query to obtain the nearest POI along a path of interest. 

Server sends the grid, the key, k (number of POI available for a segment as stored in the 

database), and the average distance 𝑑𝑎𝑣𝑔 between the POIs. Each segment 𝑠𝑒 has its own 𝑑𝑎𝑣𝑔.  

Note: It is assumed that the POIs are approximately equidistance from one another, and that the 

time interval where the nearest neighbor change occurs can be averaged to a uniform value such 

that the average time interval 𝑡𝑎𝑣𝑔 represents the transition time for all p from 𝑝1, 𝑝2, ⋯ , 𝑝𝑘 in 

each segment represented in the grid for a known constant velocity v. If 𝑑𝑖 is the distance of 

travel before the nearest neighbor changes from 𝑝𝑖 to 𝑝𝑗, for 𝑖 ≤ 𝑗 ≤ 𝑘 server computes the 

average distance as 
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𝑑𝑎𝑣𝑔 =
∑ 𝑑𝑖

𝑘−1
𝑖

𝑘−1
 (18)  

and the average time for object travelling at constant velocity v becomes 

 𝑡𝑎𝑣𝑔 =
∑ 𝑑𝑖

𝑘−1
𝑖 𝑘−1⁄

𝑣
=

𝑑𝑎𝑣𝑔

𝑣
 (19)  

where k is the number of objects in the path. 

Step 3: User receives the grid together with the parameters and identifies the cell it belongs to. 

Focusing on that cell the transition time 𝑡𝑡 at any velocity v is then calculated by the user 

as 𝑡𝑡 =
𝑑𝑎𝑣𝑔

𝑣
 as shown in algorithm of Figure 28. Using the key user will then request all the POI 

contained in the set left of the key. For instance, if the key of interest to a user is 60 the user will 

request the values 40, 50 and 60, Figure 27. Following the same principle as in snapshot query 

with a database 𝑠 = √𝑛 user will generate query message 𝑦 = ( [𝑦1, 𝑦2, ⋯ , 𝑦𝑠]𝑘) and 𝑥 =

([𝑥1, 𝑥2, ⋯ , 𝑥𝑠]𝑘) each targeting the 𝑘𝑡ℎ element in the segment 𝑠𝑒, where k is the number of 

POI contained in the path such that 

𝑦𝑏 ∈ 𝑄𝑁𝑅, 𝑎𝑛𝑑 ∀𝑗 ≠ 𝑏, 𝑦𝑗 ∈ 𝑄𝑅 

and 

𝑥𝑎 ∈ 𝑄𝑁𝑅, 𝑎𝑛𝑑 ∀𝑟 ≠ 𝑎, 𝑥𝑟 ∈ 𝑄𝑅 

User sends the query message together with the transition time 𝑡𝑡 to the server.  
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Figure 28 User computing the transition time and creating query message 

Step 4: Using algorithm of Figure 29 server will run PIR protocol on user request and creates a 

size k FIFO queue data structure of 𝑍𝛼. The server adds an item to the queue in the order 

represented on the tree, i.e., the closest neighbor to the user from the point of origin (closest 

Hilbert value) is added first in that order until the farthest neighbor. Server returns the first 𝑍𝛼  to 

the user. Using the same method as in snapshot query user decrypts server cryptic response to 

reveal its nearest neighbor. At each 𝑡𝑡 interval server will update user with the next value in the 

queue until the end of the segment or user terminates the query. Upon receipt of a nearest 

neighbor user determines the validity of the nearest neighbor by using its position and a flag with 

a value of true or false. For instance, when server updates the user with the nearest neighbor at 

the user specified interval, in order for it to be the nearest neighbor user must reach the transition 

point which will result in setting the flag to false, otherwise, if the flag is true (meaning user has 

not reached the transition point, previous POI is still valid) user caches the nearest neighbor 

without decrypting it and use the previous nearest neighbor since it has not reached the transition 
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point where the nearest neighbor will change. User only decrypts server response if the flag is set 

to false. The flag will ensure that any deviation by the user from the expected travel pattern will 

not result in false positive. 

 

Figure 29 Server running PIR protocol and responding to user request. 

Processing MQMO-CNNQ 

 We modified our design to address MQMO-CNNQ. In MQSO-CNNQ we used R -tree 

indexing to help speed up searching and improve performance since objects location is static 

throughout the life of a query and therefore updates are deemed infrequent. This condition does 

not hold for moving object where updates are frequent due to changes in object locations. 

Moving object database need to accommodate frequent updates while simultaneously allowing 

efficient query processing [91]. A study was done in [92], design issues were considered for 

efficient retrieval of moving objects with frequent updates. It concluded that most techniques are 
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complimentary and can be used in parallel. Query index approach rather than object index was 

used in [93] to avoid the constraints imposed on the speed or path of the moving object. Time 

parameterized R-tree was used in [94] which were based on using current and anticipated future 

positions of moving objects. Similar method based on B+ -tree was used in [95] where the 

indexed data in the tree are no longer points, but rather linear functions and the time of update. In 

the method, updates are only performed if the function predicted position is considered 

inaccurate [96]. While it is possible to get by with predicted object position for a short duration 

of a query life, it may not suffice for the entire query existence. 

 We implement B+ -tree similar to [95]. We use B+ -tree to allow efficient update and 

access to object information. Because of its support for linearization and indexing [91] stated that 

B+ -tree is more appropriate to model moving object. If at time T object is at location 𝑙0 and the 

same object is at location 𝑙′0 at time T’ then the distance moved by the object can be modelled as 

 𝑑𝑚 = 𝑓(𝑣 ∗ 𝑡) (20)  

where 𝑣 ≥ 0 is the velocity of the moving object, while t is the elapsed time. Figure 30 shows 

partial B+ -tree index structure and the matrix M = √𝑛 × √𝑛 representation of database D for 

k=4. The values in the leaf node shown in the figure are the Hilbert values for the objects. 

The process is similar to static object query. Like in the static object query we create 

Voronoi diagram using the set of objects and super-impose a regular grid of √𝑛 × √𝑛 on top of 

the Voronoi diagram. Using Hilbert Curve ordering we create a one to one correspondence 

between the subintervals of I and sub-squares and then assigns Hilbert value to the objects based 

on their distance to one another. Geometric database storage of the objects using B+-tree is 
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created. The index key is the Hilbert value concatenated with the cell id. All the objects in 𝑠𝑒̅̅̅ are 

therefore within the range of minimum and maximum Hilbert value for the 𝑠𝑒̅̅̅. The objects are 

modelled as a linear function of time and therefore the data to be indexed are no longer point 

representation of Hilbert value, but rather linear functions. The internal nodes serve as a 

directory, and each has a pointer to the right sibling. Stored in the leaf node are the velocity, the 

location, and id of the object. All objects are assumed to have constant velocity. Objects location 

from time 𝑇 → 𝑇′ is determined based on the stored velocity. Objects update their velocity when 

a change in velocity occurs; otherwise, no updates are required. This will prevent unnecessary 

updates. 

 

Figure 30 B+ tree index representation of database matrix and 𝑍𝛼array for k=4 with pointer 

at 𝑍𝛼[3]. 

As in static object query, transition time is determined. This is the time or point where the 

nearest neighbor to a query will change. We partition the time axis into different time duration, 
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where each time tick is the update time 𝑡𝑢, i.e., the time the server updates database information. 

At each 𝑡𝑢 ≅ 𝑡𝑡 server computes 𝑙′0. If there is no Δ𝑣 there will be no update from user. Server 

will use the stored v to determine object location. 

The following steps will be followed to answer MQMO-CNNQ. 

Step 1: Server creates nearest neighbor record following the same procedure as in MQSO and 

builds B+ -tree geometric database storage of the POIs. 

Step 2: User initiates a query to obtain nearest neighbor along its path. Server sends the grid, the 

key, k (number of POI available for a segment as stored in the database), and the average 

distance 𝑑𝑎𝑣𝑔 between the POIs. We also assume that no new object enters the segment after 

query initiation, therefore k does not change. 

Step 3: User receives the grid together with the parameters and identifies the grid it belongs to. 

Focusing on the grid it belongs to user finds the transition time using its velocity and 𝑑𝑎𝑣𝑔. User 

will then request all the objects contained in the range up to key maximum. Following the same 

principle used in the MQSO with a database 𝑠 = √𝑛 user generates query message 𝑦 =

( [𝑦1, 𝑦2, ⋯ , 𝑦𝑠]𝑘) and 𝑥 = ([𝑥1, 𝑥2, ⋯ , 𝑥𝑠]𝑘) each targeting the 𝑘𝑡ℎ element in the segment 𝑠𝑒, 

where k is the number of objects contained in the path such that 

𝑦𝑏 ∈ 𝑄𝑁𝑅, 𝑎𝑛𝑑 ∀𝑗 ≠ 𝑏, 𝑦𝑗 ∈ 𝑄𝑅 

                                                                            and 

𝑥𝑎 ∈ 𝑄𝑁𝑅, 𝑎𝑛𝑑 ∀𝑟 ≠ 𝑎, 𝑥𝑟 ∈ 𝑄𝑅 
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User sends 𝑡𝑡 to the server together with the query message.  

Step 4: Server runs PIR protocol on user request and with equations 3 and 4 computes 𝑍𝛼. It then 

creates array of size k for 𝑍𝛼 in the order shown in Figure 30b. Initially, the pointer points to j=0. 

Server sends to the user the value at j=0. At each subsequent 𝑡𝑢 ≅ 𝑡𝑡, server updates the database 

with current order of object location for the 𝑠𝑒. Server will again create array of size k for 𝑍𝛼  and 

shifts the pointer to j+1 and send the value at j+1 to the user. If the flag is set to false which 

indicates that the transition point has been reached the user will again decrypt the message, 

otherwise, user caches the server response. Server continues the same process of recreating array 

of 𝑍𝛼 at each 𝑡𝑢 and each time shifting the pointer by 1 until the last k object is sent to the user or 

the user terminates the query.  

Analysis and Results 

 The process for MQSO and MQMO are the same for the most part, therefore, our 

experimental evaluation represents the analysis of both schemes. We present the evaluation with 

respect to transmission time and complexity. For the server transmission time we simulate and 

compare different k values, were k is the number of POI in a path. We also simulate and compare 

different n (n is the size of the grid) in order to understand optimal parameters. Next, we 

compare user transmission time while changing k and n. We also vary the size of modulus used 

in the PIR protocol. We then implement the design of [15] and compare the response time with 

our technique. Finally, we conduct analysis on the impact of large prime on PIR protocol. 
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Experimental Setup 

The application was developed in C++. The server and client experiment was conducted on ns-3 

simulator running on Ubuntu 9.04 Linux variant  operating system with intel-quad-core 

processor operating at 2.66GHz with 256MB RAM. The server communication with the access 

point runs a CSMA protocol with data rate of 100Mbps and 6500ns channel delay. Client 

communication is wifi 802.11a standard with a stream data rate of 54Mbps and a default constant 

speed propagation delay representing the propagation speed of light in the vacuum. Maximum 

packet size is 2304 bytes including the headers. The actual payload is 1450 bytes. The access 

point (AP) share the same type of Physical level and channel attributes as the client wifi device 

which we defaulted to ns3 values. The AP is stationary while the client is mobile and randomly 

wonders around at a random speed in a bounded box defined by x and y coordinates. We varied 

the grid size from 16 up to 225. For the objects we use Sequoia points in [97] which contain 

62,556 California place names. We use 768 and 1,536 bits for the modulus. Shown in Table 6 are 

the rest of the parameter settings. 

Transmission Time 

First, we simulate the time it takes the server to transmit the packets using different 

values of k as n changes from 16 upwards to 225. The result is shown in Figure 31. The 

experiment shows that for small n such as n = 16, k has no significant impact on the transmission 

cost. However, as n increases the impact of k becomes noticeable. When k =5 the increase in the 

transmission time seem to be proportional to increase in n until n = 144 when the transmission 
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cost took a sharp increase. When k = 10 and 15 the sharp increase in the transmission time occurs 

sooner at n = 64. What this means is that when k =5 increase in n up to 144 will produce a more 

desirable result, while for k = 10 and 15 increase in n up to 64 will produce better result. 

Table 6 Parameter Settings 

Parameters Settings 

Packet Transmission Interval 1 second 

Spatial Object Size 80 - 3375 

Object Size 10kB 

Query Size 100 Bytes 

 

 

Figure 31 Server Transmission time for three different k as n changes from 16 up to 225 
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Figure 32 shows the time for the server to transmit its packets for the three different 

values of k and n.  From the experiment we made the following observations: First, when n is 

small such as n = 16 the impact to transmission time is less significant as k increases. Second, 

when n increases to 64 the cost for transmitting the packets takes a sharp increase at k = 10. 

Third, when n increases to144 the transmission time increase is very minimal. What this means 

is that in the first observation, for an area with high concentration of k we can create a bigger cell 

to accommodate more k which will result in reducing the size of n in order to have little or no 

impact to the transmission cost. For the second observation, when n increases up to 64, k > 10 

will have significant increase in transmission cost. Therefore it will be more desirable to reduce 

the size of n, for instance n = 16 and k >10 will be more desirable. In the third observation, for n 

= 144 the proportionality of the increase is less when k > 10 than when k < 10. This means that 

the design will still maintain acceptable performance when n is large and k > 10.  

 

Figure 32 Server Transmission time for k = 5, 10, 15 and n = 16, 64 and 144 
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 We conduct experiments to determine the cost for the user to transmit the request to the 

server. Figure 33 shows the result for three values of k (5, 10, and 15) and n (16, 64, and 144) 

with modulus N set to 768 bits. We observe negligible increase in transmission cost for n = 16 

for all three k values. We also simulate and compare the time increase for the three k values 

when n is set to 64 and 144, and we observe a larger proportion of time increase when n is set 

to144 than when n is 64. The observation here is that it will be more desirable to make k as small 

as possible when n is inevitably large. For an area with large concentration of k we can make n as 

small as possible while making k large to achieve better result. 

 

Figure 33 Client Transmission time with 96 Bytes Modulus and k = 5, 10, and 15 

 We also compare the cost for a user to transmit its request to the server using different k 

and n values. As the results in Figure 34 shows, the transmission cost impact is minimal when n 

is small for three different k values. However, we start seeing significant difference as n 

increases. The difference is more noticeable when n is greater than 144. The significance of this 

is on how best to scale k and n for better performance. The experiment shows that it is desirable 
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to keep n small when k is large, and when k is small n can be large without adding significant 

cost to a user.  

 

Figure 34 Client Transmission time with 96 Bytes Modulus and n from 16 to 225 

 Also, as an alternative and for added security we increase the modulus N to 1536 bits and 

the results are shown Figure 35. We used it on three values of k (5, 10, 15) and n (16, 64 144) 

and compare the transmission cost with 768 bit modulus. We did not observe any significant 

increase in the transmission cost for small sizes of n and k. For instance, when n is 16 and k is set 

to 5 the cost is 437ms for 768 bits, and 558ms for 1536 bits. When k increases to 15 and n stays 

the same the cost is 679ms for 768 bits, and 1327ms for 1536 bits. The difference between 768 

bits and 1536 bits for k = 5 and k = 15 starts to narrow as n gets larger. Nevertheless, the size of 

N together with k and n has impact on the cost. This offers privacy and efficiency tradeoff 

opportunity for a user. For instance, a user searching for nearest gas station may have minimal 

privacy requirement and therefore for efficiency choose smaller N than a user looking for a 
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special need medical facility which may prioritize privacy over efficiency and therefore chooses 

larger N.  

 

Figure 35 Client Transmission time showing impact of 192 Bytes Modulus and k = 5, 10, and 15 

Complexity 

 We analyze server and user computation complexity and compare with [5]. The results 

are shown in Table 7. As already stated the database is of size √𝑛 𝑥√𝑛, and each cell content is 

k*m bit long. The length of the modulus is P bits, and f(P) is the computation function for the P 

bit. Our scheme shows improvement over [5] in the user communication when √𝑛 > 𝑘. Our 

technique has downside in the server computation which is caused by the double PIR. 

Nevertheless, the reduction in the server transmission and user computation cost due to the 

double PIR makes up for the downside. Since √𝑛 is likely to be greater than k our scheme will 

always perform better. 
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Table 7 Computation complexity for Server and Client 

Type Our Scheme Previous Scheme 

User Communication 𝑂(2𝑃𝑘𝑚) 𝑂(𝑃𝑚√𝑛) 

User Computation 𝑂(𝑓(𝑃)𝑘𝑚) 𝑂(𝑓(𝑃)𝑚√𝑛) 

Server Communication 𝑂(𝑃𝑘𝑚) 𝑂(𝑃𝑚√𝑛) 

Server Computation 𝑂(2(𝑓(𝑃)𝑘𝑚√𝑛)) 𝑂(𝑓(𝑃)𝑘𝑚√𝑛) 

 

Comparison with Previous Technique 

We conduct experiments to compare our design with the design of [15]. Table 8 shows 

the steps involved in the two techniques. We did not consider offline activities, i.e., events that 

happens prior to a user declaring her intention for the nearest neighbor. Such events includes: 

creating a square grid, super-imposing Voronoi diagram over the grid, and mapping all the POI 

to Hilbert value. In the case of [15] this activity will be using Voronoi to divide road network 

into cells with centered Central Server (CS). Both designs were implemented in ns3 simulator. 

We implemented [15] based on author’s description, the algorithm provided, and as we 

understood it. The design as described in [15] involves a three-way process. Using Voronoi 

graph the authors partitions the entire area into cells each centered with a CS. A user receives 

several broadcasting messages from neighboring CSs and determines the cell she is heading to. 

The user computes the distances between each CS and herself and registers to the CS with 

minimum distance from her. Registration information includes user location, destination, and 

history velocity. After successful registration to a CS the user will report the location 

periodically to the CS and drops broadcasting messages from the CS until the user gets out of the 

cell or registers to the next cell. CS makes moving direction prediction for the user using user 
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history velocity. It then organizes k users to form a cooperative k-anonymity group according to 

the user’s moving trend. CS takes its own location and a neighbor CS location which the user is 

heading to as two elementary anchors and chooses other continuous anchors in the line segment 

between them. CS picks an anchor from anchor sequence to replace user’s location and 

send a snapshot query of a continuous query request with k queries to LBS Provider (LSP). 

The LSP uses the anchor point to perform incremental nearest neighbor search (INN) and returns 

its results to the CS. The CS then refines the result and then returns k-POI to the user.  

For comparison we measure the response time (i.e., from initialization to the time user 

receives the POI). We use the same travelling path in simulating the two designs. We compare 

the time for the initial response and then subsequent responses until query terminates. For the 

client and server applications in ns3 we use same parameters as in our previous experiment 

described earlier in this chapter. We compare the work of [15] with three different sizes of 

modulus that we used for encryption in our technique. Table 9 shows the results. As the results 

show, initially, as the size of modulus increases, [15] performs better. However, our design 

performs better throughout the life of the query as the user continuously receives nearest POI. 

We believe that one of the contributing factors to the high cost of [15] is due to the fact that the 

design is basically a snapshot query rolled into a continuous query. Almost similar operations are 

performed throughout the segment by both client and server. In our design after the initial 

operation server queues the k-POI and sends a single POI to the user at every transition time 

interval without the user issuing another query. Also, another downside of [15] is the k-

anonymity requirement. There are chances that a query may never be answered if it did not 

satisfy k-anonymity. Also user privacy is at the mercy of the CS. 
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Table 8 Steps in CNNQ for the compared technique 

Our Design Previous Design 
User initiates a query CSs sends out broadcasting messages 

Server sends the grid, the key, k, and 𝑑𝑎𝑣𝑔  to the user User receives several neighbor CS broadcasting 
messages, and determines the cell she is heading to, 
and then computes the distance between each CS and 
herself, then register to CS with minimum distance 
from her 

User identifies the cell it belongs to and uses its v to 
find 𝑡𝑡 where the nearest neighbor change will occur. 
Using the key user will generate query messages each 
targeting the 𝑘𝑡ℎ element in the path. 

CS computes all the neighboring cell’s weight for a user 
using history velocity of the user and stores them in 
prediction set in ascending order 

Server runs PIR protocol on user request, and then 
creates a size k FIFO queue data structure of Z_α. The 
server adds items to the queue in the order it was 
represented in the tree. Closest Hilbert value is added 
first in that order until the farthest neighbor. Server 
returns the first Z_α to the user. 

CS takes its own location and a neighbor CS location 
which the user is heading to as two elementary 
anchors and chooses other continuous anchors in the 
line segment between them. CS organizes k users to 
form a cooperative k-anonymity group according to 
their moving trends and sends k queries to LSP. 

At each 𝑡𝑡 interval server will update user with the next 
value in the queue until the end of the segment or user 
terminates the query 

CS sends each snapshot query of continuous query 
request with an anchor which the user has not passed 
yet.  

User then determine 𝑍𝛼 value by computing equation 
6 

CS performs Singoes algorithm to compute results for a 
user according to candidate sets returned from LSP 

 

Table 9 Comparing response time using different modulus in our work with previous technique 

Size of k, n and N Our Design 
Initial Response 
Time (s) 
 

Our Design 
Subsequent 
Response Time (s) 
 

Previous Design  
Initial Response 
Time (s) 

Previous Design  
Subsequent 
Response Time (s) 

k=10, n=144, 
N=768bits 

3.536 0246 4.283 4.283 

k=10, n=144, 
N=1024bits 

5.130 0360 4.283 4.283 

k=10, n=144, 
N=2048bits 

9.104 0448 4.283 4.283 
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Analysis of Large Prime on PIR Protocol 

Private information retrieval protocol is based on the computational intractability of a 

large prime. Two large prime p and q are multiplied to produce modulus N. Some of the existing 

proposal for PIR encryption in LBS is performed with 768 bits modulus. However, the discovery 

in December of 2009 renders 768 bits encryption obsolete. A team of mathematicians, computer 

scientists, and cryptographers were able to deduce the two prime numbers that when multiplied 

produces 768 bits (232 digits) number using number field sieve (NFS) (identifying appropriate 

integers). The polynomial selection took half a year on 80 processors which represents 3% of the 

task. The sieving took more than two years on several hundreds of machines with more than 10
20 

operations (equivalent to 1500 years of computing on a single core 2.2GHz AMD Opteron) [98]. 

The previous record was the May 2005 factorization of 663-bit 200-digit number [99]. Though 

not many individual will have access to these types of clusters; however, this may be trivial for 

many corporations. The team stated that the overall effort is so low that 768 bit is no longer 

recommended for the protection of even data of little value. They also stated that factoring 768 

bit is about several thousand times harder than 512 bit, and they expect factoring 1024 bit to be 

about a thousand times harder than 768 bit. There are so many prime numbers of the same size 

and below in a given key length. Therefore, factoring the key is directly proportional to the key 

length. ECRYPT II [100] recommendation on key length shown in Table 10 is based on desired 

security level and expected life-span. We conduct experiment using different key sizes to analyze 

the computational impact of the size of the keys.  
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Table 10 Recommended minimal key sizes based on security level 

Protection Modulus (N) Bits 

Smallest general purpose level (2015-2015) 1248 

Legacy standard level (2015-2020) 1776 

Medium term protection (2015-2030) 2432 

Long term protection (2015-2040) 3248 

Foreseeable future 15424 

 

Experimental Results 

In this section, we present the results of the experiment conducted in LBS nearest 

neighbor query using different key sizes. The algorithm was implemented in c/c++ languages 

running on Window 7 machine with win64 OpenSSL version 1.0.2. We examine the 

computation cost on the user and the server to understand the tradeoff between performance and 

security. For the experiment we use five different modulus 512 bits (78 digits), 768 bits (116 

digits), 1024 bits (155 digits), 2048 bits (309 digits) and 4096 bits (617 digits). We use the 

BN_generate_prime_ex() of the openssl to generate the prime numbers. For measuring time we 

averaged 100 runs. We first examine the impact on the user. We measure the computation time 

for the user to generate the modulus N which it then sends to the server together with the query 

message so that we can observe the impact of different key sizes. The result is shown in Figure 

36. The figure shows increase in execution time as the size of the key increases, and increases 

exponentially as the size of the key gets larger. 
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Figure 36 User creating a query message with modulus N 

We also conduct experiment to determine the execution time on the server for running 

PIR protocol on different sizes of n when the modulus N is set to 512 bits. The observation 

shown in Figure 37 shows the impact of n on PIR protocol. The result shows that when n is small 

the impact on the execution time is minimal, but the execution time increases as n increases.  

 

Figure 37 Server running PIR protocol with constant modulus and varying n 
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We also conduct experiment to determine the computation cost on the server for running 

PIR protocol on user query using different sizes of N. As Figure 38 shows, we did not observe 

significant increase in the execution time for the same value of n as N increases. The size of n 

definitely has impact on the cost especially as n increases, however, for the same n, the impact is 

minimal. We also observe that increasing the size of the key has more impact on the user than 

the server. Based on this observation we recommend that key size should be chosen based on 

user privacy requirement. 

 

Figure 38 Server running PIR protocol with different key size and three different n  
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CHAPTER SEVEN CONCLUSION AND FUTURE WORK 

Conclusion 

In this dissertation, we explore techniques to protect user private information in location-

based services nearest neighbor query. We provide solutions for snapshot nearest neighbor query 

and continuous nearest neighbor query models. In each model, we present theoretical concepts 

and the design implementations, and we perform experiments to show the applicability. In 

SNNQ we use space mapping technique to create neighborhood for each point of interest in an 

area by using the concept of sets in a topological space. The design allows a user in a location 

contained in an area to relate the location with the position of the information in the database 

which is represented as a square matrix. We provide database that scales with the size of the 

objects in the area which allows a user to relate the position with location of information in the 

database and for scalability. A user requests from the server a specific POI based on the location. 

Server runs private information retrieval protocol twice on the data to prevent database from 

learning user requested information, and the server releases to the user the only requested 

information. The server is not able to unmask the user personal information due to computational 

intractability of a large prime. We provide statistical analysis of our design with respect to 

complexity and execution time. Our experimental analysis shows an efficient scheme that 

provides great architecture for scaling. 

To address the slow response time of the CPU observed in our snapshot query with the 

increase in the size of the grid and objects in the area, we adopt parallel implementation of our 

algorithm using GPU and CUDA interface, and we provide analysis of the implementation. We 
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compare the execution time of the CPU serial implementation against GPU-CUDA parallel 

implementation. GPU shows speedup over CPU. Improvement obtained in the GPU shows the 

impact of the massive parallelism achievable in GPU. We study parameter tuning and its impact 

on run time and provide analysis that can be leveraged by researchers of parallel programming 

using GPU and CUDA API. We provide analysis for choosing thread and block size. Finally, we 

provide a model for predicting GPU execution time. 

As an alternative, we explore the viability of a hardware in providing data privacy by 

using secure coprocessor in processing private location-based services snapshot nearest neighbor 

query. We create data structures and applications in the coprocessor to allow for oblivious 

computation. We then utilize ORAM to access external memory. We perform experiment by 

emulating the secure coprocessor to determine network transmission cost and complexity, and 

we compare the design with the software approach. Hardware approach shows an improvement 

over software approach as the size of the object and grid increases. The cost for the secure 

coprocessor remains constant in all cases while in the software approach the cost is related to the 

size of the object and grid.  

We then extend our privacy solution to continuous nearest neighbor query by addressing 

moving query static object and moving query moving object types of queries. For our design, we 

combine Voronoi diagram and Hilbert curve order to create object relationships and proximity. 

The technique allows a user to determine the transition point at which to receive the next nearest 

neighbor POI from the server based on the velocity. It also allows a user to authenticate server 

response using a flag with true or false value. We conduct evaluation on the user and the server 
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transmission time, and the results show efficient and scalable design. We conduct experiments 

on the response time and compare with similar technique. The results show that our design 

reduces the response time. We also perform complexity analysis and compare with similar 

design as applicable. The results for the most part show improvement over similar design. 

Finally, we conduct analysis on effect of large prime on PIR protocol. The results show that 

increasing the size of the key has more impact on the user than the server; nevertheless, size of 

the grid has impact on the server since we observe increase in response time as the grid size 

increases. 

 Ways for increasing computational capabilities of machines continue to evolve, a single 

approach alone may no longer be sufficient to offer information protection. Hybrid approach that 

combines hardware and software may provide better alternative. Advance in computing 

technology will always help the good and the bad guys. Cat and Mouse game will always exist 

between cryptographers and adversaries. What might be secure today may no longer be secure 

tomorrow; therefore, any security design is time relative. 

Future Work 

In a moving query moving object continuous nearest neighbor query, we encounter 

frequent updates due to change in object position. The constant change in position results in 

frequent computation to determine current nearest neighbor to a user. One can improve on this to 

reduce the response time by introducing parallelization through GPU-CUDA interface to the 

continuous nearest neighbor query. A design that will allow each thread to independently handle 

individual update and computation can be explored. Voronoi diagram creation and Hilbert curve 
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mapping are some of the task that can be explored with GPU computation. Each scalar processor 

can be assigned subsets of the grid, and the threads can be created to handle individual object 

computation.  

Another direction for future work will be to incorporate into location-based services 

nearest neighbor query the four basics primitives of cryptography [101], i.e., integrity (access 

only to authorized users), confidentiality (detecting tampered information on transit), 

authentication (Ensuring message origin), and non-repudiation (un-deniability of action). 

In the protocol designed for the secure processor we use RSA encryption. The security of 

RSA keys rests on the difficulty of factoring the product of two large prime. However, though 

extremely difficult, breakthrough in the past few years has shown that products of two large 

prime can be determined through number field sieve. Also RSA is said to be vulnerable to Shor’s 

algorithm. One can explore NTRU as an alternative to RSA. It is based on the algebraic structure 

of polynomial rings and it is said to be safe from Shor’s algorithm attack. The hard problem is 

based on the short vector problem (finding a short vector in a lattice) [102]. To create the key, 

two chosen polynomials must satisfy the additional requirement that it has inverses modulo q and 

modulo p. NTRU technique can be used to generate the key. Anybody interested in NTRU can 

read [102].  

Another area worth exploration is the power consumption. Mobile device has limited 

power supply at any given time, possible directions for future work will include energy 

consumption by the mobile device. Energy measurement methodology can be applied to 
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determine variations in energy consumption due to the design, and protocol like TailEnder [103] 

can be used to handle energy consumption issues.  
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