
EFFICIENT CONFIGURATION SPACE CONSTRUCTION AND OPTIMIZATION

Jia Pan

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial
fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of

Computer Science.

Chapel Hill
2013

Approved by:

Dinesh Manocha

Ming C. Lin

Ron Alterovitz

Jan-Michael Frahm

Sachin Chitta

©2013
Jia Pan

ALL RIGHTS RESERVED

ii

ABSTRACT

JIA PAN: Efficient Configuration Space Construction and Optimization
(Under the direction of Dinesh Manocha)

The configuration space is a fundamental concept that is widely used in algorithmic robotics.

Many applications in robotics, computer-aided design, and related areas can be reduced to com-

putational problems in terms of configuration spaces. In this dissertation, we address three main

computational challenges related to configuration spaces: 1) how to efficiently compute an ap-

proximate representation of high-dimensional configuration spaces; 2) how to efficiently perform

geometric, proximity, and motion planning queries in high-dimensional configuration spaces; and 3)

how to model uncertainty in configuration spaces represented by noisy sensor data.

We present new configuration space construction algorithms based on machine learning and

geometric approximation techniques. These algorithms perform collision queries on many configu-

ration samples. The collision query results are used to compute an approximate representation for

the configuration space, which quickly converges to the exact configuration space. We highlight the

efficiency of our algorithms for penetration depth computation and instance-based motion planning.

We also present parallel GPU-based algorithms to accelerate the performance of optimization and

search computations in configuration spaces. In particular, we design efficient GPU-based parallel

k-nearest neighbor and parallel collision detection algorithms and use these algorithms to accelerate

motion planning. In order to extend configuration space algorithms to handle noisy sensor data

arising from real-world robotics applications, we model the uncertainty in the configuration space by

formulating the collision probabilities for noisy data. We use these algorithms to perform reliable

motion planning for the PR2 robot.

iii

To Inspector Gadget.

iv

ACKNOWLEDGEMENTS

There are many people who through support, kindness, and constructive criticism have con-

tributed a great deal to my research in graduate school and this thesis. First and foremost, I would

like to thank my advisor Dinesh Manocha, who has been a constant source of guidance throughout

my time here. Dinesh has consistently pushed me to accomplish as much as possible during my time

in the department. I have also benefited greatly from my committee members, for their support and

suggestions on how to improve this dissertation.

I would additionally like to thank Liangjun Zhang, both for his cheerful mentorship and for

introducing me to robotics – which would forever change my research career. I have also been

blessed with a large supply of collaborators in the GAMMA research group. In addition, I would like

to give special thanks to Sachin Patil and Sandy Huang for their thorough and creative help for this

dissertation.

I would also like to thank my parents, who have always done everything possible to support my

education and nurture my development.

v

TABLE OF CONTENTS

LIST OF TABLES . xiii

LIST OF FIGURES . xiv

CHAPTER 1: INTRODUCTION . 1

1.1 Configuration Space . 4

1.2 Configuration Space Construction . 6

1.3 Optimization in Configuration Space . 7

1.4 Uncertainty Modeling in Configuration Space . 9

1.5 Thesis Statement . 10

1.6 Main Results . 10

1.6.1 Efficient C-space Construction . 11

1.6.2 Efficient Optimization in C-space . 11

1.6.3 Uncertainty Modeling in C-space . 12

1.7 Organization . 12

CHAPTER 2: C-SPACE APPROXIMATION USING ACTIVE LEARNING 14

2.1 Introduction. 14

2.1.1 Main Results . 14

2.1.2 Organization . 15

2.2 Related Work . 15

2.2.1 Configuration Space Construction . 15

2.2.2 PD computation . 16

2.3 Background and Overview . 17

vi

2.3.1 Contact Space and PD Formulation . 17

2.3.1.1 Contact Space . 17

2.3.1.2 PD Formulation . 17

2.3.2 Approximate Ccont Computation . 18

2.3.3 Approximate PD Computation . 19

2.4 Contact Space Construction via Machine Learning . 20

2.4.1 Initial Sampling . 20

2.4.2 Compute LCS0 . 21

2.4.2.1 Nonlinear Classifier based on SVM . 21

2.4.3 Refine LCS0 using Active Learning . 23

2.4.3.1 Exploration. 23

2.4.3.2 Exploitation . 23

2.4.4 Incremental Learning . 24

2.4.5 Terminating Active Learning . 25

2.5 Approximate PD Computation . 25

2.5.1 Local LCS Refinement . 25

2.5.2 LCS Projection . 26

2.6 Analysis . 27

2.6.1 Error in LCS and in PD Computation . 27

2.6.2 Benefits of Active Learning . 28

2.6.3 Benefits of Local Refinement. 29

2.6.4 Time and Space Complexity . 30

2.7 Implementation and Performance . 32

2.7.1 Benchmarks . 32

2.7.2 Physically-based Simulation using PD . 33

2.7.3 Comparison with Prior Methods . 36

2.7.4 Implementation Issues . 39

2.8 Discrete Sampling, C-space Metrics and Optimization . 42

vii

2.9 Accuracy Comparison with Optimization-based PD Approaches . 49

2.10 Limitations and Conclusions . 53

CHAPTER 3: C-SPACE APPROXIMATION USING INSTANCE-BASED LEARNING 55

3.1 Introduction. 55

3.1.1 Main Results . 55

3.1.2 Organization . 56

3.2 Related Work . 57

3.2.1 Machine Learning in Motion Planning . 57

3.2.2 Learning from Experience . 57

3.2.3 Collision Checking for Motion Planning . 58

3.2.4 k-Nearest Neighbor Search . 59

3.3 Overview . 59

3.3.1 Notations and Symbols . 59

3.3.2 Enhanced Motion Planner with Instance-based Learning . 60

3.3.3 LSH-based Approximate k-NN Query . 63

3.4 LSH-based Line-Point k-NN Query . 66

3.4.1 Line-point Distance . 66

3.4.2 Line-point Embedding: Non-affine Case . 67

3.4.3 Line-point Embedding: Affine Case . 68

3.4.4 Locality-Sensitive Hash Functions for Line-Point Query . 69

3.5 Probabilistic Collision Detection based on k-NN Queries . 70

3.5.1 Collision Status Classifier . 70

3.5.2 Effective Classifier for Point Query . 71

3.5.3 Effective Classifier for Local Path Query. 72

3.5.4 Rejection Rules . 74

3.5.5 Asymptotic Property of Approximate Collision Query . 75

3.6 Accelerating Sample-based Planners . 77

viii

3.6.1 Database Construction . 77

3.6.2 Accelerating Various Planners . 78

3.6.3 Narrow Passages and Non-uniform Samples . 80

3.6.4 Performance Analysis . 81

3.6.5 Completeness and Optimality . 82

3.7 Results and Discussions . 83

3.7.1 Pipeline and Results . 84

3.7.2 Dynamic Environments . 86

3.8 Limitations, Conclusions, and Future Work . 88

CHAPTER 4: GPU-BASED MOTION PLANNING . 90

4.1 Introduction. 90

4.1.1 Main Results . 90

4.1.2 Organization . 91

4.2 Related Work . 91

4.2.1 GPU Architectures . 91

4.2.2 Real-time Motion Planning . 93

4.3 Overview . 93

4.4 Parallelized PRM Motion Planning Algorithm . 94

4.4.1 Hierarchy Computation . 94

4.4.2 Roadmap Construction . 95

4.4.2.1 Sample Generation . 95

4.4.2.2 Milestone Computation . 96

4.4.2.3 Proximity Computation . 96

4.4.2.4 Local Planning . 97

4.4.3 Query Phase. 98

4.4.3.1 Query Connection . 98

4.4.3.2 Graph Search . 98

ix

4.5 Implementation and Results . 99

4.6 Conclusions and Future Work . 101

CHAPTER 5: GPU-BASED PARALLEL COLLISION CHECKING . 103

5.1 Introduction. 103

5.1.1 Main Results . 103

5.1.2 Organization . 104

5.2 Related Work . 104

5.2.1 Parallel Collision Queries . 104

5.3 Overview . 105

5.3.1 Notation and Terminology . 105

5.3.2 Collision Queries: Hierarchical Traversal . 106

5.4 Parallel Collision Detection on GPUs . 108

5.4.1 Parallel Collision-Packet Traversal . 108

5.4.2 Parallel Collision Query with Workload Balancing . 113

5.4.3 Analysis . 115

5.5 Implementation and Results . 119

5.5.1 GPU-based Planner . 119

5.5.2 Implementation. 119

5.5.3 Articulated Models . 123

5.6 Conclusion and Future Work . 123

CHAPTER 6: GPU-BASED APPROXIMATE K-NEAREST NEIGHBOR COMPUTATION 127

6.1 Introduction. 127

6.1.1 Main Results . 128

6.1.2 Organization . 128

6.2 Background and Related Work . 128

6.2.1 Basic LSH . 129

6.2.2 Variations of LSH . 130

x

6.3 Bi-level Locality-Sensitive Hashing . 131

6.3.1 Bi-level LSH Scheme . 131

6.3.2 GPU and Parallel LSH . 133

6.4 GPU Primitives . 133

6.4.1 Standard Primitives . 133

6.4.2 Primitives for Clustered Data . 135

6.5 Parallel Bi-level Locality Sensitive Hashing . 137

6.5.1 First Level: RP-tree . 137

6.5.2 LSH Hash Table . 138

6.5.3 Short-list Search . 141

6.5.4 Analysis . 142

6.6 Results . 144

6.7 Conclusions and Future Work . 146

CHAPTER 7: PROXIMITY COMPUTATIONS ON NOISY SENSOR DATA 148

7.1 Introduction. 148

7.1.1 Main Results . 149

7.2 Related Work . 150

7.2.1 Uncertainty of Point Cloud Data. 150

7.2.2 Collision Detection . 151

7.3 Overview . 152

7.3.1 Separating Surface. 153

7.3.2 Probabilistic Model for Point Cloud Collision . 154

7.4 Probabilistic Collision Checking between Point Clouds . 156

7.4.1 Basic Formulation . 156

7.4.2 Non-Gaussian Uncertainty . 158

7.4.3 Non-linear Separating Surface. 158

7.4.4 Probabilistic Collision Decision . 160

xi

7.4.5 Handling Polygonal Objects. 161

7.5 Acceleration using Bounding Volume Hierarchies . 161

7.6 Implementation and Results . 164

7.6.1 Implementation. 164

7.6.2 Results . 165

7.7 Conclusions and Future Work . 169

CHAPTER 8: PROXIMITY COMPUTATIONS ON STREAMING SENSOR DATA 171

8.1 Introduction. 171

8.2 Problem Definition and Related Work . 173

8.3 Overview . 174

8.4 Efficient Collision and Distance Queries on Sensor Data . 177

8.4.1 Amortized broad-phase Algorithm. 178

8.4.2 Proximity Computation using Octrees . 179

8.4.3 Collision Checking with Uncertain/Unknown Regions . 182

8.5 Results . 183

8.6 Conclusions. 185

CHAPTER 9: CONCLUSIONS AND FUTURE WORK . 189

9.1 Limitations and Future Work. 191

BIBLIOGRAPHY . 193

xii

LIST OF TABLES

2.1 Performance of the learning-based PD algorithm on 2D and 3D models 38

3.1 Performance comparison between different combinations of motion plan-
ners on PR2 benchmarks . 87

3.2 Performance comparison between different combinations of motion plan-
ners on rigid body benchmarks . 87

4.1 Performance comparison between the PRM and RRT implementations in
OOPSMP and the GPU-based planner . 101

5.1 Geometric complexity of benchmarks for testing GPU-based collisions 119

5.2 Comparison of different CPU-based and GPU-based algorithms in the
milestone computation component of PRM motion planner . 120

5.3 Comparison of different CPU-based and GPU-based algorithms in the
local planning component of PRM motion planner . 121

5.4 Comparison of the collision timing on PR2 benchmark when using CPU-
based and GPU-based collision checking algorithms . 124

8.1 Performance comparison between pipelines with and without amortized
broad-phase structure construction . 186

8.2 Collision query performance comparison between the baseline pipeline
in (Rusu et al., 2009b) and our new pipeline . 187

8.3 Distance query performance comparison between the baseline pipeline
in (Rusu et al., 2009b) and our new pipeline . 187

8.4 Collision and distance query performance comparison between the baseline
pipeline in (Rusu et al., 2009b) and our new pipeline on the PR2 robot 188

xiii

LIST OF FIGURES

1.1 Important hardware and software subsystems in a robot system . 2

1.2 The configuration space of two objects . 5

1.3 Cobs between 2D rigid objects A and B . 5

1.4 Topology-based methods for configuration space computation . 7

1.5 Motion planning in workspaces and in configuration spaces . 8

2.1 Offline computation pipeline for Ccont approximation and the runtime
algorithm to compute the PD for a given query configuration . 19

2.2 Exploitation in SVMs . 24

2.3 Relative error convergence of active learning vs. uniform sampling for 2D
and 3D object pairs . 28

2.4 LCS computation using active learning for PDg query between 2D non-
convex shapes . 30

2.5 LCS computation using active learning for PDt query between 3D cup
and spoon . 31

2.6 Learning-based PD computation algorithm computes a global penetration
depth between overlapping non-convex and non-manifold objects 34

2.7 Relative performance of PD computation for different benchmarks 35

2.8 The performance and accuracy compared to PolyDepth on bunny-bunny benchmark . 36

2.9 The performance and accuracy compared to PolyDepth on dragon-dragon benchmark 37

2.10 One example for the degenerate case of configuration space approximation. 40

2.11 The “jump” and vibration problems when using optimization-based PD algorithms . . 44

2.12 Examples to illustrate how the configuration space metric influences the
result of our PD algorithm . 45

2.13 Configuration space metric’s influence on the result of our PD algorithm:
rotational example . 46

2.14 Configuration space metric’s influence on the result of our PD algorithm:
translational example . 47

2.15 Benchmarks for analyzing key issues with PDt and PDg computation
and comparing our method with PolyDepth and PolyDepth++ . 49

xiv

2.16 PDt accuracy comparison with the state-of-the-art optimization-based PD algorithms 50

2.17 PDg accuracy comparison with the state-of-the-art optimization-based PD algorithms 51

2.18 PDg results of our learning-based framework improve by using a large
number of samples . 53

3.1 Comparison between prior sample-based planners and planners enhanced
by instance-based learning . 61

3.2 Two types of k-NN queries used in instance-based learning. 65

3.3 Two rejection rules used in instance-based learning . 75

3.4 Instance-based learning framework can be easily integrated with different
motion planners . 79

3.5 PR2 planning benchmarks for instance-based learning . 85

3.6 Rigid body planning benchmarks for instance-based learning . 86

3.7 The accuracy of the instance-based learning framework on various benchmarks. 86

3.8 Time taken by I-PRM when it runs more than 100 times on the benchmark
shown Figure 3.5(a). The planning time first decreases and then increases
because I-PRM continues updating the dataset in well-learned regions 87

3.9 Time taken by I-PRM when it runs more than 100 times on the benchmark
shown Figure 3.5(a). The planning time always decreases because I-PRM
stops updating the dataset in well-learned regions . 88

4.1 An overview of serial PRM and the GPU-based planner . 95

4.2 Benchmark scenes used for the GPU-based planner . 100

4.3 Split-up of timings for the GPU-based planner . 102

4.4 The scalability of G-PRM and GL-PRM algorithms . 102

5.1 Illustrations of BVH and BVTT . 106

5.2 Ray packets for faster GPU-based ray tracing . 109

5.3 Multiple configuration packet for parallel collision detection . 111

5.4 Synchronous BVTT traversal for packet configurations . 112

5.5 Load balancing strategy for our parallel collision query algorithm 116

5.6 Different strategies for parallel collision query using work queues 117

xv

5.7 Benchmarks used for testing GPU-based parallel collisions . 120

5.8 The GPU-based motion planner can compute a collision-free path for PR2
in less than 1 second. 121

5.9 GPU throughput improvement caused by pump kernel . 122

6.1 Bi-level LSH framework . 132

6.2 LSH hash table for Bi-level LSH . 140

6.3 Work-queue based parallel short-list search . 143

6.4 Quality comparison between the Bi-level LSH and the standard LSH algorithm 144

6.5 Performance comparisons between CPU-based and GPU-based partition-
ing components in Bi-level LSH . 146

6.6 Performance comparison on shortlist search used in Bi-level LSH 146

6.7 Performance comparison between heap-sort and work-queue based meth-
ods used in Bi-level LSH shortlist search . 147

7.1 A visual representation of the collision information generated by the
sensors on the PR2 robot . 149

7.2 Separating surface for point cloud sets . 155

7.3 BVH acceleration for point-cloud collision . 163

7.4 Comparison of collision checking algorithms with and without considering
data uncertainty on point-cloud data generated by PR2 robot sensor 165

7.5 Comparison between the results for 100 random queries between prior
collision detection algorithms for exact triangle meshes and our algorithm
on the point clouds . 166

7.6 Comparison between the results for 100 random queries between prior
collision detection algorithms for exact triangle meshes and our algorithm
on the Kinect data . 167

8.1 Comparison between possible pipelines for environment representation
and collision detection . 177

8.2 Illustration of 2-D Morton curve . 179

8.3 Comparison between the planning algorithms considering and not consid-
ering environment uncertainty . 183

8.4 Comparison experiments on the PR2 robot without and with active sensing. 186

xvi

CHAPTER 1: INTRODUCTION

Intelligent robots are becoming increasingly important in both industry and everyday life. In

industry, rising labor costs are motivating manufacturers to consider using more robots in factories.

For example, the average minimum wage in China has increased by more than 20 percent in 2012,

while the supply of manufacturing robots has also increased by 51 percent in China (Litzenberger,

2012). Europe and USA exhibit similar trends: Intelligent robots are being designed in order to

make workers more productive and make manufacturers more competitive in terms of price and

quality. One recent example among these intelligent robots is the new “Baxter” robot (Guizzo and

Ackerman, 2012), which is equipped with software that enables the robot to learn various tasks

from human demonstration, recognize different objects, and react intelligently to external forces.

Intelligent robots are expected to assist people in everyday life. In the future, such robots are

expected to perform various tasks, including 1) household and care support, such as cooking and

laundry; 2) healthy life support, such as chatting with the elderly and taking care of people with

disabilities; and 3) labor support in unsafe working conditions such as chemical plants (Yamazaki

et al., 2012). Several successful prototypes for assistant robots exist. For example, the PR2 robot

from Willow Garage has been shown to assist people with severe physical disabilities such as

quadriplegia (Cousins, 2012); humanoid robots such as the HRP-4 can perform human-like actions

and can communicate with people using speech (Kajita et al., 2011). In addition to their applications

in industry and everyday life, modern intelligent robots can be helpful in other areas, including

autonomous vehicles (Montemerlo et al., 2008), medical and surgical intervention (Bonfe et al.,

2012), emergency and disaster rescue (Guizzo, 2011), and military tasks (Ackerman, 2012).

The tremendous improvement in the design and availability of intelligent robots over the last

decade is based on progress in many related areas, including computer vision, artificial intelligence,

machine learning, control, sensor systems, and mechanical systems, which correspond to different

components of an intelligent robot system (Figure 1.1). For example, the SLAM (simultaneous

localization and mapping) algorithm enables a robot to accurately track its position in an unknown

F C A

S

desired task

S+

desired trajectory movement

Robot System

High Level Planning and Navigation

Motion Planning

Figure 1.1: Important hardware and software subsystems in a robot system. 1) Feed-forward system
(F), including task planning, navigation strategy, motion planning and trajectory generation. 2)
Control system (C), including kinematics, dynamics and control algorithms. 3) Actuator system (A),
including motors, servos, transmissions, and so forth. 4) Sensor system (S), including various sensors
such as camera, laser, IMU and related low level sensor data processing algorithms such as signal
processing, estimation and fusion. 5) Sensor post-processing system (S+), including localization,
mapping, etc. The main software component of a robot system is the high level planning and
navigation, which determines the instructions sent to the actuator system, given the desired tasks to
be executed. One important component of high level planning and navigation is motion planning,
which focuses on computing the trajectory from the environment description.

environment (Thrun et al., 2005). In addition, with the help of advanced vision techniques, robots can

now recognize and segment objects from background point clouds (Rusu et al., 2009a). Compared

to traditional industrial robots, one important feature of the modern intelligent robot system is high

level planning and navigation. Its main purpose is to compute low-level instructions based on

high level descriptions for the tasks to be executed; these low-level instructions are then provided

to the robot actuator system. This planning and navigation component is composed of many

different sub-components (Figure 1.1) and there has been extensive work in this area, such as task

planning (Lozano-Pérez et al., 1989), feedback from observation (Kaelbling and Lozano-Pérez, 2012,

2011), optimal control (Stengel, 1994), and adaptive control (Astrom and Wittenmark, 1994).

One of the most important sub-systems of the high level planning and navigation component

is the motion planning system, which enables the robot to move safely from an initial position to

2

a goal position without colliding with any static or moving obstacles in the environment. Motion

planning enables robots to work efficiently and reliably in dynamic environments along with humans.

Motion planning problems can be directly formalized and solved in the 3D workspace, for instance

with the widely-used potential field algorithms (Khatib, 1988). However, these workspace solutions

cannot easily handle robots with different geometries and mechanical constraints. To overcome these

difficulties, motion planning may be formalized and solved in a new space called the configuration

space (Lozano-Pérez and Wesley, 1979; Lozano-Pérez, 1981, 1983). In the configuration space, a

robot with a complex geometric shape in 3D workspace is mapped to a point robot and the robot’s

trajectory corresponds to a continuous curve in the high-dimensional configuration space (Figure 1.5).

Based on the configuration space formulation, the motion planning problem can be solved in two

steps:

1. Construct a representation of the configuration space.

2. Perform optimization based on the computed representation.

This motion planning pipeline based on configuration spaces is very successful and is adopted

by many real-world planning applications that require optimal planning solutions. Many different

representations for the configuration space have been proposed, including polyhedrons (Chazelle,

1987), semi-algebraic sets (Canny, 1988; Canny et al., 1988), graphs (Kavraki et al., 1996), and

trees/forests (Kuffner and LaValle, 2000). Different optimization approaches have been proposed

for different configuration space representations, including computing a shortest path, computing

the minimum distance to the boundary of a closed set inside the configuration space, and so forth.

Moreover, the same pipeline is also implicitly used in some motion planning algorithms for only

computing a feasible path (i.e., a collision-free path that does not violate other constraints). For

example, many variants of Rapidly Exploring Random Tree (RRT) (Kuffner and LaValle, 2000) use

different heuristics to guide the search toward the goal configuration while growing a search tree

structure as an approximate representation of the configuration space. Such a strategy can be viewed

as a variant of the above pipeline, in which the configuration space construction alternates with the

optimization computation.

However, this algorithmic pipeline based on C-space still has many computational challenges:

3

1. Efficiently compute an approximate or exact representation for the configuration space is

difficult, especially for high-DOF robots with high-dimensional configuration spaces. Such

configuration space approximation problem would have exponential complexity (Section 1.2).

2. Many robotics applications require real-time planning in order to work reliably and efficiently

in human environments with moving obstacles, but performing optimization in the computed

representation for the configuration space can be time consuming (Section 1.3).

3. A robot in the real world depends on various sensors to acquire knowledge about its own

state and the surrounding environments. Since the sensors provide noisy data, one important

open problem involves enhancing the configuration space to consider robots and environments

with noisy geometries. In contrast, previous work on configuration space based computations

assume an exact representation of the robot and obstacles (Section 1.4).

1.1 Configuration Space

The configuration space is a key concept used in classical mechanics to describe and analyze

the motion of many important systems (Arnold, 1989). Generally, a configuration q is a vector of

independent parameters uniquely specifying the state of a system; a configuration space or C-space

is a collection of all possible configurations for a given system. For example, for a system of n

point particles, the configuration is a vector describing the positions of all the particles and the

corresponding C-space is R3n; the configuration of a 3D rigid body consists of its position and

orientation, and the configuration space is SE(3) if both rotation and translation are allowed, and R3

if only translation is allowed; the configuration of an articulated object is the vector of all its joint

angles.

The configuration space of a robot A is composed of two components: collision-free space

Cfree = {q : A(q) ∩B = ∅} and in-collision space or obstacle space Cobs = {q : A(q) ∩B 6= ∅},

where B corresponds to the geometric representation of obstacles in the environment and A(q)

corresponds to A with the configuration q. Cobs is a closed set and its boundary is denoted as the

contact space Ccont = ∂Cobs, which corresponds to the set of configurations where A and B just

touch each other without penetration. Figure 1.2 shows an example of the C-space of two objects

where Ccont is highlighted with an orange curve.

4

free
C

cont
C

obs
C

A

B

Figure 1.2: The configuration space of two objects. The orange curve highlights the contact space
Ccont of A and B. A point inside/on the orange curve belongs to Cobs and a point outside the orange
curve belongs to Cfree. The red and green points denote configurations in Cobs and Cfree, respectively.
Intuitively, Ccont is the boundary that separates in-collision and collision-free configurations.

In the special case when A and B are both rigid objects and robot A can only perform translation

motion, Cobs is equal to the well-known Minkowski sum between A and B: Cobs = A ⊕ (−B) =

{x = xA + xB|xA ∈ A,xB ∈ −B}. One example of the Minkowski sum is shown in Figure 1.2.

When robot A can perform general motion (i.e., both translation and rotation), the geometry of Cobs

is much more complicated, as shown by the 2D example in Figure 1.3.

Figure 1.3: Cobs between 2D rigid objects A and B. For each rotation angle θ ∈ [0, 2π), we can
compute the Minkowski sum between A(θ) and −B, where A(θ) is the resulting shape after rotating
A about the origin with θ degrees. When stacking the Minkowski sums for all angles θ, we obtain
the Cobs between A and B. This figure is modified from an online image with unknown source.

Based on the notion of configuration space, the motion planning problem in 3D workspace can

be reduced to path planning for a point robot in C-space, i.e., finding a curve in Cfree connecting the

given initial and goal configurations of the robot.

5

1.2 Configuration Space Construction

Before performing the motion planning computation in the configuration space, one prerequisite

is to compute the geometry of C-space in an appropriate representation (e.g., a graph or a surface).

Since C-space = Cfree ∪ Cobs and Cfree ∩ Cobs = ∅, we only need to construct the representation for

either Cfree or Cobs. Another equivalent solution is to compute Ccont, the boundary between Cfree and

Cobs.

Previous work on configuration space construction can be categorized into two different meth-

ods: geometry-based and topology-based. Geometry-based methods compute the exact geometric

representation of the configuration space while topology-based methods capture the connectivity of

the configuration space.

Geometry-based methods are usually limited to low-dimensional configuration spaces, due to

the combinatorial complexity involved in computing the boundary of Cobs for high-dimensional

configuration spaces. Most previous work has focused on the special case when objects A and B are

rigid bodies only performing translational motion. As mentioned in Section 1.1, the resulting Cobs is

the Minkowski sum between A and −B. Even for this special case, the computational complexity

involved in computing Cobs is still high: the complexity is O(mn) when A and B are both convex-

objects and is O(m3n3) when A and B are both non-convex objects (Halperin, 2002), where m and

n are the number of triangles in A and B, respectively. In addition to the high complexity, most

existing implementations for computing the Minkowski sum are prone to challenges that arise in

the context of 3D geometric algorithms. In particular, these implementations are 1) not robust to

numerical errors, and 2) susceptible to degeneracies (i.e., cannot reliably handle polygon soups or

meshes with holes). Recent work has proposed methods (Lien, 2008; Lien and Amato, 2007; Lien,

2009) for computing the approximate Minkowski sum efficiently and reliably, but these methods

are also prone to robustness issues and can have high complexity in terms of dealing with complex

objects. Options other than the Minkowski sum exist for computing Cobs. For example, Varadhan et

al. compute the Cobs for 2D objects with rotation and translation by approximating the Cobs with an

adaptive grid (Varadhan et al., 2006); Zhang et al. compute an approximation to 4D C-space using

cell decomposition (Zhang et al., 2007a).

6

Topology-based methods capture the connectivity of the configuration space. Most previous

approaches attempt to capture the connectivity of Cfree using sampling techniques (Kavraki et al.,

1996; Kuffner and LaValle, 2000). The basic idea is first to generate random samples (called

milestones) in Cfree and then organize these samples using a graph structure or a forest of tree

structures (Figure 1.4). As the topology of Cfree can be rather complex, and may consist of multiple

components or small, narrow passages, it is hard to capture the full connectivity of Cfree using random

sampling. There is extensive work on improving the connectivity computation by using different

sampling strategies (Amato et al., 1998; Boor et al., 1999; Hsu et al., 1998; Rodriguez et al., 2006;

Zhang and Manocha, 2008a; Sun et al., 2005). Recent work attempts to capture the topology of both

Cfree and Cobs (Denny and Amato, 2011). Topology-based methods can compute an approximate

C-space representation much faster than geometry-based methods. However, these methods do not

work well with narrow passages and can be slow for high-DOF robots.

free space

milestone

local path

(a) Graph representation (b) Tree representation

Figure 1.4: Topology-based methods for configuration space computation. (a) Cap-
ture Cfree using a graph structure. (b) Capture Cfree using a forest of tree struc-
tures. The two figures are modified from Jean-Claude Latombe’s lecture slides
(http://robotics.stanford.edu/˜latombe/cs326/2009/class5/class5.ppt).

1.3 Optimization in Configuration Space

Once an exact or approximate representation for the configuration space is computed, we next

need to perform optimization in this C-space representation. For example, the goal of motion

planning is to compute a trajectory in C-space, as shown in Figure 1.5. The trajectory should satisfy

the following constraints: 1) it should be completely inside Cfree; and 2) it should be feasible, e.g.,

for humanoid robots, the robot should not fall down when following the trajectory. Moreover, it is

7

preferable for the trajectory to be optimal under some metric. For instance, the optimal trajectory

could be the shortest, take the least time to execute, or maintain the maximum distance from

obstacles. As a result, motion planning can be formalized as a constrained optimization problem

in C-space. Similar formulation can be applied to different applications, such as penetration depth

computation (Zhang et al., 2007c,b; Zhang and Manocha, 2008a; Je et al., 2012).

goal

initial

goal

initial

Workspace Configuration space

Figure 1.5: Motion planning in workspaces and in configuration spaces. The left figure shows
obstacles (with different colors) and a 2-linked robot in the workspace (both the initial and goal
settings). The right figure shows the configuration space corresponding to the workspace in the
left figure, where different colors describe the correspondence between obstacles in the workspace
and obstacles in the configuration space. The blue curve is a trajectory connecting the initial
and goal configurations, and is the result of motion planning algorithm. This figure is modified
from (Ichnowksi and Alterovitz, 2010).

Optimization in C-space is usually computationally expensive, especially for a high-dimensional

C-space with a complicated structure and topology. To illustrate the computational challenge for

C-space optimization problems, we take motion planning in C-space as an example. Theoretically,

motion planning using the exact representation of C-space has high computational complexity.

Planning algorithms are considered to be ‘complete’ if for any planning problem instance, the

algorithm will either find a solution or will correctly report that no solutions exists. Complete planning

algorithms have been proved to be PSPACE-hard (Reif, 1979) and PSPACE-complete (Canny,

1988), and kinodynamic motion planning (i.e., motion planning with simple kinematic or dynamic

8

constraints) has been shown to be NEXPTIME-hard (Canny et al., 1988). The decidability is still

unknown for motion planning with general differential constraints (Cheng et al., 2007). When the

approximate representation of C-space is used (e.g., using a graph or forest to approximate the

connectivity of Cfree), there exist approximate motion planning algorithms that provide guarantees

of probabilistic completeness (Kavraki et al., 1996; Kuffner and LaValle, 2000) and/or asymptotic

optimality (Karaman and Frazzoli, 2011). The complexity of these approximate motion planning

algorithms is usually bounded by O(n lnn) where n is the number of configuration samples used in

the approximate representation of C-space (Karaman and Frazzoli, 2011). Since n can be very large

when Cfree has narrow passages and/or high dimensionality (Hsu et al., 2006), the performance of

these approximate algorithms is still far from real-time.

Various planning methods related to C-space have been proposed in the past decades, including

optimization-based planning algorithms such as CHOMP (Ratliff et al., 2009) and TrajOPT (Schul-

man et al., 2013), and search-based algorithms such as Anytime A* (Likhachev et al., 2005). For

motion planning of high-DOF (degrees-of-freedom) robots, most of the practical methods are based

on randomized algorithms, including Probabilistic Roadmap (PRM) (Kavraki et al., 1996) and

Rapidly Exploring Random Tree (RRT) (Kuffner and LaValle, 2000).

1.4 Uncertainty Modeling in Configuration Space

Most prior techniques assume that an exact geometric representation is known for the robot and

obstacles in the environment. This is reasonable in applications such as computer graphics, CAD,

and simulation, where the geometric representation of synthetic objects is available. As a result, there

is no ambiguity about the collision status of any configuration q ∈ C-space: either q ∈ Cfree and is

collision-free or q ∈ Cobs and is in-collision.

Unfortunately, this exact geometric representation assumption may not hold when we are dealing

with real-world robots that interact with the physical environment. In the real world, sensors do not

provide exact geometric representation, but rather noisy point clouds. The noise may arise from

device noise, limited field-of-view, sensor refresh latency, synchronization error, or even occlusions.

For noisy geometric representations, we cannot deterministically compute the collision status of a

given configuration q. Instead, q may lie in Cfree with probability p and lie in Cobs with probability

9

1 − p, where 0 ≤ p ≤ 1. Computing p for any configuration q ∈ C-space is an open problem not

studied in previous work.

The problem of modeling uncertainty in the configuration space has many applications. For

example, it can be combined with motion planning algorithms to compute a trajectory that minimizes

the probability to collide with the obstacles, which would improve the safety of robot navigation.

Moreover, it can extend classical computational geometry algorithms to handle noisy sensor data,

such as Minkowski sums (Varadhan et al., 2006) and offsets (Choi et al., 1997).

1.5 Thesis Statement

Our thesis is as follows:

High-dimensional configuration spaces can be efficiently approximated using machine learning

and geometric algorithms, and used for optimization queries related to motion planning and proximity

computations on exact and noisy datasets.

1.6 Main Results

In support of our dissertation, we present new techniques for configuration space construction,

optimization in configuration spaces, and modeling uncertainty in configuration spaces. First, we

demonstrate how to convert the configuration space construction problem into a machine learning

problem, and then use active learning to compute an approximate configuration space efficiently and

robustly. We also discuss how to use instance-based learning techniques to incrementally compute

an approximate configuration space, which enables robots to learn from their past experiences about

task execution. Second, we provide parallel GPU-based algorithms to accelerate the optimization

computations in the configuration space, which can allow for real-time planning computation in

many challenging environments. Finally, we propose two different methods to model the uncertainty

in the configuration space caused by noisy geometries. These two methods are then combined with

active sensing techniques to enable robots to work reliably in environments with uncertainty.

10

1.6.1 Efficient C-space Construction

In this part, we describe two different methods to compute an approximate representation of

the configuration space. The first is a geometry-based method and the second is a topology-based

method.

First, we present a novel technique to efficiently approximate Ccont between two rigid objects

using machine learning techniques. We first generate a set of samples in C-space using collision

detection techniques. We use non-linear SVM-based regression to construct an initial (coarse)

approximation of Ccont. Then we use active learning techniques to refine this approximation so that

it is close enough to the actual Ccont. We provide error bounds on the learned approximate Ccont

and evaluate performance on many complex benchmarks. Additionally, based on the computed

configuration space, we present an algorithm to efficiently approximate the penetration depth between

two rigid objects, which is important in physically-based simulation.

Second, we present a novel approach to incrementally construct an approximate representation

of C-space from the samples generated during prior executions of the planning algorithm. Our

formulation stores the results of prior collision queries and local planning queries. This information

is used to accelerate the performance of planners. We present fast and novel algorithms to perform

k-NN (k-nearest neighbor) queries in high dimensional C-space and derive tight bounds on their

accuracy. Our approach is general, makes no assumptions about the sampling scheme, and can

be used with various sample-based motion planners with only small changes to these planners.

Additionally, we discuss how to use this method to enable the planner to learn from its past query

instances.

1.6.2 Efficient Optimization in C-space

In this part, we present techniques to accelerate optimization computation in C-space using

capabilities of many-core GPUs. This includes a GPU-based parallel planning algorithm called

g-Planner. In g-Planner, GPU improves performance by addressing two main bottlenecks of sample-

based planning algorithms: collision detection and k-nearest neighbor search, which can take more

than 95% of the overall planning time. We present a new GPU-based parallel collision detection

algorithm, which is able to efficiently handle a large number (i.e., more than 100,000) of collision

11

queries between objects of varying complexity and runs more than 60 times faster than single-core

CPU algorithms. For k-NN search queries, we describe a new approximate algorithm for k-NN

search based on Locality-Sensitive Hashing (LSH), which is a GPU-friendly algorithm with sub-

linear complexity and bounded error. The resulting parallel GPU-based k-NN is at least 50 times

faster than the optimized single-core CPU implementation.

1.6.3 Uncertainty Modeling in C-space

In order to model configuration spaces for noisy geometric representations, we first discuss a

probabilistic collision detection algorithm between two objects represented as noisy point clouds. We

convert the collision detection problem into a two-class classification problem and use extended SVM

algorithms to solve it. To improve the efficiency, we use a divide-and-conquer method to eliminate

unnecessary computations. As opposed to only computing the binary result (i.e., collision or not)

by prior collision detection algorithms, our approach computes a collision probability. Collision

probabilities are useful for robotics applications that require detailed measure of collision status,

such as grasping.

The point cloud representation has some problems when it is used for modeling a noisy envi-

ronment. First, point clouds provided by many sensors may be too dense for real-time processing.

Second, point clouds can only model occupied regions in the environment and cannot distinguish

between unknown regions and open regions, which may impair motion planning. To address these

issues, we further present efficient collision detection and distance computation algorithms for

environment data represented as an octree, which can model occupied, unknown, and open regions.

Our algorithm can provide a collision probability. Moreover, our formulation also takes into account

the fact that the sensor data usually arrives at a higher rate (i.e., point cloud streams), and it is difficult

to track objects precisely between different frames of sensor data. This algorithm is used to guide

Willow Garage’s PR2 robot to operate safely in poorly mapped regions with dynamic obstacles.

1.7 Organization

The remainder of this dissertation is organized as follows.

Chapter 2 presents a geometry-based configuration space approximation using active learning.

12

Chapter 3 describes a topology-based configuration space representation using instance-based

learning.

Chapter 4 presents a GPU-based motion planning framework for probabilistic roadmaps.

Chapter 5 describes the GPU-based collision detection used in GPU-based motion planning.

Chapter 6 presents the GPU-based k-nearest neighbor used in GPU-based motion planning.

Chapter 7 presents how to model the uncertainty for a configuration when the geometry is point

cloud sensor data.

Chapter 8 improves the performance of the algorithm described in Chapter 7 on point cloud stream

data.

Chapter 9 presents conclusions and future work.

13

CHAPTER 2: C-SPACE APPROXIMATION USING ACTIVE LEARNING

2.1 Introduction

Computing a high-quality configuration space representation is important for many applications,

such as robotics (Lozano-Pérez, 1983), physically-based simulation (Je et al., 2012), Minkowski

sums (Varadhan et al., 2006), and offset computation (Choi et al., 1997). However, to compute an

exact representation for a configuration space is time-consuming, because the complexity of this

problem grows exponentially in the dimension of the configuration space. As a result, it remains a

major challenge to represent and compute configuration spaces, especially for high dimensional ones.

2.1.1 Main Results

In this chapter, we present a novel algorithm to efficiently approximate a high-dimensional

configuration space using machine learning techniques. The main idea is to generate samples in the

configuration space and then use these samples to approximate the contact space Ccont by a separating

surface that can correctly separate all the in-collision and collision-free samples. This separating

surface is computed using SVM classification. Our method greatly reduces the required number of

samples by leveraging incremental and active learning techniques. When the number of samples

increases, the approximate contact space computed by our method can quickly converge to the exact

contact space; we also provide bounds on the expected error in the approximate contact space. We

evaluate performance of our algorithm on high-dimensional benchmarks.

Additionally, based on the approximate Ccont computed offline, we design a new method to

efficiently approximate the penetration depth (PD) between two rigid objects. The penetration depth

is the minimum amount of motion required to separate two intersecting objects. Our algorithm

performs a nearest-neighbor query between a given query configuration and the precomputed Ccont

approximation. Compared to prior techniques, our approach is more general and more reliable.

Moreover, the runtime query only has a small overhead (a few milliseconds) and thus can be used

for interactive applications. In practice, we are able to compute approximate PD with relative error

less than 2-3% by using a few thousand samples during the offline Ccont computation. We also use

our PD algorithm to compute collision response between non-convex models in Box2D and Bullet

physics engines. We observe more than an order of magnitude improvement in runtime performance

over that of prior global PD algorithms.

2.1.2 Organization

The rest of this chapter is organized as follows. We survey related work on configuration space

computation in Section 2.2. We introduce the notation and give an overview of our algorithm in

Section 2.3. The approach for approximating the configuration space using learning techniques

is described in Section 2.4. The approximate configuration space is then used for approximate

PD computation, as discussed in Section 2.5. We analyze the accuracy and convergence of our

approximate PD algorithm in Section 2.6. The implementation details and experimental results are

provided in Section 2.7. In Section 2.8, we give a detailed discussion about the problems related to

configuration space metrics and global optimization.

2.2 Related Work

2.2.1 Configuration Space Construction

There is extensive work on configuration space computation in robotics, geometric computing,

and related areas. Configuration space computation can be reduced to the problem of computing the

arrangement of contact surfaces (Varadhan et al., 2006). However, this approach is prone to problems

involving accuracy and robustness. Moreover, the worst-case complexity of the entire arrangement

can be as high as O(nk), where n is the number of contact surfaces in the arrangement and k is

the dimension of the configuration space (Sharir, 1997). Some techniques for approximating the

configuration space in lower dimensions are based on generating a discrete number of slices (Sacks

and Bajaj, 1997). In this case, the configuration space is composed of many ruled surface patches,

i.e., through each point on a surface patch, there exists a straight line that lies on the surface. These

ruled surface patches are generated by different contact configurations between a vertex of an object

and an edge from the other objects. When the object motion is limited to translation, the resulting

configuration space is equivalent to the Minkowski sum between two objects (Guibas and Seidel,

15

1987; Lozano-Pérez, 1983). Minkowski sum computation reduces the problem to computing either

an arrangement or a union of a large set of convex primitives, which can be still very difficult in

practice.

2.2.2 PD computation

PD computation has been studied extensively in computer graphics, geometric modeling, haptics,

and robotics. We give a brief overview of exact and approximate computation algorithms.

Penetration depth is the minimum amount of motion transformation required to separate two

intersecting objects. This transformation may correspond to only translation and the resulting PD is

called the translational PD; when this transformation corresponds to both translation and rotation,

the resulting PD is called the generalized PD.

For convex polytopes, exact translational PD can be computed using the Minkowski sum (van den

Bergen, 2001; Agarwal et al., 2000; Kim et al., 2002a). For non-convex objects, the PD can be

computed using a combination of convex decomposition, pairwise Minkowski sums, and union

computation (Kim et al., 2002b). These algorithms are applicable to closed polyhedral shapes.

The union computation has a high computational complexity. To address this issue, it is often

approximated using rasterization hardware (Kim et al., 2002b).

Most practical techniques for translational PD compute local PD or some approximation of

global PD. Local PD algorithms only take into account local overlapping features (vertices, edges,

and faces), and compute a transformation to separate those features (Guendelman et al., 2003; Redon

and Lin, 2006; Lien, 2009; Tang et al., 2009, 2012). For example, local intersection volume and its

derivative are used for volume-based repulsion in (Wang et al., 2012a). Distance fields are also used

for local translational PD computation (Heidelberger et al., 2004) and can be computed in realtime

using GPUs. Point-based Minkowski sum approximation (Lien, 2008) can also compute global

translational PDs.

Exact generalized PD can be computed by constructing the exact contact space and then search-

ing the contact space for the closest point to a given query (Zhang et al., 2007c). However, due to

high time and storage complexity, most generalized PD algorithms use optimization-based tech-

niques (Nawratil et al., 2009; Zhang et al., 2007b; Je et al., 2012; Tang and Kim, 2013) and compute

a locally optimal solution based on local approximation of the contact space.

16

Machine learning techniques have been used for collision detection (Doshi et al., 2007; Pan et al.,

2011). However, these techniques cannot be used for PD computation directly. One reason is that in

practice, checking for collisions is much easier than computing the PD between overlapping objects.

2.3 Background and Overview

In this section, we introduce our notation and give an overview of our approach. We first present

PD formulation in terms of configuration space and then describe our approach to computing approx-

imate Ccont using learning techniques, which is then used for efficient computation of approximate

PD.

2.3.1 Contact Space and PD Formulation

2.3.1.1 Contact Space

As we mentioned in Section 1, the contact space Ccont is the boundary of Cobs and is denoted as

Ccont = ∂Cobs. We use the notation c(q) ∈ {−1,+1} to denote the collision state of a configuration

q, i.e., c(q) = +1 if q ∈ Cobs and c(q) = −1 if q ∈ Cfree.

2.3.1.2 PD Formulation

We define global penetration depth as the minimum motion or transformation required to separate

two intersecting objects A and B (Agarwal et al., 2000; Kim et al., 2002a):

PD(A(q0), B) = min
q∈Ccont

dist(q0,q), (2.1)

where q0 is an in-collision configuration and q is a configuration that lies in the contact space

Ccont. We use the notation dist(·, ·) to represent the distance between two configurations, which

may correspond to any metric defined on the C-space. The contact point or configuration for which

PD(A,B) attains its minimal value is denoted as qc = argminq∈Ccont
dist(q0,q).

In this chapter, we focus on the translational and rotational motion. Different types of motion

require different dist(·, ·) metrics. For translational PD (PDt), the commonly used dist(·, ·) is the

standard Euclidean distance metric between vectors corresponding to the configurations. Many

17

distance metrics have been proposed for generalized PD (PDg) computation, including weighted

Euclidean distance (Wang et al., 2012b), object norm (Kazerounian and Rastegar, 1992; Je et al.,

2012; Tang and Kim, 2013), and displacement distance metric (Zhang et al., 2007b). We use the

object norm metric in our algorithm, which is defined as:

dist(qi,qj) = µ1q
2
1 + µ2q

2
2 + µ3q

2
3 + q2

4 + q2
5 + q2

6, (2.2)

where (q1, q2, q3) and (q4, q5, q6) measure the relative rotation and the relative translation between

two configurations qi and qj , respectively. (q0, q1, q2, q3) corresponds to the relative quaternion

between these two configurations, where q0 = (1−q2
1−q2

2−q2
3)1/2. µi is the weight on the rotational

component and is computed as (Zhang et al., 2007b):

µ1 =
4

Vol
Ixx, µ2 =

4

Vol
Iyy, µ3 =

4

Vol
Izz, (2.3)

where diag(Ixx, Iyy, Izz) represents the diagonal of the inertia matrix of the object A and Vol is the

volume of the object A.

2.3.2 Approximate Ccont Computation

To construct a representation of the configuration space, we use an offline learning algorithm as

shown in the left box in Figure 2.1. We first generate a small set of uniform samples in a subspace of

C-space for two given objects. Next, we justify whether these configurations lie in Cfree or in Cobs

by performing exact collision checking between the two objects. Given the collision states (−1 or

+1) of all configuration samples, a coarse approximation to the contact space, LCS0 (Figure 2.1(b)),

is computed using classifiers, where LCS stands for Learned Contact Space. Next, we select new

samples in C-space to further improve the accuracy of the initial representation LCS0 using active

learning. During active learning, we either select samples that are far away from prior samples

(exploration) (Figure 2.1(c)) or samples that are near LCS0 (exploitation) (Figure 2.1(d)). After

the new samples are generated, we compute an updated approximation LCS1 (Figure 2.1(e)) based

on incremental machine learning techniques. We repeat this process, generating a sequence of

approximate representations LCS0, LCS1, ..., with increasing accuracy. This iterative process is

repeated until the collision states of all the new samples can be correctly predicted by the current

18

approximation. The final result LCS (Figure 2.1(f)) corresponds to a smooth surface approximation

of the contact space.

2.3.3 Approximate PD Computation

Given the approximate representation of the contact space, we can then compute the approximate

global PD by performing a nearest-neighbor query in the Ccont. The definition of approximate

penetration depth is analogous to the exact penetration depth in Equation 2.1:

PD(A(q0), B) = min
q∈LCS

dist(q0,q), (2.4)

Thus, the accuracy of PD is determined by the accuracy of LCS.

As shown in Figure 2.1(g), given a relative configuration q0, we perform a nearest-neighbor

search to find a configuration that is closest to the decision boundary LCS and then project it onto

LCS. We denote this projection result as qc. Finally, the distance between q0 and qc is computed

using an appropriate distance metric dist(·, ·) and the result is an approximation to the exact PD

value.

Figure 2.1: This figure shows the offline computation pipeline for Ccont approximation and the
runtime algorithm to compute the PD for a given query configuration. The different approximations
of LCS are shown below the corresponding stages. We use green points to indicate collision-free
configuration samples and red points to indicate in-collision samples.

19

2.4 Contact Space Construction via Machine Learning

We now present our algorithm for the offline learning of the contact space and the computation

of LCS. Different stages of this algorithm are shown in Figure 2.1.

2.4.1 Initial Sampling

We perform uniform sampling in C-space to obtain a set of configuration points. Rather than

sampling the entire C-space, we generate samples in a subspace that contains Ccont. Given two objects

A and B, the contact space Ccont is contained in the in-collision space of their bounding volumes

BV (A) and BV (B). We choose to use axis-aligned bounding boxes (AABB) as the underlying BVs

for PDt computation, due to their translational invariance in R2 and R3. Similarly, we use spheres

as the underlying BVs for PDg computation due to their translational and rotational invariance in

SE(2) and SE(3).

The uniform sampling in the in-collision space of BV (A) and BV (B) can be implemented as

follows. For PDt computation, the in-collision space of BV (A) and BV (B) is a box region, since

it is the Minkowski sum of two axis-aligned bounding boxes. Samples uniformly distributed within

this box region are guaranteed to cover the entire Ccont.

For PDg computation, suppose that the given two bounding spheres are (cA, rA) and (cB, rB),

where c denotes a sphere center and r denotes a sphere radius. We generate configuration samples for

which these two bounding spheres are in collision. These samples correspond to all (R,T) satisfying

‖RcB + T− cA‖2 ≤ rA + rB , where R and T are the rotational and translational components of a

configuration q. We first generate one sample for the rotational component R. For 2D rotation, we

simply perform the uniform sampling within [0, 2π]; for 3D rotation, we use the method presented

in (Shoemake, 1992) to sample SO(3) uniformly. After a random R is computed, the translational

component T is uniformly distributed within a sphere ‖T− (cA −RcB)‖ ≤ rA + rB; the uniform

sampling within a sphere can be implemented using the well-known inverse-transform method. By

repeating the above process many times, we can generate a sequence of (R,T) uniformly distributed

within the contact space of A and B’s bounding spheres.

20

2.4.2 Compute LCS0

Given a set of k samples from Cobs(BV (A), BV (B)), we perform exact collision queries

between A and B to check whether these samples are within in-collision space or not. Note that

performing Boolean or discrete collision queries between complex models is a much easier problem

compared to PD computation, as shown in Section 2.6.4. Our goal is to learn an approximate

representation LCS0 from these configurations. In particular, LCS0 corresponds to a decision

function f(q) = 0 that is fully determined by a set of configurations S in C-space. We refer to f(q)

as the classifier and use it to predict whether a given configuration q is collision-free (f(q) < 0)

or in-collision (f(q) > 0). S corresponds to the support vectors, which are a small subset of

configuration samples used in learning. Intuitively, S are the samples that are closest to Ccont.

Other options exist for computing the approximate contact space. One alternative is to use surface

fitting techniques to approximate the contact space by an implicit function, but this becomes more

challenging for high-dimensional configuration spaces (e.g., 6-DOF C-space). Another possibility

is to use regression-based learning techniques to approximate the contact space. However, such

techniques typically require an improved or continuous approximation of PD values at these samples,

which is much harder to compute compared to discrete collision queries.

2.4.2.1 Nonlinear Classifier based on SVM

We use the SVM classifier (Vapnik, 1995) to learn LCS0 from the initial sampling of k con-

figurations. A SVM generates a decision function that is a smooth nonlinear surface. We use

the hard-margin SVM, as the underlying samples can always be separated into collision-free and

in-collision spaces. Intuitively, a SVM uses a function to map the given samples {qi} from the

input space into a higher (possibly infinite) dimensional feature space. A SVM computes a linear

separating hyperplane characterized by parameters w and b. The hyperplane’s maximal margin is in

the higher dimensional feature space. The hyperplane corresponds to a nonlinear separating surface

in the input space. The w is the normal vector to the hyperplane, and the parameter b determines the

offset of the hyperplane from the origin along the normal vector. In the feature space, the distance

between a hyperplane and the closest sample point is called the ‘margin’, and the optimal separating

hyperplane should maximize this distance. The maximal margin can be achieved by solving the

21

following optimization problem:

min
w,b

1

2
‖w‖2 (2.5)

subject to ci(w · φ(qi) + b) ≥ 1, 1 ≤ i ≤ k.

where ci ∈ {−1,+1} is the collision state of each sample qi.

Let K(qi,qj) = φ(qi)
Tφ(qj) represent the kernel function (i.e., a function used to calculate

inner products in the feature space). The distance between two points φ(qi) and φ(qj) in the feature

space can be computed as:

‖φ(qi)− φ(qj)‖

=
√
K(qi,qi) +K(qj ,qj)− 2K(qi,qj). (2.6)

In our algorithm, we use the radial basis function (RBF) as the kernel: K(qi,qj) = exp(−γ‖qi −

qj‖2), where γ is a positive parameter. In practice, we use γ = 20. We use the RBF kernel because

it maintains the distance ranking in both the input space and the feature space due to the fact that

‖φ(qi)− φ(qj)‖22 = 2− 2 · exp(−γ‖qi − qj‖22).

The solution of Equation 2.5 is a nonlinear surface in the input space (and a hyperplane in the

feature space) that separates collision-free and in-collision configurations. This solution can be

formulated as:

f(q) = w∗ · φ(q) + b∗ =
k∑
i=1

αiciK(qi,q) + b∗, (2.7)

where w∗ and b∗ are the solutions of Equation 2.5 and αi ≥ 0. The vectors qi corresponding to the

non-zero αi are called the support vectors, which we denote as S. Intuitively, the support vectors are

those samples closest to the separating hyperplane f(q) = 0, as shown by the larger red and green

points in Figures 2.1(b) and 2.1(g). Thus, LCS0 consists of an implicit function fLCS0(q) = f(q)

and a set of samples SLCS0 = S (i.e., the support vectors), which are used to approximate the exact

contact space.

22

2.4.3 Refine LCS0 using Active Learning

We refine LCS0 using active learning. The goal is to actively select new samples so that a better

approximate contact space representation, LCS1, can be obtained by incorporating these samples

into LCS0. We use a combination of exploration and exploitation (Huang et al., 2010). The idea is

to determine whether to explore or to exploit by flipping a biased coin with a certain probability for

landing on heads (initially 0.5). If the result is a head, we apply exploration; if it is a tail, we apply

exploitation. The probability of landing on heads is adjusted according to the fraction of exploration

samples’ collision states that are correctly predicted by the current LCSi. The new samples are

used to update LCS0 and generate a new approximation LCS1 (or refine from LCSi to LCSi+1).

We repeat the active learning step until all the new samples can either be correctly predicted by the

current LCSi, or the final result (represented as LCS) has sufficient accuracy to approximate Ccont.

Later in Section 2.6, we show that active learning results in improved convergence compared to

uniform or random sampling schemes.

2.4.3.1 Exploration

LCS0 may miss some holes or components corresponding to collision-free regions, if no initial

samples were generated inside those regions. As a result, there may be some portions that LCS0

may incorrectly classify, as shown in Figure 2.1(c). In this case, exploration refers to generating

samples far away from prior samples in order to explore the regions not well-sampled by the current

LCSi. In our algorithm, we use random sampling to explore these new regions (Figure 2.1(c)). As

shown in Figure 2.1(e), two new collision-free regions (marked as blue curves) are found using

exploration. After each exploration sampling step, we compute the fraction of the new samples that

are not correctly predicted by LCSi to determine whether the exploration improves LCSi+1. If this

cutoff fraction is large (e.g., 0.3), then we increase the probability for exploration; otherwise we

decrease it.

2.4.3.2 Exploitation

Exploitation refers to generating samples near the decision function of a given approximation

LCSi.

23

For exploitation, we use a simple method based on the maximal margin property of SVMs. The

maximal margin property (Vapnik, 1995) states that in the feature space, the decision function will

have the same distance to support vectors with different labels (i.e., collision-free or in-collision).

In order to obtain a sample near the decision function fLCS0 = 0, we first choose a pair of support

vectors that are close to each other, but have opposite labels. Based on the maximal margin property,

the midpoint of the two supporting vectors lies on or near the decision function. For nonlinear

(b) feature space (c) input space

� �1
() ()

2
i j
q qI I�

()
i
qI

()
j

qI

i
q

j
q

� �1 1
() ()

2
i j
q qI I I� ª º�« »¬ ¼

LCS

(a) input space

Figure 2.2: Exploitation in SVMs: (a) support vectors are on different sides of the decision function
(qi and qj) in the input space; (b) their midpoints (black points) are computed in the feature space;
(c) the pre-images of the midpoints lie near the decision function and can be used for exploitation.

SVMs, the closest point and interpolation computations are performed in the feature space. As

shown in Figure 2.2, we first use the distance metric mentioned in Equation 2.6 to find a pair of

supporting vectors qi and qj . Next, we compute their midpoint 1
2(φ(qi) + φ(qj)) (shown as black

points in Figure 2.2(b)). However, since the resulting midpoint may not have a pre-image in the

input space, we search the input space for a point q whose image φ(q) in feature space is closest to

1
2(φ(qi) + φ(qj)):

min
q

‖1

2
(φ(qi) + φ(qj))− φ(q)‖2

⇔ max
q

K(q,qi) +K(q,qj).

(2.8)

The solution is found using an optimization solver, in which the midpoint qi+qj
2 in the input space is

used as the initial guess. In our benchmarks, this optimization solver tends to converge quickly (in

less than 10 iterations).

2.4.4 Incremental Learning

Instead of computing a new decision function from scratch using all the previous samples, we

apply incremental learning techniques to efficiently compute LCSi+1 from LCSi. Incremental

24

learning utilizes a small set of new samples to update LCSi. The decision function of LCSi serves

as the initial guess for generating LCSi+1. The incremental SVM (Karasuyama and Takeuchi, 2009)

can update the current result generated using SVMs; the key is to retain the optimality condition of

Equation 2.5 (i.e., the Kuhn-Tucker condition) on all prior samples while adding new samples. This

is achieved by adjusting the coefficients αi and b in Equation 2.7 and by adjusting support vector

set S. The coefficient adjustment and the support vector changes are guided by the gradient of the

objective function in Equation 2.7.

2.4.5 Terminating Active Learning

Active learning terminates when either of these conditions has been satisfied:

1. The collision states of all the new samples generated during exploration and exploitation can

be correctly predicted by the current approximation LCSi.

2. The total number of samples used in active learning iterations is more than a user-specified

threshold.

The first condition guarantees that all the configurations used for learning LCS are consistent (i.e.,

they can be correctly predicted by LCS). This implies that the current LCS is a close approximation

of the underlying contact space. The second condition controls the error in PD computation. As

more samples are used, we get a better approximation to Ccont, and thereby a lower PD error.

2.5 Approximate PD Computation

We use the learned approximate contact space LCS to perform PD queries at runtime. This

section describes details on the runtime algorithm. It consists of two parts: local LCS refinement

based on consistency checks, and computing the nearest configuration on LCS.

2.5.1 Local LCS Refinement

Let q0 be a configuration that corresponds to overlapping rigid objects A and B. The exact

collision check between these objects is performed using bounding volume hierarchies. We also

compute the approximate collision state corresponding to q0 using LCS: i.e., we check whether

(f(q0) > 0) as that corresponds to an in-collision configuration. It is possible that the collision state

25

predicted using LCS may be different from that computed by the exact algorithm, which implies

that LCS is not sufficiently accurate at approximating the contact space in the neighborhood of q0.

In this case, we refer to q0 as an inconsistent configuration; otherwise, it is consistent. Generally,

an inconsistent configuration occurs when the query is located in a C-space region that is not well

sampled during the learning phase.

Our runtime algorithm first checks whether a given query q0 is consistent. If q0 is inconsistent,

q0 corresponds to a collision-free configuration predicted by LCS (f(q0) < 0) and its distance

to LCS is more than a user-specified error threshold. In this case, we locally refine LCS by

incorporating q0 into LCS using incremental learning (Section 2.4.4). This local refinement of LCS

improves the query efficiency and the accuracy of PD computation (Equation 2.11).

During each runtime query, we perform an incremental learning step for an inconsistent single

configuration. This incremental learning has an runtime overhead of O(1). Moreover, this local

refinement step improves the accuracy of LCS in local regions where more PD queries are potentially

performed by an application during runtime. As a result, this step results in more accurate answers

for those nearby queries by exploiting the spatial coherence in the configuration space.

2.5.2 LCS Projection

Given a consistent configuration q0, we search for the closest configuration on LCS to compute

the PD. In particular, we project q0 onto the decision boundary fLCS = 0 to obtain qc, the nearest

configuration on LCS. In this case, the approximate PD is computed using dist(q0,qc) function. For

SVM classifiers, the projection computation can be reduced to a constrained optimization problem:

min
q

dist(q0,q), subject to fLCS(q) = 0. (2.9)

A key challenge is to perform this projection efficiently and ensure that the optimization algorithm is

not trapped in a local minima, as the shape of the decision function can be complicated. In order

to deal with these issues, we perform the computation in two phases: first, we perform a k-nearest-

neighbor search in C-space to compute the configuration qv ∈ SLCS (i.e., the configuration among

the support vectors) that is closest to q0 based on our dist(·, ·) metric. Next, we use qv as an initial

26

guess to the constrained optimization problem and compute the closest configuration on the LCS.

Since qv is a configuration very close to the decision boundary, it serves as a good initial guess.

We use different nearest-neighbor (NN) search algorithms to compute qv, depending on whether

we are performing this search in 3-DOF C-space or 6-DOF C-space. For 3-DOF C-space, dist(·, ·)

corresponds to the Euclidean distance metric, and we use a kd-tree to accelerate NN computation.

For 6-DOF C-space, we use a hierarchical clustering algorithm for efficient NN search (Muja and

Lowe, 2009).

2.6 Analysis

In this section, we analyze various characteristics of our algorithm, including errors in PD

computation, benefits of active learning, and time and space complexity.

2.6.1 Error in LCS and in PD Computation

Since our approach is probabilistic, we compute a bound on PD approximation based on expected

error (Vapnik, 1995), which corresponds to the average error when LCS is applied to predict the

collision state or PD value for a new configuration in the C-space. This error can be expressed as:

ecol = E |ecs(q)| , (2.10)

where ecs(q) = 0 if q is a consistent configuration, and ecs(q) = 1 if q is inconsistent. Expectation

E is calculated from a series of random configurations or queries. Typically, these queries arise from

an application (e.g., dynamic simulation), and we assume that they follow a uniform distribution in

C-space.

The accuracy of approximate global PD computation is measured by the expected error that

arises when using LCS to compute the PD for a random configuration in C-space:

ePD = E
∣∣PD(A(q), B)− PD(A(q), B)

∣∣ . (2.11)

We scale the objects such that the maximum dimension of the subspace Cobs(BV (A), BV (B)) is

equal to 1. The accuracies of approximate global PD and approximate contact space are closely

related: a small value of ecol implies a small value of ePD and vice versa.

27

200 400 600 800 1000
0

2

4

6

8

10

#samples

e c
o
l%

(a) ecol for 2D spiders

2000 4000 6000 8000 10000
0

2

4

6

8

10

#samples

e c
o
l%

(b) ecol for 3D cup-spoon

Figure 2.3: Relative error convergence of active learning (blue) vs. uniform sampling (red) for 2D
and 3D object pairs. These results demonstrate the benefits of active learning in terms of requiring
fewer samples and improved accuracy.

2.6.2 Benefits of Active Learning

A key component of our algorithm is the computation of LCS by generating appropriate

samples in the configuration space. The simplest choice is to perform uniform sampling in

Cobs(BV (A), BV (B)) or to use some other random sampling scheme. Instead, we use a com-

bination of active and incremental learning techniques to refine LCSi and improve its accuracy.

The time and space complexity of the LCS precomputation phase is a function of the number of

samples used for active learning iterations. The number of samples required to achieve a given error

bound ecol depends on both the active learning technique and the underlying classification method

used within active learning iterations. It is non-trivial to derive a tight bound on the number of

samples required for a specific combination of active learning and classification algorithms. However,

we use general results on the sample complexity of active learning (Hanneke, 2013) to show the

benefits of our approach.

Theorem 2.1. If the number of samples used in active learning iterations of LCS computation is

more than N , where N = O(log(1/(εδ)), then there exists one active learning technique which can

guarantee that with probability at least 1− δ, the expected error of the LCS result will satisfy the

bound ecol ≤ ε.

28

Intuitively, this theorem states there exists a particular active learning technique that will achieve

a given bound on LCS approximation error with high probability. A proof of this theorem can be

obtained based on the CAL (Cohn-Atlas-Ladner) algorithm (Cohn et al., 1994). Our LCS computa-

tion is guaranteed to satisfy a bounded error with high probability, if more than N = O(log(1/(εδ))

samples are used. However, the CAL active learning algorithm is not practical (Hanneke, 2013) and

rather we use a combination of exploration and exploitation for active learning (Section 2.4.3) in our

LCS computation algorithm.

Many applications use exploration and exploitation for active learning algorithms. We expect

that the use of exploration and exploitation likely also results in a bound similar to Theorem 2.1,

although the exact derivation of such a bound is a good topic for future research.

Since ecol and ePD are closely related to each other, Theorem 2.1 also implies that ePD decreases

exponentially with the number of samples. In contrast, when using a uniform sampling strategy to

learn the contact space, LCS converges to the exact contact space at a polynomial rate as the number

of samples increases (Mohri et al., 2012):

Theorem 2.2. When using uniform sampling, if the number of samples is more than N , where

N = O(1
2ε2

log(2/δ)), then with probability ≥ 1− δ, we have the error bound ecol ≤ ε.

We also measured the expected errors, ecol and ePD, in complex 2D and 3D benchmarks, as shown

in Figure 2.3. This demonstrates the high convergence rate and lower error in LCS computation and

PD computation using active learning given the same number of samples.

2.6.3 Benefits of Local Refinement

Our contact space and PD computation approaches are probabilistic algorithms. Their accuracy

is determined by the samples chosen during the learning phase, including the initial samples and

active learning as well as the runtime queries. As more PD queries are performed within a subspace or

a specific region of C-space, the accuracy of LCS in that subspace or region tends to become higher.

This is due to the local refinement step that is performed during runtime whenever we encounter

an inconsistent query configuration. The incremental learning algorithm updates LCS around the

query configuration by taking into account local information in C-space. In many applications,

including dynamic simulation, haptics, or motion planning, a high proportion of sample queries

29

correspond to positions near the two objects A and B. As a result, the runtime query configurations

are relatively close to each other in C-space and the local refinement step improves the accuracy of

LCS in that region. This implies that as more queries are performed in a localized region of C-space,

the accuracy of LCS and PD queries improves. Our algorithm does not make any assumptions about

the application or the distribution of runtime query configurations. We expect that the accuracy of

local refinement will improve at the rate given by uniform sampling (i.e., Theorem 2.2), rather than

at the exponential rate of active learning. In other words, after generating N = O(1/ε2) samples

within a subspace at runtime, the expected error locally around those samples should be less than ε.

2.6.4 Time and Space Complexity

The precomputation or learning phase is performed for each object pair (A,B) in the environ-

ment. The exact collision check is performed using precomputed bounding volume hierarchies.

Given two objects represented as meshes with m and n triangles, the expected cost of a single exact

collision query is Tcol = O(logm+ log n).

(a) LCS0, |S| = 88 (b) LCS5, |S| = 174 (c) LCS9, |S| = 237 (d) LCS12, |S| = 248

Figure 2.4: LCS computation using active learning for PDg query between 2D non-convex shapes
given in Figure 2.1. We show the approximation after i-th iteration and the number of support vectors.
The vertical axis represents the rotational component of the C-space.

Offline Learning: The time complexity for the learning phase can be estimated as

(TLCS0 +

IAL∑
i=1

(TESi + TLCSi)) + Tcol ·
IAL∑
i=1

NLCSi , (2.12)

where TLCS0 is the time complexity to learn the initial approximation; TESi is the time cost to

perform exploitation sampling or exploration sampling in the i-th iteration of active learning; TLCSi

30

(a) LCS0, |S| = 231 (b) LCS5, |S| = 869 (c) LCS9, |S| = 1350 (d) LCS12, |S| = 1572

Figure 2.5: LCS computation using active learning for PDt query between 3D cup and spoon. We
provide the number of support vectors corresponding to LCSi. As shown, the algorithm can compute
a good approximation in a few iterations.

is the time cost for the i-th step of incremental learning, and IAL is the number of iterations performed

during active learning. We denote the number of new samples generated during LCSi as NLCSi . We

perform collision checking for each sample generated during the learning phase; hence the collision

cost is Tcol ·
∑

iNLCSi .

TLCS0 complexity is governed by the SVM classifier. SVM computation boils down to solving a

constrained quadratic optimization problem using the interior point or conjugate gradient method,

and its worst-case complexity is O(N2.3
LCS0

).

Incremental learning combines each new sample into LCS in constant time, and hence we have

TLCSi = O(NLCSi). TESi is the time cost for exploitation sampling or exploration sampling. For

exploration, TESi = O(NLCSi). The time complexity for exploitation sampling is O(|SLCSi |) as

we perform interpolation between each support vector of LCSi and its k-nearest neighbors, which

can be bounded from above as O(
∑

iNLCSi).

Overall, the time complexity for the learning phase is O(log(1
ε)
∑

iNLCSi +N2.3
LCS0

) + Tcol ·∑
iNLCSi . The space complexity of our algorithm is linear in the number of samples used during

the learning and runtime phases, and is linear in the number of support vectors in the final LCS

representation.

Runtime Query: The time complexity in the runtime query phase depends on |SLCS |, i.e., the

number of support vectors in LCS. |SLCS | depends on the smoothness of the exact Ccont, and not as

much on the geometric complexity of A and B (see Figures 2.4 and 2.5). For example, the Ccont of a

sphere and another object (i.e., the offset surface) is always smooth, and therefore a small SLCS is

31

sufficient to generate a good approximation of Ccont. We also notice this in our benchmarks, where |S|

for the teeth model (40K triangles) is comparable or higher than that for the bunny (70K triangles),

dragon (230K triangles), and Buddha (1M triangles) models. Furthermore, we generated different

low-polygon count representations of the Buddha models and observed similar performance on all

these approximations. Thus, the size of SLCS depends on the combinatorial complexity of Ccont and

is also controlled by the tradeoff between between the accuracy of PD computation and the query

efficiency.

2.7 Implementation and Performance

In this section, we evaluate the performance of our algorithm on complex benchmarks and

compare it with prior techniques. We implemented our algorithm using C++ under Visual Studio

2010 and Windows 7. The two main routines required during the learning phase are exact collision

checking between polygonal models and computing the approximate LCS using support vector

machines. At runtime, we need to perform a nearest-neighbor query in the configuration space and to

compute a projection using constrained optimization. We used the OBBTree algorithm (Gottschalk

et al., 1996) for exact collision detection between polygonal objects. We also used a variant of

the GJK algorithm (van den Bergen, 2001) to compute translational penetration depth between

convex polytopes, to compare against the performance of our method. In our implementation, we set

ε = 2.5% and δ = 0.01.

2.7.1 Benchmarks

We have used many complex benchmarks (Figure 2.6) to evaluate the performance of our

algorithm. In the simulation, there are multiple contacts between the overlapping objects and we

compute PDt and PDg between them. The performance of the learning and runtime phases are

shown in Table 2.1.

For collision detection, we precompute the BVH for each object, which has a linear memory

complexity. For each type of object pair, we precompute the LCS, which takes about 5KB (star-box)

to 110KB (teeth, dragon, bunny, Buddha) memory.

32

2.7.2 Physically-based Simulation using PD

Penetration depth has been used in many dynamic simulators to compute collision response

based on penalty forces or constraint-based solvers. We have integrated our new PD algorithm into

two well-known game physics engines: Box2D (Catto, 2010) and Bullet (Coumans, 2010). These

engines have support for PD computation based on convex decomposition and can compute the local

translational penetration depth between convex polytopes (van den Bergen, 2001). However, convex

decomposition can result in a high number of convex pieces, Moreover, the decomposition-based

approach is mainly limited to closed objects and does not guarantee that two overlapping non-convex

objects will separate, as they only compute local PD using the convex pairs.

Contact Points and Normals: For an inter-penetration configuration q0 and its resulting contact

configuration qc, the contact points and contact normal can be computed in the workspace for two

objects. First, for the contact configuration qc, its nearest collision-free configuration can be computed

using support vectors based on k-nearest neighbor search in C-space. Next, the closest points and

normals of the given two objects can be computed using the proximity query algorithm (Larsen et al.,

2000). Reliable multiple contact points can be obtained using perturbation and persistent contact

caching techniques (Coumans, 2010).

Box2D uses PD computation in the impulse-based collision response algorithm. We demonstrate

the performance of our algorithm on two complex benchmarks (Figure 2.6): (1) angry bird characters

falling into a complex chute and (2) Nazca spiders rolling in a tumbler. We precompute the LCS

approximation for a 3-DOF C-space. The convex decomposition results in 17, 30, and 32 convex

pieces for the BigRedBird, WhiteBird and GreenPig models, respectively. The Nazca spider is

decomposed into 77 convex pieces. We observed an improvement in PD querying of nearly a

factor of 20 when using our active learning algorithm, compared to techniques based on convex

decomposition used in Box2D (see Figure 2.7(a)(b)). The collision response algorithm is based on

the Box2D implementation.

Bullet uses PD computation to handle penetrations in their constraint-based solver. We demon-

strate the benefits of our PD computation algorithm in three scenarios (shown in Figure 2.6): (1)

interlocking 10 rings; (2) a rainfall of 1, 000 rings; and (3) collapse of a tower composed of 5, 500

rings. Each ring consists of 256 triangles and is decomposed into 16 convex pieces for convex-

33

(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure 2.6: Our algorithm computes a global penetration depth between overlapping non-convex and
non-manifold objects. (a) Dynamic simulation of angry bird characters falling into a complex chute
in the Box2D physics engine; (b) rainfall of 1, 000 rings in the Bullet physics engine; (c) a star and a
spoon; (d) a spoon and a cup; (e) multiple contacts between upper and lower teeth (each has more
than 40, 000 triangles). (f-h) benchmarks consisting of complex models (bunny, dragon and Buddha
models have 70K, 230K and 1M triangles, respectively). For each pair of overlapping objects, our
PD algorithm takes less than 0.1 ∼ 2 milliseconds, with less than 2-3% relative error.

34

decomposition. We precompute the LCS approximation for a 6-DOF C-space and use the approxi-

mate result to perform PD queries during the simulation. Compared to the convex decomposition

based algorithm used in Bullet, our PD computation algorithm is about an order of magnitude faster.

We use the standard implementation of contact normal and collision response forces computation

available in Bullet.

Complex 3D Models: We evaluated the performance of our algorithm on many complex models

corresponding to the cup-spoon, moving teeth, bunnies, dragons, and Buddha models (Figure 2.6)

where we performed LCS computation for the 6D C-space. We observed more than an order of

magnitude performance improvement compared to prior methods.

200 400 600 800 1000
0

5

10

15

20

frame

ti
m

e
 (

m
ill

is
e

c
o

n
d

)

(a) PDg: cup-spoon

200 400 600 800 1000

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

frame

ti
m

e
 (

m
ill

is
e
c
o
n
d
)

(b) PDg: rings (Bullet)

Figure 2.7: Relative performance of PD computation for different benchmarks: The blue curve
represents the query time computed by our approximate PDg algorithm. The green curve corresponds
to the query time computed using convex decomposition and local PD between convex pairs. The
orange curve represents the PDg query time computed using point-based approximation (Lien,
2009).

In order to evaluate the error in our approximate PD computation algorithm, we need to compute

the ground truth for the PD value between two objects. For translational PD, the ground truth PD

can be obtained by computing the Minkowski sum between two objects. It is difficult to compute

exact Minkowski sum for complex 3D objects like the teeth or dragon, due to the combinatorial

complexity arises. Instead we use the point-based algorithm (Lien, 2009) to approximate the PD

value and estimate the error of our algorithm. For generalized PD, the ground truth PD computation

is even harder. Therefore, we approximate the exact contact space with many slices of Minkowski

sums. Intuitively, we sample many rotations in SO(3) and then compute Minkowski sums for all the

35

0

10

20

30

0 100 200 300 400 500 600 700 800

ti
m

e
 (

m
s
)

Ours

PolyDepth

(a) (b)

0

50

100

150

P
D

 M
a
g
n

it
u
d
e

PolyDepth

PD by [Lien 2009]

(c)

0

10

20

30

40

50

P
D

 E
rr

o
r(

%
)

Ours

PolyDepth

(d)

Figure 2.8: The performance and accuracy compared to PolyDepth (Je et al., 2012) on the bunny-
bunny benchmark. (a) computational time (on average, 0.10ms based on our algorithm vs. 7.15ms
in PolyDepth); (b) accuracy comparison between our interactive algorithm vs. an offline algorithm
based on Minkowski sum (Lien, 2009); (c) accuracy comparison of PD computation between our
algorithm vs. PolyDepth; (d) our global PD algorithm (blue) has lower error compared to PolyDepth,
which performs local optimization.

rotations. The combination of these Minkowski sums is used as an approximation to the contact space.

We label the PD computed using these offline techniques as ”nearly exact PD” for our algorithm

and comparisons. In practice, our approach is more than an order of magnitude faster than other

algorithms that are based on convex decomposition (e.g., (Kim et al., 2002b) for PDt; (Zhang et al.,

2007c) for PDg) or point-based approximations. We have compared the runtime performance of our

algorithm with these prior global methods in Figure 2.7.

2.7.3 Comparison with Prior Methods

Many existing algorithms perform local analysis of intersection regions and compute local

PD. Other techniques use distance fields and can be accelerated using GPUs. In practice, these

techniques are fast and also handle deformable models. To the opposite, our global PD algorithm

36

0

10

20

30

40

50

0 100 200 300 400 500 600 700 800

ti
m

e
 (

m
s
)

Ours

PolyDepth

(a) (b)

0

50

100

150

P
D

 M
a

g
n
it
u

d
e

PolyDepth

PD by [Lien 2009]

(c)

0

10

20

30

40

50

60

70

80

90

100

P
D

 E
rr

o
r(

%
) PolyDepth

Ours

(d)

Figure 2.9: The performance and accuracy compared to PolyDepth (Je et al., 2012) on the dragon-
dragon benchmark. (a) computational time (on average, 0.12ms based on our algorithm vs. 9.86ms
in PolyDepth); (b) accuracy comparison between our interactive algorithm vs. an offline algorithm
based on Minkowski sum (Lien, 2009); (c) accuracy comparison of PD computation between our
algorithm vs. PolyDepth; (d) our global PD algorithm (blue) has lower error compared to PolyDepth,
which performs local optimization.

involves preprocessing and is mainly designed for rigid objects. The performance of our runtime

query (about 0.1 ∼ 2 milliseconds) is comparable to or faster than prior local PD algorithms. The

main benefit of our approach over local PD methods is the computation of global translational and

rotational PD, which provides a more reliable measure of separating two overlapping objects. Other

algorithms reduce PD computation to constrained optimization (Nawratil et al., 2009; Zhang et al.,

2007b; Je et al., 2012; Tang and Kim, 2013). In these techniques, a sequence of configuration

samples on the contact space are iteratively computed until a local minimum configuration is found.

The performance of these algorithms heavily relies on the initial guess of the local optimization,

and it is hard to provide error bounds in terms of global PD (see Figure 2.8 and 2.9). However,

compared to our method, these optimization-based algorithms have several advantages. First, they

require no pre-computation and can be applied to environments with many obstacles. Our method’s

37

dependence on pre-computation limits its application. Moreover, if suitable initial guesses are chosen

for local optimization, optimization-based PD algorithms such as (Tang and Kim, 2013) may provide

better results than our method on generalized PD computation involving rotations, especially for

queries with small penetration depths. This is due to some issues of our approach related to the

use of sampling-based approaches and the design of configuration space metrics (more details in

Section 2.8).

Model
Offline Learning LCS Runtime Query

Initial Learning Active Learning
total (s) mem

time (ms)
ePD(%)

#smpls time (s) #smpls |S| ecol (%) time (s) NN projection refine total

2D PDt

star vs. room 100 0.006 1000 374 1.88 0.15 0.156 4.4 0.065 0.02 0.03 0.115 0.023
monkeys 100 0.4 1000 346 0.11 2.74 3.14 4.2 0.06 0.01 0.03 0.10 0.008

spiders 100 0.01 1000 389 1.37 0.27 0.28 4.7 0.066 0.01 0.02 0.096 0.025

3D PDt

star vs. spoon 1000 0.08 10000 1105 0.59 1.245 1.33 17 0.43 0.21 0.02 0.66 0.012
cup vs. spoon 1000 0.25 10000 1472 0.75 4.46 4.81 23 0.54 0.22 0.03 0.79 0.019

rings 1000 0.20 10000 1224 0.56 11.99 12.01 19 0.66 0.12 0.05 0.83 0.016
teeth 1000 0.33 10000 2132 1.3 43.21 43.54 34 1.3 0.2 0.08 1.58 N/A

bunnies 1000 0.15 10000 666 1.7 36.49 36.64 11 0.1 0.12 0.04 0.26 2.0
dragons 1000 0.17 10000 854 1.8 31.11 31.28 14 0.13 0.11 0.05 0.29 1.9
Buddha 1000 1.7 10000 1384 1.8 37 38 22 0.18 0.10 0.09 0.37 1.8

2D PDg

star vs. room 100 0.005 2000 436 2.0 1.276 1.281 6.9 0.08 0.03 0.02 0.13 0.021
monkeys 100 0.42 2000 545 0.43 5.84 6.26 8.7 0.07 0.02 0.02 0.11 0.013

spiders 100 0.011 2000 540 0.8 1.16 1.17 8.6 0.08 0.02 0.01 0.11 0.018

3D PDg

star vs. spoon 1000 0.095 10000 1731 1.9 37.49 37.58 48 0.5 0.25 0.05 0.80 N/A
cup vs. spoon 1000 0.3 10000 2107 1.2 78.34 78.64 59 0.3 1.0 0.03 1.33 N/A

rings 1000 0.25 10000 1977 1.3 223.1 223.4 55 0.82 0.21 0.03 1.06 N/A
teeth 1000 0.54 10000 3216 2.8 476.43 476.97 90 2.2 0.2 0.04 2.44 N/A

bunnies 1000 0.33 10000 2283 3.1 342.31 342.64 64 0.89 0.12 0.02 1.03 N/A
dragons 1000 0.37 10000 2387 2.8 378.92 477.29 69 1.01 0.18 0.03 1.22 N/A
Buddha 1000 2.3 10000 3765 2.7 643 645 105 1.20 0.28 0.07 1.55 N/A

Table 2.1: Performance of our PD algorithm on 2D and 3D models: The learning phase includes
the number of samples, size of support vectors, final memory usage (KB), and precomputation time.
We also give a timing breakdown of runtime queries. The PD error is computed by comparing the
accuracy of PD with prior algorithms used for PD computations. For accurate PDt computation, we
use the accurate, offline algorithm of (Lien, 2009) or use a combination of convex decomposition
and Minkowski sums. Since no accurate and efficient algorithms are known for many PD queries
(e.g., PDt computation for non-closed meshes like teeth model; PDg computation for 3D models),
we do not analyze the accuracy of our algorithm in such cases (shown as N/A).

Existing algorithms either locally analyze intersection regions or use distance fields to compute

local PD. In practice, these techniques are computationally efficient and are capable of handling

deformable models but only compute local PD. In contrast, our global PD algorithm computes

global translational and rotational PD, which provides a more reliable measure of separating two

overlapping objects. It should be noted that our algorithm requires preprocessing and is mainly

designed for rigid objects. The performance of our runtime query (about 0.1 ∼ 2 milliseconds) is

comparable to or faster than prior local PD algorithms. Other algorithms reduce PD computation to

constrained optimization (Nawratil et al., 2009; Zhang et al., 2007b; Je et al., 2012; Tang and Kim,

38

2013) in which a sequence of configuration samples on the contact space are iteratively computed

until a local minimum configuration is found. The performance of these algorithms heavily relies on

the initial guess of the local optimization, and it is hard to provide error bounds in terms of global

PD (see Figure 2.8 and 2.9). These techniques require no pre-computation and can be applied to

environments with many obstacles but the solution heavily depends on the initial guess. If suitable

initial guesses are chosen, optimization-based PD algorithms such as (Tang and Kim, 2013) may

provide better results than our method on generalized PD computation involving rotations, especially

for queries with small penetration depths. This is due to some issues of our approach related to the

use of sampling-based approaches and the design of configuration space metrics (more details in

Section 2.8).

2.7.4 Implementation Issues

Collision Checking Our method is able to correctly compute the contact space for complex non-

convex and non-manifold models assuming that a ‘correct’ collision detection routine is available

for input geometric data; the ‘correctness’ means that the collision result provided by the collision

checking routine can correctly reflect objects’ collision status in physical world. In our implemen-

tation, we used the OBBTree algorithm (Gottschalk et al., 1996) for collision checking between

objects represented as mesh soups. Since mesh soups lack connectivity information between mesh

triangles, the above assumption may not hold in some degenerate cases. For instance, if two objects

are so different in scale that one object A can be completely contained inside the other object B, the

collision checking algorithm will always report collision-free for configurations in which A locates

inside B, while in physical world A and B should be in-collision. Thus, our learning framework

will not provide a correct contact space in this case. In addition, when the mesh representation of

the object B has a hole larger than the size of the object A (Figure 2.10), the collision checking

routine will also give incorrect results. To handle these degenerate cases, one possible solution is to

use sophisticated collision detection algorithms such as (Ju, 2004) to recover or estimate objects’

volumetric information from mesh soups, and then applying volumetric collision checking between

objects.

SVM Implementation We use the hard-margin SVM (Equation 2.5) in Section 2.4.2.1 to introduce

the main concept underlying our learning framework, since all in-collision samples and collision-free

39

(a) (b) (c)

Figure 2.10: One example for the degenerate case of configuration space approximation. We are
given two objects: one large circle and one small circle. (a) When the geometric representations of
both objects are exact, the contact space can be illustrated as dashed circles. (b) When the big circle
has a small hole, the contact space (the dashed curves) is slightly different with the exact contact
space in (a). (c) If the big circle has a large hole, the contact space (the dashed curve) is topologically
different with the exact contact space in (a). In many applications, the geometric representation of
objects have hole artifacts, which may result in low quality contact spaces similar to (c).

samples are separable. However, we use a soft-margin SVM in our implementation, which is defined

as follows:

min
w,b,ξ

1

2
‖w‖2 + C

k∑
i=1

ξi (2.13)

subject to ci(w · φ(qi) + b) ≥ 1− ξi, ξi ≥ 0 1 ≤ i ≤ k.

Here, slack variables ξi measure the degree of misclassification of the data; the objective function

is increased by a term which uses a weight variable C to penalize non-zero ξi. The optimization

becomes a trade-off between a large margin and a small error penalty.

In practice, a soft-margin SVM behaves better than a hard-margin SVM, even when data is

separable. The reason is that for a hard-margin SVM, a single outlier (e.g., a sample extremely close

to the actual contact space) can determine the boundary, which makes the classifier overly sensitive

to the data. For contact space learning, a hard-margin SVM will generate an uneven contact space

with jagged edges, while a soft-margin SVM can provide a smooth contact space.

However, the soft-margin SVM needs to select an appropriate penalty weight C, which is not

an easy task. A suitable value of C is related to the set of samples used to learn a contact space; it

40

is also related to the number of samples used. A small value of C will result in a large error in the

approximate contact space, while a large C will result in a non-smooth contact space or a contact

space approximation with an incorrect topology. Theoretically, cross-validation provides a systematic

manner for choosing C, but it is computationally expensive. In our experiments, we run the learning

algorithms with different C values and then choose the C generating an approximate configuration

space with the smallest error.

Learning on Non-Euclidean Structure Our algorithm attempts to compute a global representation

for the contact space, i.e., a representation that is valid and accurate for any points in the contact

space. An accurate global representation is challenging in the case of non-Euclidean spaces such as

SE(3) because it is difficult to have an Euclidean space globally approximate a non-Euclidean space

while also preserving the considered distance metric. However, it is possible to provide a Euclidean

approximation with high accuracy to a non-Euclidean space locally around a configuration. This

approximation strategy is widely used in optimization-based local PD algorithms such as (Nawratil

et al., 2009; Zhang et al., 2007b; Je et al., 2012; Tang and Kim, 2013), in which different heuristics

have been proposed to approximate the contact space locally around an in-contact configuration. The

local approximation of the contact space is easier to compute than the global contact space. However,

a global contact space is only computed once during the pre-computation step and can be reused

during online PD queries. In other words, our method attempts to solve a more challenging problem

than prior methods.

When learning the structure of the contact space in the SE(3) configuration space, we convert

every configuration into a vector in the Euclidean space: for the rotation component of each con-

figuration, we either convert it into a 3-dimensional vector corresponding to the Euler angles, or

into a 4-dimensional vector corresponding to a quaternion. Given the vector representation of each

configuration, we then perform the learning algorithm directly in the Euclidean space. However,

SE(3) in fact is a Lie group and the Euclidean space approximation is only valid locally around each

configuration. More formally, the Euclidean space locally approximates the Lie algebra element

exp(q) of a given configuration q ∈ SE(3), where exp is the exponential map from SE(3) to its

corresponding Lie algebra se(3) (Murray et al., 1994). This assumption might not hold for computing

contact spaces with significant rotation components. In order to learn the non-Euclidean contact

41

space precisely, one possible solution is to directly use learning algorithms on Lie groups (Tuzel

et al., 2008).

2.8 Discrete Sampling, C-space Metrics and Optimization

There are three main factors that influence the accuracy of penetration depth values computed by

our approach: discrete sampling, C-space metrics, and the choice of optimization technique. Since

these three factors are closely related to each other, we first discuss each factor in isolation and then

use examples to show how a combination of these factors influences the PDg computation.

Discrete Sampling Our approach performs discrete sampling in the configuration space and uses the

generated samples to approximate the contact space, which are then used for computing penetration

depth values. The accuracy of the contact space improves with an increase in the number of samples

(Figure 2.3). Since we formulate penetration depth as an optimization problem on the approximate

contact space, a larger number of samples also improves the accuracy of the penetration depth

computation, as we will show later in Figure 2.18. However, due to the curse-of-dimensionality, it is

challenging to generate a sufficient number of samples in higher-dimensional configuration spaces.

This explains why, given the same number of samples, the PDt accuracy on SE(3) is worse than the

PDt accuracy on R3.

C-space Metric The penetration depth formulation in Equation 2.1 requires a suitable metric to

be defined over the entire configuration space, which correctly measures the distance between any

two points in the configuration space. For PDt, we use the Euclidean metric since the underlying

configuration space is Euclidean. However, for PDg, the configuration space is non-Euclidean and

hence the metric selection is more challenging. For a specific application, defining a good metric

in SE(3) is a challenge when applying our learning-based framework. We currently use the object

norm metric (Kazerounian and Rastegar, 1992) defined in Equation 2.2, which uses weights µ1, µ2

and µ3 to balance the relative weight between the rotational and the translational components.

The choice of metric is also closely related to the issue of discrete sampling. During the off-line

learning phase, we generate a finite number of samples in the configuration space; these samples are

used to compute the approximate configuration space. During runtime, a given in-collision query q0

is projected onto the set of these discrete samples via global optimization (i.e., the nearest-neighbor

42

algorithm), to obtain the corresponding in-contact configuration qc. Large µi, i = {1, 2, 3} values

imply a large penalty to configurations’ difference in the rotational component. Theoretically, we

can use PDg to compute PDt when µi →∞, i = {1, 2, 3}, but this is infeasible in practice due to

the use of sampling-based techniques. Among all the pre-computed samples in the configuration

space, there may be no samples with the same rotational component as the query configuration q0.

Thus, our sampling-based framework can only provide an in-contact configuration whose rotational

component is close to that of q0, which may result in incorrect PD value computation.

The selection of µi values in the metric formulation will greatly influence the final PD values.

Large µi values may also result in high “vibrations” in the PD values, especially when the moving

object is rotating. This is because the µi values are the derivatives of the metric function with respect

to the rotational component, and thus large µi values will make the nearest-neighbor algorithm highly

sensitive to the change in the query’s rotational component. As a result, a slight rotation of the

moving object A will result in a large change in the PD value. Large µi values will also cause other

problems. For instance, let us assume that we are given a query configuration with a small penetration.

Intuitively, the PD algorithm should return an in-contact sample which has a translational component

similar to the query and with an appropriate rotational component. However, due to the limited

number of samples for approximating the contact space, it is possible that all the samples closest

to the query in translation have a larger rotational difference with the query, than one sample qbad

that is far away from the query in translation. For large µi values, the difference in the rotational

components dominates the distance between the query and other samples, especially for a query with

a small penetration. As a result, qbad will be the in-contact sample reported by our PD method, even

though it is not the desired result. Such inaccuracy is smaller for a query with a deep penetration,

because the translational difference comprises a larger component of the PD measurement for queries

with deeper penetrations. Similar inaccuracies will arise when the µi values are too small.

The interaction between the object norm metric and sampling-based techniques also results in

the discontinuity of PDg values. Suppose the moving object is collision-free at the beginning; at the

next instance, it is in contact with the obstacles, and finally collides with some obstacles. Intuitively,

the PD value should be zero when the contact first occurs and then should increase continuously.

However, since there are only a finite number of configuration samples in the approximate contact

space, we usually cannot find a sample exactly the same as the in-contact query. Under the object

43

norm metric, the in-contact sample closest to the query always has a non-zero distance to the query,

no matter how many samples are generated for approximating the contact space (because the measure

of a limited number of samples is zero in the continuous configuration space). As a result, the

approximate PD for a given query will suddenly “jump” from a zero value to a non-zero value; such

jumps may not be acceptable in many applications where high fidelity results are required such as

haptics.

If an infinite number of samples are available, the “jump” and vibration problems mentioned

above will disappear. In practice, when the number of samples increases, the accuracy of PDg

improves and the magnitude of “jump” and vibration decreases, as shown in Figure 2.18.

q

q0 q∗

PD

(a) jump

q

q0

q∗

PD

(b) vibration

Figure 2.11: The “jump” and vibration problems when using optimization-based PD algorithms.
The black polygon is the obstacle and the red object is the moving object. (a) Given the in-contact
query configuration q and the initial guess q0, an optimization-based PD algorithm’s result would
be q∗. Apparently, dist(q,q∗) 6= 0 and thus “jump” happens. (b) When the query configuration
q translates slightly compared to (a), the PD value and PD direction may change abruptly. This
is because different initial configurations are chosen for the local optimization and thus vibration
happens.

Optimization Techniques Choosing appropriate optimization techniques is critical for the accuracy

of penetration depth computation. Our approach uses a nearest neighbor routine as the optimization

algorithm due to its dependence on discrete samples. As discussed above, problems related to

configuration space metrics are also closely related to nearest neighbor algorithms. The choice of

optimization techniques is also important for optimization-based PD algorithms (Nawratil et al.,

2009; Zhang et al., 2007b; Je et al., 2012; Tang and Kim, 2013), which use local optimization on the

contact space to find a good penetration depth result. Since the contact space is highly non-convex,

44

the local optimization may be trapped in a bad local minimum if an inappropriate initial configuration

is used. Thus, these approaches may also suffer from problems such as discontinuities in PD values

and vibrations, as illustrated in Figure 2.11. To alleviate these issues, many heuristics have been

proposed in previous optimization-based PD approaches to choose good initial configurations for the

local optimization (Je et al., 2012; Tang and Kim, 2013).

Our learning-based approach can be combined with optimization-based PD algorithms by using

the in-contact configuration computed by our method as the initial guess of optimization-based PD

algorithms. In general, such a combination will not solve the discontinuity and vibration problems in

PD computation. This is because the in-contact configuration computed by our method may be far

away from the global optimal solution and may not be a good initial guess for the local optimizer.

Thus, using optimization-based PD algorithms as a post-processing step cannot guarantee to help.

q3

q4

q5

q6

q7

q8

q1

q2

(a) Rotation movement

q3

q4

q5

q6

q7

q8

q1

q2

qb

qa

(b) Translational movement

Figure 2.12: Examples to illustrate how the configuration space metric influences the result of our
PD algorithm. The large circle is the Cobs. We use small circles to denote configuration samples in
the configuration space: the circle center is the translational component and the arrow’s direction
indicates the rotational component. We use eight configurations to approximate the contact space.
The red circle is the query configuration. In (a), the query rotates counter-clockwise. In (b), the query
performs translation motion.

To better illustrate the above limitation related to SE(3) metrics, global optimization and

sampling-based techniques, we now use two examples (Figures 2.12(a) and (b)) to show our PDg

algorithm’s behavior under different metric settings. In these examples, we use eight configuration

45

samples to approximate the contact space. The translational components of these configurations

are uniformly distributed on a circle with radius 1; these configurations have rotation angles kπ
4 ,

k = 1, ..., 8.

0 1 2 3 4 5 6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

rotation angle

P
D

 v
a

lu
e

(a) µi = 0

0 1 2 3 4 5 6

0.408

0.41

0.412

0.414

0.416

0.418

rotation angle

P
D

 v
a
lu

e

(b) µi = 0.001

0 1 2 3 4 5 6

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

rotation angle

P
D

 v
a

lu
e

(c) µi = 0.01

0 1 2 3 4 5 6

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

rotation angle

P
D

 v
a

lu
e

(d) µi = 0.1

0 1 2 3 4 5 6

0.6

0.8

1

1.2

1.4

1.6

rotation angle

P
D

 v
a

lu
e

(e) µi = 1

0 1 2 3 4 5 6

0.5

1

1.5

2

rotation angle

P
D

 v
a

lu
e

(f) µi = 10

0 1 2 3 4 5 6

1

1.5

2

2.5

3

3.5

4

rotation angle

P
D

 v
a

lu
e

(g) µi = 100

0 1 2 3 4 5 6

2

3

4

5

6

7

8

9

10

11

12

rotation angle

P
D

 v
a

lu
e

(h) µi = 1, 000

0 1 2 3 4 5 6

5

10

15

20

25

30

35

rotation angle

P
D

 v
a

lu
e

(i) µi = 10, 000

Figure 2.13: The result of our PD algorithm on the rotational example shown in Figure 2.12(a). We
plot the PD values for all query configurations during the rotation, with different µi settings for the
configuration space metric.

In the first example (Figure 2.12(a)), the moving object only performs counter-clockwise rotation.

The query’s rotation angle is 0 at the beginning and then incrementally increases to 2π in steps

of π/4. If large weights are assigned to the configuration space metric (i.e., µi values are large in

Equation 2.3), the query’s closest neighbor among the eight contact-space samples would be q1,

46

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

translational movement

P
D

 v
a

lu
e

(a) µi = 0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

translational movement

P
D

 v
a

lu
e

(b) µi = 0.001

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

translational movement

P
D

 v
a

lu
e

(c) µi = 0.01

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

0.5

0.6

0.7

0.8

0.9

1

1.1

translational movement

P
D

 v
a

lu
e

(d) µi = 0.1

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

translational movement

P
D

 v
a

lu
e

(e) µi = 1

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

translational movement

P
D

 v
a

lu
e

(f) µi = 10

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

4.06

4.08

4.1

4.12

4.14

4.16

4.18

4.2

4.22

4.24

translational movement

P
D

 v
a

lu
e

(g) µi = 100

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

12.46

12.47

12.48

12.49

12.5

12.51

12.52

translational movement

P
D

 v
a
lu

e

(h) µi = 1, 000

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

39.284

39.286

39.288

39.29

39.292

39.294

39.296

39.298

39.3

39.302

translational movement

P
D

 v
a
lu

e

(i) µi = 10, 000

Figure 2.14: The result of our PD algorithm on the translational example shown in Figure 2.12(b).
We plot the PD values for all query configurations during the translation, with different µi settings
for the configuration space metric.

corresponding to a rotation angle of 0. When the query’s rotation angle increases from 0 to π/4,

the corresponding PD value will first increase and then decrease. This is because the PD value is

dominated by the difference in rotation angles: when the rotation angle is close to 0 or π/4, this

query is either close to q1 or to q2 respectively, and thus the corresponding PD value is small; when

the rotation angle is near π/8, this query is far from both q1 and q2, and thus the corresponding

PD value is large. This phenomenon is shown in Figure 2.13(f)-(i). From these results for large µi

values, we also observe significant vibrations in PD values when the rotation angle changes. The

47

magnitude of such vibrations decreases when parameters µi become smaller (Figures 2.13(a)-(e)).

In Figure 2.13(a), PD values are constant when µi = 0, since rotational weights in the object norm

metric are zero.

In the second example (Figure 2.12(b)), the moving object only performs translational motion.

At the beginning, the object is in contact with the obstacles. It then moves deep inside the obstacles

along the y-axis till it finally comes into contact with the obstacle again and then separates from

the obstacle. During this motion, the moving object’s rotation angle is fixed at π/8. The results of

our PD algorithm are shown in Figure 2.14. For all µi values, PD values are non-zero for in-contact

configurations at the beginning and end of the movement. As we discussed above, this is because we

only use a finite number of in-contact configurations to approximate the contact space, and none of

them have the same rotation angle (π/8) as the query. However, if µi is small (Figures 2.14(a)-(d)),

PD values first increase and then decrease, which is consistent with our intuition; such phenomenon

disappears for large µi (Figures 2.14(e)-(i)). The reason is that for small µi, the translational

component dominates the PD value. Since the query’s translational distance to the eight in-contact

samples first decreases and then increases, the computed PD value will have the same property.

For large µi, the rotational component dominates the PD value, which does not change because

the query’s rotation angle is fixed. As a result, the query’s PD value only changes slightly during

the movement, and does not first increase and then decrease. Moreover, we observe that for the

translational motion, PD values will not have the strong vibration as in the case of the rotational

motion, though the PD values are less smooth for smaller µi. Our conclusion that PDg for rotation

motion will have larger vibration than PDg for translation motion will also be validated by results in

Figure 2.17.

Based on above experiments on two examples, we provide a detailed analysis about our PD

algorithm’s problem related to configuration space metrics, sampling-based techniques and global

optimization. These examples each only use a few samples in the configuration space. However, the

phenomenon we observed will also explain our method’s behavior when more samples are provided,

because for a 6-dimensional configuration space SE(3), even one million samples do not adequately

cover the entire configuration space. Thus, the issues observed from these examples are essential to

our learning-based PD framework.

48

2.9 Accuracy Comparison with Optimization-based PD Approaches

In order to better analyze the key issues of our learning-based framework with PDt and PDg

computation, we put together four benchmarks as shown in Figure 2.15. In two of these benchmarks

(Figures 2.15(a) and (b)), objects are not rotating. In the other two benchmarks (Figure 2.15(c) and

(d)), objects are translating and rotating. The benchmarks shown in Figures 2.15 (a), (b) and (c) are

chosen so that we can compute the ground truth for penetration depths in these benchmarks.

(a)

(b)

(c)

(d)

Figure 2.15: Benchmarks for analyzing key issues with PDt and PDg and comparing our method
with PolyDepth (Je et al., 2012) and PolyDepth++ (Tang and Kim, 2012). For each benchmark, we
show three frames illustrating different stages of motion (left to right). In benchmark (a), the blue
box is the static obstacle and the red box is moving downwards. In benchmark (b), the blue box is
the static obstacle and the red box is moving sideways and back. In benchmark (c), the blue box is
the static obstacle and the red box is moving downwards and rotating at the same time. In benchmark
(d), the blue polyhedron is the static obstacle and the green polyhedron first moves downwards and
then starts rotating.

49

20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

frame id

P
D

t

Ground truth

Our method

PolyDepth

PolyDepth++

Combination

(a) PDt results for Figure 2.15(a)

50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

1.2

1.4

frame id

P
D

t

Ground truth

Our method

PolyDepth

PolyDepth++

Combination

(b) PDt results for Figure 2.15(b)

20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

frame id

P
D

t

Ground truth

Our method

PolyDepth

PolyDepth++

Combination

(c) PDt results for Figure 2.15(c)

100 200 300 400 500
0

5

10

15

20

frame id

P
D

t

Our method

PolyDepth

PolyDepth++

Combination

(d) PDt results for Figure 2.15(d)

Figure 2.16: PDt accuracy comparison on four benchmarks shown in Figure 2.15.

On these benchmarks, we compare the PDt and PDg accuracy of our method with two state-of-

the-art methods: PolyDepth (Je et al., 2012) and PolyDepth++ (Tang and Kim, 2012). PolyDepth and

PolyDepth++ both use local-optimization techniques to compute penetration depth: PolyDepth can

only compute PDt while PolyDepth++ can compute PDg. Both PolyDepth and PolyDepth++ use

carefully designed heuristics to choose a good initial guess for their local optimization, as proposed

in (Je et al., 2012). Both PolyDepth++ and our method use the object norm metric for measuring the

distance in SE(3). The comparison results are shown in Figures 2.16 and 2.17.

Based on these computation results, we summarize key issues as follows:

PDt computation when objects do not rotate If the objects do not rotate while in motion, our

learning-based method works best by approximating the contact space in R3, i.e., generating samples

50

20 40 60 80 100 120 140
0

0.5

1

1.5

2

frame id

P
D

g

Ground truth

Our method

PolyDepth++

Combination

(a) PDg results for Figure 2.15(a)

50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

frame id

P
D

g

Ground truth

Our method

PolyDepth++

Combination

(b) PDg results for Figure 2.15(b)

20 40 60 80 100 120 140
0

1

2

3

4

5

6

frame id

P
D

g

Ground truth

Our method

PolyDepth++

Combination

(c) PDg results for Figure 2.15(c)

100 200 300 400 500
0

10

20

30

40

50

60

70

80

frame id

P
D

g

Our method

PolyDepth++

Combination

(d) PDg results for Figure 2.15(d)

Figure 2.17: PDg accuracy comparison on four benchmarks shown in Figure 2.15.

in R3. This does not suffer from metric issues as discussed above in Section 2.8, since the Euclidean

metric only considers translations. PolyDepth suffers from problems with local minima in some

cases (Figure 2.16(b)). PolyDepth++ with rotation weights set to zero in the object norm also works

well in some cases (Figure 2.16(a)) but not well in others (Figure 2.16(b)). We also combined the

result of our approach with local optimization but it leads to worse results. As a result, we conclude

that to compute PDt for benchmarks only involving translating objects, our learning-based approach

works best.

PDt computation when objects are translating and rotating For using our learning-based ap-

proach, there are two avenues by which we approach this: a) Recompute contact space in R3 each

and every time a rotation occurs. This will result in very accurate values but is not practical during

51

runtime. b) Compute the contact space in SE(3) once and then do the following: For a given

query configuration q, compute the nearest neighbor q∗ among the set of samples that minimizes

distPDg(q,q
∗) under PDg metric (weighted combination of Euclidean norm and rotation difference

norm). For the computed q∗, we can report the PDt value as distPDt(q,q
∗) under the PDt metric

by zeroing all weights corresponding to rotation. This is only an approximation and does not work

well because it suffers from PDg metric and sampling issues (Figures 2.16(c) and (d)). PolyDepth

also suffers from the vibration issue (Figure 2.16(d)) discussed above in Section 2.8 and does not

offer significant improvements in the results in both benchmarks. PolyDepth++ with rotational

weights set to zero performs well in both benchmarks for PDt computation. A combination of our

learning-based approach and local optimization improves the PDt result significantly but does not

get rid of the vibration issues altogether (Figure 2.16(d)). As a result, we conclude that to compute

PDt for benchmarks where objects are translating and rotating, PolyDepth++ with rotational weights

set to zero is the best choice. If our learning-based approach must be used, it is recommended that

the results are post-processed using a local optimization step performed using PolyDepth++ with the

rotational weights set to zero.

PDg computation Our learning-based approach approximates the contact space in SE(3) and

computes the PDg value based on nearest neighbor samples. In the considered benchmarks, 100, 000

samples is not enough to adequately cover the entire six-dimensional configuration space. This

results in vibrations and inaccurate PDg values. PolyDepth++ works well in all cases (in case of

the benchmark in Figure 2.15(a), it reports a value below ground truth, which is probably caused

due to numerical issues). When combined with local optimization, our learning-based approach

usually improves the accuracy of the result and reduces vibrations, but this is not always the case

(Figure 2.17(d)). However, the results are still not as good as PolyDepth++. As a result, for PDg

computation, it is recommended that PolyDepth++ be used. If our learning-based approach has to be

used, we suggest using it with a large number of samples in combination with PolyDepth++.

For PDg computation, we also observe that the accuracy of our learning-based framework

can be improved significantly by considering a large number of samples, as shown in Figure 2.18.

However, the vibration also increases, on account of switching between nearest neighbor samples.

52

100 200 300 400 500
0

20

40

60

80

100

120

140

160

frame id

P
D

g

10000 samples

100000 samples

500000 samples

Figure 2.18: PDg results of our learning-based framework improve by using a large number of
samples. These results are generated for the benchmark in Figure 2.15(d).

2.10 Limitations and Conclusions

We have presented a novel approach for the computation of translational and generalized PD

between polygonal models. The main idea is to sample the configuration space and approximate the

contact space based on machine learning classifiers. We use support vector machines to approximate

the contact space, and the runtime PD query is reduced to nearest neighbor computation. Furthermore,

we use active learning techniques to select the samples when approximating the contact space. Our

overall approach is general and applicable to all polygonal models. We have demonstrated the

interactive performance of our algorithm on complex, non-convex models and have also used our

algorithm for collision response in game physics engines. To the best of our knowledge, this is the

first approach that is able to compute global and reliable PD between rigid models at interactive rates.

Our approach has a few limitations. First, the precomputation phase must be performed for

each pair of moving objects in the simulation. Thus, in the worst case, its complexity grows as a

quadratic function of the number of objects in the simulation. In addition, the accuracy and running

time of our learning phase is a function of the combinatorial complexity of the contact space and

the sampling scheme. Hence, it is possible that our method may not generate a sufficient number of

53

samples in small, isolated components of contact space, or it may take a large number of iterations.

Moreover, the overall approach is probabilistic, and all our error bounds are derived in terms of

expected error. In addition, the solution to the penetration depth problem (Section 2.3.1.2) is often

not unique or differentiable. Since we compute a bounded-error approximation of PD, there could

be multiple solutions that satisfy those error bounds. This discontinuity in PD formulation and

computation can cause instability in collision response for haptic rendering. In complex rigid-body

simulations with multiple objects, global PD computation can improve the accuracy of the simulation,

but cannot guarantee that it is totally collision-free. Finally, for generalized PD involving rotations,

our method suffers from discontinuities in PD values and vibrations, which are related to discrete

sampling, C-space metrics and the choice of optimization technique. For applications which require

high accuracy for PD values, our suggestion is as follows: for PDt computation when objects do

not rotate, we recommend to use our learning-based approach; for PDt computation when objects

are translating and rotating, we recommend the use of PolyDepth++ with rotation weights set to

zero; for PDg computation, we recommend using PolyDepth++. Our experiments indicate that these

recommendations work for computing PD values, both in the single query case and in the case of

continuous paths.

There are many avenues for future work, including overcoming the stated limitations. The basic

components of our learning and run-time phases, such as SVM learning, collision detection, and

nearest-neighbor computation, can be accelerated using GPU parallelism. We can use other active

learning techniques to improve the sampling as well as other classifiers or learning techniques to

improve the accuracy or convergence of LCS. It would also be useful to derive tight theoretical error

bounds (e.g., Theorem 1) for active learning algorithms based on exploitation and exploration. It

would also be useful to extend the approach to articulated models that take into account self-collisions

between various links. In order to handle deformable models, we aim to develop incremental

techniques that can refine the contact space approximation for deforming objects. It would be useful

to apply this approach for other PD formulations, such as penetration volume (Weller and Zachmann,

2009), which can result in continuous response forces. We also need improved algorithms for

collision response that can guarantee collision-free simulations for interactive applications.

54

CHAPTER 3: C-SPACE APPROXIMATION USING INSTANCE-BASED LEARNING

3.1 Introduction

In motion planning algorithms such as (Kavraki et al., 1996; Kuffner and LaValle, 2000), the

collision detection module is widely used as an oracle to collect information about the free space

and approximate its topology. This module classifies a given configuration or a local path as either

collision-free (i.e., in Cfree) or in-collision (i.e., overlaps with Cobs). Most motion planning algorithms

tend to store only the collision-free samples and local paths, and use them to compute a global path

from the initial configuration to the goal configuration. Typically, the in-collision configurations or

local paths are discarded.

In this chapter, we incrementally construct an approximate C-space representation by exploiting

all prior or historical information related to collision queries. The approximate C-space representation

will improve the performance of the sample-based planner. In previous work, some planners utilized

the in-collision configurations or the samples near the boundary of the configuration obstacles (i.e.,

Ccont) to bias the sample generation or improve the performance of planners in narrow passages (Boor

et al., 1999; Denny and Amato, 2011; Rodriguez et al., 2006; Sun et al., 2005). However, it can

be expensive to perform geometric reasoning based on the outcome of a large number of collision

queries in high-dimensional spaces. As a result, most prior planners only use partial or local

information about configuration spaces, and cannot provide any guarantees in terms of improving

overall performance over time.

3.1.1 Main Results

We present a novel approach which improves the performance of sample-based planners by

learning from prior instances of collision checking, including all in-collision samples. Our formu-

lation uses the historical information generated using collision queries to compute an approximate

representation of C-space as a hash table. Given a new probe or collision query in C-space, we first

perform efficient learning on the approximate C-space in order to compute a collision probability for

this query. This probability is used either as a similarity result or as a prediction of the exact collision

query and can improve a planner’s efficiency.

The underlying learning process performed on the approximate C-space is based on k-NN (k-

nearest neighbor) queries. All prior configurations checked by the planning algorithm are stored

incrementally, along with their collision outcomes, in a hash table. Given a new configuration

or a local path, our algorithm computes the nearest neighbors in the hash table. We use locality-

sensitive hashing (LSH) algorithms to efficiently perform approximate k-NN computations in high-

dimensional configuration spaces. Specifically, we present a line-point k-NN algorithm that can

compute the nearest neighbors of a line. We derive bounds on the accuracy and time complexity of

our LSH-based k-NN algorithm and show that the collision probability it computes converges to

exact collision detection as the size of dataset increases.

We present improved versions of PRM, lazyPRM and RRT planning methods based on our

learning algorithm. Our approach is general and can be combined with any sampling scheme.

Furthermore, it is quite efficient for high-dimensional configuration spaces. We have applied these

planners to rigid and articulated robots, and have observed up to 100% speedups based on instance-

based learning. In addition, the learned approximate C-space can be updated efficiently for moving

obstacles and thus can also be used for motion planning in dynamic environments.

3.1.2 Organization

The rest of this chapter is organized as follows. We survey related work in Section 3.2. Section 3.3

gives an overview of sample-based planners, LSH-based approximate k-NN search, and our approach.

We present details of the learning process on the C-space and analyze its accuracy and complexity in

Section 3.4 and Section 3.5. We show the integration of the learning algorithm with different motion

planning algorithms in Section 3.6 and evaluate the performance of the modified planners on various

benchmarks in Section 3.7.

56

3.2 Related Work

In this section, we give a brief overview of prior work on the use of machine learning techniques

in motion planning, and in particular on performing efficient collision checking to accelerate sample-

based motion planning.

3.2.1 Machine Learning in Motion Planning

Many techniques have been proposed to improve the performance of sample-based motion

planning using machine learning. (Morales et al., 2004) combine a set of basic PRM motion planners

into a powerful ‘super’ planner by assigning basic planners to different regions in C-space based on

offline supervised learning. (Burns and Brock, 2003, 2005b,c) use entropy to measure each sample’s

utility to improve the coverage of PRM roadmap. (Hsu et al., 2005) combine multiple sampling

strategies to improve the roadmap’s connectivity. Some variants of RRT, which use workspace or

task-space bias (e.g., (Diankov et al., 2008)), can be extended by changing the bias parameters

adaptively. (Scholz and Stilman, 2010) combine RRT with reinforcement learning. Finally, learning

techniques have been used to estimate a zero-measure subspace to bias the sampling in narrow

passages, given a sufficient number of collision-free samples (Dalibard and Laumond, 2011). Our

approach is complementary to all these techniques.

3.2.2 Learning from Experience

Machine learning can also enable robots to exploit learned knowledge about the underlying

geometric structures in tasks and human environments. Many approaches which help robots learn

from past experience have been proposed. Most of them can be categorized as planning level methods

and they usually attempt to reuse the trajectories planned in the past. (Jetchev and Toussaint, 2010)

construct a database of high-dimensional features which captures information about the proximity of

the robot to obstacles; they use information from the database to predict a good path when facing a

new situation. Other methods construct a database of past motion plans, which can bias the search

towards the new planning problem (Jiang and Kallmann, 2007) or to efficiently construct a new

plan (Berenson et al., 2012; Phillips et al., 2012). Plan databases have also been used to adapt policies

to new situations or tasks (Stolle and Atkeson, 2006). The problem of how to select the most robust

57

set of paths (with respect to unknown obstacle configurations) from the plan database was treated

in (Branicky et al., 2008).

3.2.3 Collision Checking for Motion Planning

One important feature of sample-based motion planners is the use of exact collision queries

to probe the connectivity of Cfree. However, the topology of Cfree can be rather complex, and may

consist of multiple components or small, narrow passages. As a result, it is hard to capture the

full connectivity of Cfree using collision queries. There is extensive work on various techniques to

improve the connectivity computation by using different sampling strategies.

Many sampling approaches used by sample-based planners tend to be memoryless, i.e., the

(n + 1)th sample is independent of the previous n samples. For example, OBPRM (Amato et al.,

1998) uses pairs of collision-free and in-collision samples to compute samples near the boundary of

Cfree (or Cobs). Gaussian sampling (Boor et al., 1999) also generates samples in pairs and a sample is

retained when exactly one of the samples in a pair is collision free, therefore resulting in samples

that are close to the boundary Cobs. Similar ideas have been used in many variants of RRT, such as

retraction-based planners (Hsu et al., 1998; Rodriguez et al., 2006; Zhang and Manocha, 2008a).

(Sun et al., 2005) identify narrow passages in C-space by checking whether a collision-free sample

has two in-collision samples nearby. (Kavraki et al., 1996) use in-collision samples to estimate the

visibility of each sample and generate more samples in regions with small visibility. Our approach

can be combined with all these techniques to improve the performance of collision checking.

In recent approaches, adaptive sampling strategies have been proposed that evolve as more

information about C-space and Cfree is learned via sampling. These strategies are not memoryless

because the underlying approximate representation of C-space changes as more samples are generated.

For instance, (Jaillet et al., 2005) and (Yershova et al., 2005) approximate the free space using a set

of size-varying balls around nodes in the RRT representation. (Burns and Brock, 2005c) approximate

the C-space using a set of prior samples, either collision-free or in-collision. These prior samples can

predict the collision status for a local path connecting two PRM nodes (Burns and Brock, 2005a).

Recently, (Knepper and Mason, 2012) extend the adaptive sampling approach in (Burns and Brock,

2005c) to non-holonomic motion planning by defining the utility of local paths. (Denny and Amato,

58

2011) construct roadmaps in both Cfree and Cobs, which are used to generate more samples in narrow

passages.

3.2.4 k-Nearest Neighbor Search

The problem of finding the k-nearest neighbors within a database of high-dimensional points is

well-studied in various areas, including databases, computer vision, and machine learning. Samet’s

book (Samet, 2005) provides a good survey of various techniques used to perform the k-NN search.

In order to handle large and high-dimensional spaces, most practical algorithms are based on

approximate k-NN queries (Chakrabarti and Regev, 2004). In these formulations, the algorithm is

allowed to return a point whose distance from the query point is at most 1 + ε times the distance

from the query to its k-nearest points; ε > 1 is called the approximation factor. One example of the

approximate k-NN is the LSH-based k-NN, which has been used in motion planning, e.g., a parallel

version of LSH-based k-NN was used in a parallel PRM framework (Pan et al., 2010). Please refer

to Chapter 6 for a more detailed background and discussion about LSH-based k-NN.

3.3 Overview

In this section, we give an overview of the sample-based planner and provide a brief background

on the learning algorithm we used to improve the motion planner.

3.3.1 Notations and Symbols

In this chapter, we denote each point configuration with C-space as x. We use D to denote a set

of N configuration points D = {x1,x2, ...xN} along with their exact collision statuses, which is an

approximation of the exact C-space.

A local path in C-space is a continuous curve that connects two configurations. It is difficult to

compute Cobs or Cfree explicitly; therefore, sample-based planners use collision checking between the

robot and obstacles to probe the C-space implicitly. These planners perform two kinds of queries: the

point query and the local path query. We use the symbol Q to denote either of these queries. When it

is necessary to distinguish between point and line queries, we use p for a point query and l for a line

query.

59

We denote dist(·, ·) to be a distance metric over the items in C-space, i.e., the distance between

two points x and x′ is dist(x,x′). We use B(x, r) to denote the set of points from C-space that

are closet to x than r, according to the metric dist(·, ·). In other words, B(x, r) = {x′ ∈ C-space :

dist(x,x′) ≤ r}. We also use the symbol e to denote the base of the natural logarithm.

We use the operator y(·) to denote the exact collision status (0 for collision-free and 1 for

in-collision). In particular, y(x) is the collision status of a configuration sample x, y(p) is the

collision status of a point query, and y(l) is the collision status of a line. We usually abbreviate y(x)

or y(p) by y. The estimated collision status of a query is computed by a binary-class classifier c(·).

We denote vec(·) as the vectorization of a given matrix. In particular, vec(A), the vectorization

of an m× n matrix A, is the mn× 1 column vector which is obtained by stacking the columns of

the matrix A on top of one another:

vec(A) = [a1,1, ..., am,1, a1,2, ..., am,2, ..., a1,n, ..., am,n]T ,

where ai,j represents the (i, j)-th element of matrix A.

3.3.2 Enhanced Motion Planner with Instance-based Learning

The goal of a motion planner is to compute a collision-free continuous path between the initial

and goal configurations in C-space. The resulting path should lie completely in Cfree and should not

intersect with Cobs. As shown in Figure 3.1(a), sample-based planners learn about the connectivity of

C-space implicitly based on collision queries. Query results can also bias the sampling scheme of the

planner via different heuristics (e.g., retraction rules).

Instance-based learning is a well-known family of algorithms in machine learning. These

algorithms learn properties of new problem instances by comparing them with the instances observed

earlier that have been stored in memory (Russell and Norvig, 2003). In our case, we store all the

results of prior collision queries, including collision-free as well as in-collision queries. Our goal is

to sufficiently exploit this prior information to accelerate the planner’s computation. The problem

instance in our context is the execution of collision query on a given configuration or local path

in C-space. Unfortunately, performing exact collision queries for local planning can be expensive.

Collision checking for a discrete configuration is relatively cheap, but can still be time-consuming

60

Exact C-space

C
ollision

D
etector

P
lan

n
in
g

A
lgorith

m

Exact C-space

C
ollision

D
etector

P
lan

n
in
g

A
lgorith

mk
-N
N
Q
u
ery

(b)

(a)

Approximate

Cfree

sampling bias

Approx.

Cfree

Approx.

Cobs

cu
llin

g

cost function

0/1

(Roadmap)

(Hash Table) (Hash Table)

Approximate

Cfree

(Roadmap)

sampling bias

Exact Collision Query

Learning-based Collision Query

Figure 3.1: Use of collision detection in sample-based planners: (a) exact collision checking only and
(b) our approach with exact and approximate collision checking. (a) The exact collision detection
routine is the oracle used by the planner to gather information about Cfree and Cobs. The planner
performs binary collision queries, either on point configurations or 1-dimensional local paths, and
estimates the connectivity of Cfree (shown as Approximate Cfree). Some planners utilize the in-
collision results to bias sample generation by using different heuristics. (b) Our method also performs
collision queries. However, we store all in-collision results (as Approximate Cobs) and collision-free
results (as Approximate Cfree). Before performing an exact collision query, our algorithm performs a
k-NN query on the given configuration or local path for computing a collision probability for each
query. The collision probability can be used as a cost function to compute an efficient strategy for
performing exact collision queries during motion planning. We use novel LSH-based algorithms to
perform k-NN queries efficiently and to speed up the overall planner.

if the environment or the robot’s geometric representation has a high complexity. To reduce the

overhead caused by collision checking, we utilize the earlier instances or the stored information by

performing k-NN queries and geometric reasoning on query results.

Our new approach exploits prior information for motion planning, as shown in Figure 3.1(b).

When the collision checking routine finishes probing the C-space for a given query, it stores all

the obtained information in a dataset D corresponding to historical collision query results. If the

query is a point within C-space, the stored information is its binary collision status. If the query is

a local path, the stored information includes the collision status of configuration points along the

61

path. The resulting dataset of historical collision results constitutes the complete set of information

we have about C-space, all learned from collision checking routines. We use this dataset as an

approximate description of the underlying C-space: the in-collision samples are an approximation of

Cobs, while the collision-free samples are used as an approximation of Cfree. These samples are used

by instance-based learning algorithms to estimate the collision status of new queries.

Given a new query Q, either a point or a local path, we first perform k-NN search on the dataset

D to find its neighbor set S, which provides information about local C-space around the query Q. If

S contains sufficient information to infer the collision status of the query, we compute a collision

probability for the new query based on S; otherwise, we perform exact collision checking for this

query and the query result is added into D. The calculated collision probability provides prior

information about the collision status of a given query, and can be used in different ways. First,

it can be used as a culling filter to avoid the exact (and expensive) collision checking for queries

of the configurations or local paths located in regions that are well sampled and approximated in

the database. Second, it can decide an efficient order in which to perform exact collision checking

for a set of queries. For example, many planners like RRT need to select the local path that can

best improve the local exploration in Cfree, i.e., a local path that is both long and collision-free. The

collision probability computation can compute an efficient sorting strategy, which thereby reduces

the number of exact collision tests.

The notion of having sufficient information about S (in Algorithm 1) is related to how much

confidence we have in our inferences drawn from S. If the confidence is too small, the algorithm

rejects the results of approximate collision queries and performs exact collision queries instead. We

consider two types of rejection cases: ambiguity rejection and distance rejection (Dubuisson and

Masson, 1993). Ambiguity rejection occurs when the collision probability of a given query is close

to 0.5. Distance rejection occurs when the query configuration is far (in terms of geometric distance)

from all prior instances stored in the database.

A description of our learning-based collision framework is given in Algorithm 1, which is used

as an inexpensive routine to perform probabilistic or approximate collision detection. More details

about this routine and its applications are given in Section 3.4 and Section 3.5.

62

Algorithm 1 learning-based-collision-query(D, Q)

1: if Q is point query then
2: S ← point-point-k-NN(Q)
3: if S provides sufficient information for reasoning then
4: approximate-collision-query(S,Q)
5: else
6: exact-collision-query(D, Q)
7: end if
8: end if
9: if Q is line query then

10: S ← line-point-k-NN(Q)
11: if S provides sufficient information for reasoning then
12: approximate-continuous-collision-query(S,Q)
13: else
14: exact-continuous-collision-query(D, Q)
15: end if
16: end if

3.3.3 LSH-based Approximate k-NN Query

A key challenge for our learning framework is its computational efficiency. As we generate

hypotheses directly from training instances, the complexity of k-NN computation grows with the

size of historical data. If we use exact k-NN computation as the underlying learning method, its

complexity is a linear function of the size of the dataset, especially for high-dimensional spaces.

To improve the efficiency of our instance-based learning algorithm, we use approximate k-NN

algorithms.

Given a dataset D = {x1,x2, ...xN} of N points in Rd, we consider two types of retrieval

queries. One retrieves the points from D closest to a given point query: this is the well-known k-NN

query, which we call the point-point k-NN query. The second query tries to find the points from D

that are closest to a given line in Rd whose direction is v and which passes through a point a, where

v,a ∈ Rd. We call this second query the line-point k-NN query. The two types of k-NN queries are

illustrated in Figure 3.2.

In order to develop an efficient instance-based learning framework, we use locality-sensitive

hashing (LSH) as an approximate method for k-NN queries, which is mainly designed for point-point

queries (Andoni and Indyk, 2008). However, it can be extended to line queries (Andoni et al.,

2009) and hyper-plane queries (Jain et al., 2010). (Basri et al., 2011) further extend it to perform

point/subspace queries.

63

LSH requires randomized hash functions which guarantee that the probability of two points

being mapped into the same hash bucket is inversely proportional to the distance between them. The

distance metric is defined based on the specific task or application. Since two similar points are likely

to fall into the same or nearby hash buckets, we only need to perform a local search within the bucket

that contains the given query.

Definition 3.1. (Andoni and Indyk, 2008) Let hH denote a random choice of hash functions from the

function familyH, and let B(x, r) be a radius-r ball centered at x. H is called (r, r(1 + ε), p1, p2)-

sensitive for dist(·, ·) when for any x, x′ ∈ D,

• if x′ ∈ B(x, r), then P[hH(x) = hH(x′)] ≥ p1,

• if x′ /∈ B(x, r(1 + ε)), then P[hH(x) = hH(x′)] ≤ p2.

For a family of functions to be useful, we require p1 > p2.

A higher dimensional hash function g can be constructed by concatenating several hash functions

randomly selected from the function familyH: g(x) = [h1
H(x), h2

H(x), ..., hMH (x)], where M is the

dimension of g. Given the hash function g, the hashing collision probability for two close points is at

least (p1)M , while for dissimilar points it is at most (p2)M . Each item in the dataset D is mapped to

a series of L hash tables indexed using independently constructed functions g1, ..., gL, where each gi

is a dimension-M function. Next, given a point query p, an exhaustive search is carried out only on

the items in the union of the L buckets. These candidates constitute the (r, ε)-nearest neighbor for p,

meaning that if p has a neighbor within radius r, then with high probability some item within radius

r(1 + ε) would be found. When dist(·, ·) corresponds to the l2 metric, the following is true about the

point-point k-NN query:

Theorem 3.1. (Point-point k-NN query) (Datar et al., 2004) LetH be a family of (r, r(1+ε), p1, p2)-

sensitive hash functions, with p1 > p2. Given a dataset of size N , we set M = log1/p2 N and

L = Nρ, where ρ = log p1
log p2

. Using L-hash tables over dimension M and given a point query p, the

LSH algorithm solves the (r, ε)-neighbor problem with probability at least 1
2 − 1

e . In other words, if

there exists a point x that x ∈ B(p, r(1+ε)), then the algorithm will return the point with probability

≥ 1
2 − 1

e . The retrieval time is bounded by O(Nρ).

64

If we chooseH to be the hamming hash or p-stable hash

{hu : hu(x) = sgn(uTx)} or {ha,b : ha,b(x) = ba
Tx + b

W
c}, (3.1)

where u and a ∼ N (0, I), b ∼ U [0,W] and W is a fixed constant, we have ρ ≤ 1
1+ε and the

algorithm has sub-linear complexity, i.e., the results can be retrieved in time O(N
1

1+ε).

We build on these prior results for point-point k-NN queries, and we present a new LSH-based

algorithm for line-point k-NN queries. The LSH parameters (e.g., u, W , a and b in Equation 3.1)

are chosen randomly a priori. When the collision result for a new configuration query is computed,

we calculate the hash code for that query and add its collision information to the hash tables. This

operation is is performed once for each item stored in the database.

Later in Section 3.4, we discuss challenges in designing appropriate hash functions for line-point

k-NN queries, and we derive LSH bounds for line-point k-NN. We also address many challenges

in extending our formulation to non-Euclidean metrics (e.g., in handling articulated models) and

reducing the dimension of embedded space.

Q

(a)

Q

(b)

x2

x1

(c)

l

Figure 3.2: Two types of k-NN queries used in our method: (a) point-point k-NN and (b) line-point
k-NN. Q is the query item, and the results of different queries are shown as blue points in each figure.
We present novel LSH-based algorithms for fast computation of these queries. (c) The line-point
k-NN query is used to compute prior instances that can influence the collision status of a local path
which connects x1 and x2 in C-space. The query line is the line segment between x1 and x2. The
white points are prior collision-free samples in the dataset, and the black points are prior in-collision
samples.

65

3.4 LSH-based Line-Point k-NN Query

One of the contributions of this chapter is to extend the LSH formulation to the line-point k-NN

query, which is used to efficiently estimate the collision status of a local path. In comparison with

previous methods for such computations (Andoni et al., 2009; Basri et al., 2011), our line-point

k-NN results in a more compact representation; we also derive LSH bounds similar to the point-point

k-NN, as shown in Theorem 3.1. Moreover, we address several issues that arise when using our

algorithm for sample-based motion planning, such as handling non-Euclidean metrics and reducing

the dimension of the embedded space.

The simplest algorithm for line-point k-NN query is based on discretizing the line as a sequence

of uniformly sampled points at a fixed resolution, and using point-point k-NN algorithms on each of

those sampled points. One major drawback of using such an approach is its efficiency, as it requires

performing a high number of point-point k-NN queries for a given line or local path. Furthermore,

the samples in the database are typically not distributed in a uniform manner. As a result, it is hard to

compute the appropriate sampling resolution for the line.

Our approach to using LSH to perform line-point k-NN query is to embed the line query and the

point dataset into a higher-dimensional space, and then perform point-point k-NN queries in that

embedded space. First, we present a technique to perform line-point embedding. Next, we design

hash functions for the embedding and prove that these hash functions satisfy the locality-sensitive

property for the original data (i.e., D). Finally, we derive the error bound and time bound for the

approximate line-point k-NN query, which is similar to that given in Theorem 3.1.

3.4.1 Line-point Distance

A line l in Rd is described as l = {a + s · v}, where a is a point in Rd and v is a unit vector in

Rd. The Euclidean distance of a point x ∈ Rd to the line l is given as:

dist2(x, l) = (x− a) · (x− a)− ((x− a) · v)2. (3.2)

Given a database D = {x1, ...,xN} of N points in Rd, the goal of line-point k-NN query is to

retrieve the points from D that are closest to l. We do not directly use Equation 3.2 for line-point

k-NN query, because in that form the database item (i.e., the point) and the query item (i.e., the line)

66

are not well separated. To accelerate the line-point k-NN using LSH-based techniques, we transform

the distance metric to a form which is more suitable for efficient k-NN query.

3.4.2 Line-point Embedding: Non-affine Case

We first assume the non-affine line query, i.e., l, passes through the origin (i.e., a = 0). In this

case, dist(x, l) = x · x− (x · v)2. This distance can be re-formalized as the inner product of two

(d+ 1)2-dimensional vectors:

dist2(x, l)

= x · x− (x · v)2

= vec(

(
I 0

)T
(I− vvT)

(
I 0

)
) · vec(

x

t

x

t

T

) (3.3)

= V P (v) · V L(x),

where I is a d× d identity matrix, Tr(·) is the trace of a given square matrix, and t can be any real

value; and vec(·) is the vectorization operation. V P (·) is an embedding which creates a (d + 1)2-

dimensional vector from d-dimensional point vector x: V P (x) = vec(

x

t

x

t

T

); V L(·) is an

embedding which yields a (d+ 1)2-dimensional vector from a line l = {sv} in d-dimensional space:

V L(v) = vec(

I− zvT 0

0T 0

).

Moreover, we notice that the Euclidean distance between the embedding V P (x) and −V L(v) is

given by

‖V P (x)− (−V L(v))‖2

= d− 1 + ‖V P (x)‖2 + 2(V P (x) · V L(v))

= d− 1 + (‖x‖2 + t2)2 + 2 dist2(x, l).

(3.4)

In Equation 3.4, if the term d− 1 + (‖x‖2 + t2)2 is constant, then the point-to-line distance dist(x, l)

can be formalized as the distance between two points V P (x) and −V L(v) in the higher-dimensional

embedded space. This is possible because t is a free variable that can be chosen arbitrarily. In

particular, we choose t as a function of x: t(x) =
√
c− ‖x‖2, where c > maxx∈D ‖x‖2 is a

67

constant real value related to the entire database D but independent from each single item in the

database. Then Equation 3.4 reduces to ‖V P (x)− (−V L(v))‖2 = 2 dist2(x, l) + constant.

Until now, we have successfully separated the database item (i.e., x) from the query item

(i.e., l). Next, we can pre-compute the locality-sensitive hash values for all the database items

(see Section 3.4.4), which are used for efficient line-point k-NN computation of any given line

queries. In summary, this reduction implies that we can reduce the line-point k-NN query in a

d-dimensional database D to a point k-NN query in a (d + 1)2-dimensional embedded database

V P (D) = {V P (x1), ..., V P (xN)}, where the query item corresponds to −V L(v).

3.4.3 Line-point Embedding: Affine Case

Now we consider the case of any arbitrary affine line, i.e., a 6= 0. Similarly to Equation 3.3, we

obtain

dist2(x, l)

= (x− a) · (x− a)− ((x− a) · v)2

= Tr(

x

1

t

T (

I −a 0

)T
(I− vvT)

(
I −a 0

)
︸ ︷︷ ︸

B

x

1

t

)

= vec(

x

1

t

x

1

t

T

) · vec(B) (3.5)

= V̂ P (x) · V̂ L(v,a),

where V̂ P (x) and V̂ L(v,a) are (d+ 2)2-dimensional embeddings for a point and line in Rd, respec-

tively. Similarly to Equation 3.4, if we choose t(x) =
√
c− x2 − 1, where c > maxx∈D ‖x‖2 + 1

is a constant related to the entire database D (i.e., set ‖V̂ P (x)‖2 = c2), then dist2(x, l) also linearly

depends on the squared Euclidean distance between the embedded database and the query item:

‖V̂ P (x)− V̂ L(v,a)‖2 = c2 +d−2+(dist2(0, l)+1)2 +2 dist2(x, l). As a result, we can perform

68

an affine line-point k-NN query based on a point k-NN query in a (d+ 2)2-dimensional database

V̂ P (D) = {V̂ P (x1), ..., V̂ P (xN)}, where the corresponding query item is −V̂ L(v,a).

3.4.4 Locality-Sensitive Hash Functions for Line-Point Query

We design the hash function ĥ for the line-point query as follows:

ĥ(x) = h(V̂ P (x)), x is a database point

ĥ(l) = h(−V̂ L(v,a)), l is a line {a + s · v},
(3.6)

where h is a locality-sensitive hash function as defined in Section 3.3.3. The new hash functions are

locality-sensitive for line-point query, as shown by the following two theorems:

Theorem 3.2. The hash function family ĥ is (r, r(1 + ε), p1, p2)-sensitive if h is the hamming hash,

(i.e., h = hu), where p1 = 1
π cos−1(r

2

C), p2 = 1
π cos−1(r

2(1+ε)2

C) and C is a value independent of

database points, but is related to the query. Moreover, 1
(1+ε)2

≤ ρ = log p1
log p2

≤ 1.

Theorem 3.3. The hash function family ĥ is (r, r(1 + ε), p1, p2)-sensitive if h is the p-stable

hash, (i.e., h = ha,b), where p1 = f(W√
2r2+C

) and p2 = f(W√
2r2(1+ε)2+C

) and C is a value

independent of database points, but is related to the query. The function f is defined as f(x) =

1
2(1−2 cdf(−x))+ 1√

2πx
(e−

1
2
x2−1), where cdf(x) =

∫ x
−∞

1√
2π
e−

1
2
t2dt is a cumulative distribution

function. Moreover, 1
1+ε ≤ ρ = log p1

log p2
≤ 1.

Similarly to Theorem 3.1 for point-point k-NN query, we can compute the error bound and time

complexity for line-point k-NN query as follows:

Theorem 3.4. (Line-point k-NN query) Let H be a family of (r, r(1 + ε), p1, p2)-sensitive hash

functions, with p1 > p2. Given a dataset of size N , we set M = log1/p2 N and L = Nρ, where

ρ = log p1
log p2

. Using H along with L-hash tables over M -dimensions and given a line query l, with

probability at least 1
2 − 1

e , our LSH algorithm solves the (r, ε)-neighbor problem, i.e., if there exists a

point x that dist(x, l) ≤ r(1 + ε), then the algorithm will return the point with probability ≥ 1
2 − 1

e .

The retrieval time is bounded by O(Nρ).

69

Theorem 3.4, along with Theorem 3.1, guarantees sub-linear time complexity when performing

k-NN learning on the historical collision results, if hamming or p-stable hashing functions are

applied.

3.5 Probabilistic Collision Detection based on k-NN Queries

In this section, we use the LSH-based k-NN approach presented in Section 3.4 to estimate

the collision probability for a given query. Our approach stores the outcome of prior instances of

exact collision queries within a database, including point queries and local path queries (shown

as Approximate Cfree and Approximate Cobs in Figure 3.1(b)). Those stored instances are used to

perform probabilistic collision queries.

3.5.1 Collision Status Classifier

Our goal is to estimate the collision probability for a query point p or a query line l according to

the database of previous collision query results. Based on the collision probability, we can design a

classifier c(·) to predict the collision status of a given query. The expected prediction error for the

classifier can be defined as

Eerror[c(p) | D]

= y(p) · P[c(p) = 0 | D] + (1− y(p)) · P[c(p) = 1 | D]

and

Eerror[c(l) | D]

= y(l) · P[c(l) = 0 | D] + (1− y(l)) · P[c(l) = 1 | D],

where D, as defined before, is a dataset of N points in Rd and y(·) provides the exact collision status

of p or l.

A classifier is effective at predicting the collision status of point or line queries if its prediction

error converges to zero when the size of database D increases. In other words, an effective classifier

70

c(·) should have the following property:

lim
|D|→∞

Eerror[c(p) | D] = 0 or lim
|D|→∞

Eerror[c(l) | D] = 0.

As we will show in Section 3.5.5, if a collision status classifier is effective, our learning-based

approximate collision detection algorithm is guaranteed to converge to the exact collision results, as

the size of the database increases.

3.5.2 Effective Classifier for Point Query

Here we provide details on our implementation of an effective collision status classifier for point

queries. Following previous work on locally-weighted regression (LWR) (Cohn et al., 1996; Burns

and Brock, 2005a), we fit a Gaussian distribution to the region surrounding the query point and then

estimate the probability for collision, as well as the confidence of the estimation. The confidence is

further used to determine whether there is sufficient information to infer the collision status of the

query, as discussed in Section 3.5.4.

We first perform point-point k-NN query to compute the prior collision instances closest to

the query point p. Next, based on the collision status of the neighboring instances, the collision

probability can be estimated as:

P[c(p) = 1 | D] = E[c(p) | D] = µ2 + ΣT
12Σ

−1
1 (p− µ1), (3.7)

and the variance of the estimation can be given as

Var[c(p) | D] (3.8)

=
Σ2|1

(
∑

iwi)
2

(∑
i

w2
i + F (p)

∑
i

w2
i F (xi)

)

where µ1 =
∑
i wixi∑
i wi

, µ2 =
∑
i wiyi∑
i wi

=

∑
xi∈S\Cfree

wi∑
i wi

, Σ1 =
∑
i wi(xi−µ1)(xi−µ1)T∑

i wi
,

Σ2 =
∑
i wi(yi−µ2)2∑

i wi
, Σ12 =

∑
i wi(xi−µ1)(yi−µ2)∑

i wi
, Σ2|1 = Σ2 − ΣT

12Σ
−1
1 Σ12, and F (x) = (x −

µ1)TΣ−1
1 (x− µ1). S is the neighborhood set computed using point-point k-NN query, and yi =

y(xi) is the exact collision status of instance xi. wi = e−γ dist(xi,p) is the distance-tuned weight

71

for each k-NN neighbor xi. The parameter γ controls the magnitude of the weight wi; intuitively,

wi measures the correlation between the labels of xi and query point p. In our experiments, γ is

set according to the scale of the environment (e.g., the diameter of the bounding sphere for the

environment): 1/
√
γ = 0.05 · scale.

Once the collision probability P[c(p) = 1 | D] is computed, we can predict p’s collision status

using a chosen threshold t ∈ (0, 1): when P[c(p) = 1 | D] > t, we classify p as in-collision;

otherwise, we classify it as collision-free. This classifier is effective for any t ∈ (0, 1) because when

the size of D increases, if p is actually in-collision (i.e., y(p) = 1), more and more points in its

neighborhood S will be inside Cobs; thus P[c(p) = 1 | D] converges to 1. Similarly, P[c(p) = 1 | D]

will converge to 0 if p is actually collision-free. As a result, given a large enough database, the

classifier can correctly predict the query point’s collision status and is thus effective.

3.5.3 Effective Classifier for Local Path Query

Now we describe our implementation of an effective collision status classifier for line queries.

The goal of the line query is to estimate the collision status of a local path in C-space. We require the

local path to lie within the neighborhood of the line segment l connecting its two endpoints, i.e., the

local path should not deviate too much from l. The first step is to perform a line-point k-NN query to

find the prior point collision query configurations closest to the infinite line that l lies on. Next, we

need to filter out the points whose projections are outside the truncated segment of l, as shown in

Figure 3.2(c). Finally, we apply our learning method (as described below) on the filtered set, denoted

as S, to estimate the collision probability of the local path.

One method for computing the collision probability for a line is to use LWR (Burns and Brock,

2005a). The collision probability can be estimated as:

P[c(l) = 1 | D] = E(c(l) | D] (3.9)

= µ2 + ΣT
12Σ

−1
1 (NearestPnt(l,µ1)− µ1),

72

and

Var[c(l) | D] (3.10)

=
Σ2|1

(
∑

iwi)
2

(∑
i

w2
i + F (NearestPnt(l,µ1))

∑
i

w2
i F (xi)

)
.

where the symbols are as defined in Equation 3.7 and Equation 3.10 except the terms wi, which

are now defined as wi = e−γ dist(xi,l). The function NearestPnt(l,x) returns a point on the line

segment l that is closest to a point x.

However, the above LWR-based method has some limitations. The main issue is that it can

only compute a collision probability for the entire line. In many cases, we need to know where

the collision is likely to happen on the line (i.e., the first time of contact (TOC)). We provide an

optimization method for estimating the approximate TOC. In particular, we divide the line l into

I segments and assign each segment, li, a label ci to indicate its collision status. We aim to find a

suitable label assignment {c∗i }Ii=1 so that:

{c∗i } = argmin{ci}∈{0,1}I

I∑
i=1

(ci − c′i)2 + κ
I−1∑
i=1

(ci − ci+1)2, (3.11)

where c′i is the collision status for the midpoint of li estimated using Equation 3.7. The term (ci−c′i)2

constrains the label assignment to be consistent with point query results, and
∑I−1

i=1 (ci − ci+1)2 is a

smoothness term, which models the fact that collision labels for adjacent points are likely to be the

same. The parameter κ adjusts the relative weight between the consistency term and the smoothness

term. This optimization can be computed efficiently using dynamic programming. Then, we can

estimate the collision probability for the line as

P[c(l) = 1 | D] = E[c(l) | D] = max
i: c∗i=1

c′i, (3.12)

and the approximate first time of contact can be given as mini: c∗i=1 i/I .

Based on the collision probability formulated above, we can design a classifier to predict the

collision status for a given line query by using a specific threshold t ∈ (0, 1) to justify whether the

query is in-collision or not. If the query’s collision probability is larger than t, we return in-collision;

73

otherwise, we return collision-free. Similarly to the classifier for point queries, this classifier is also

effective for any t ∈ (0, 1) because when the size of D increases, if l is in-collision, there always

exists one segment li on l whose collision probability c′i converges to 1. As a result, P[c(l) = 1 | D]

converges to 1. Similarly, if l is collision-free, the probability will converge to 0.

3.5.4 Rejection Rules

When using the methods discussed above to estimate the collision status for a given point or

line query, there must be a sufficient number of data items surrounding the query to give an estimate

with a high level of confidence. Otherwise, we should reject the estimated collision status and rather

perform exact collision checking on the query.

We apply two types of rejection rules (Dubuisson and Masson, 1993): ambiguity rejection and

distance rejection.

• Ambiguity rejection occurs when the estimated collision status is ambiguous. For instance,

suppose there are an equal number of in-collision points and collision-free points in the

neighborhood of a point query p, and all of these points lie same distance from the query. The

collision probability computed by Equation 3.7 is 0.5 in this case; therefore, any estimate of

the collision status is equivalent to a random guess. Ambiguity also occurs when the variance

of the estimated collision status (computed by Equation 3.8) is large. To determine whether

ambiguity rejection is necessary for a point query p, we measure the ambiguity as

Amb =
(

min(E[c(p)], 1− E[c(p)])
)2

+ Var[c(p)], (3.13)

where E[c(p)] and Var[c(p)] are computed according to Equation 3.7 and Equation 3.8. If Amb

is larger than a given threshold Ad, we reject the estimate and perform the exact collision test.

• Distance rejection happens when the k-NN points for a given query lie too far away from

the query configuration (in terms of the distance). This is a problem because our collision

status estimator is based on coherency of the collision statuses of nearby points and lines. This

distance rejection happens when the database is nearly empty, or when the query is in a region

not well-sampled by the current configuration database. In order to determine whether we

need to perform distance rejection, we compute Dis, the distance from p to its nearest point.

74

If Dis is larger than a given threshold Dd (for instance, Dis is∞ when the database is empty),

we perform the exact collision query.

These two rejection rules are shown in Figure 3.3. The rejection rules for a line query are

analogous.

Q

(a)

Q

(b)

Figure 3.3: Two rejection rules: (a) ambiguity rejection: Q’s estimated collision probability is near
0.5 or the variance for the estimate is large; (b) distance rejection: when Q is far from all in-collision
and collision-free database items.

3.5.5 Asymptotic Property of Approximate Collision Query

If the classifier used in learning-based approximate collision query is effective, we can prove that

the collision status returned by instance-based learning will converge to the exact collision detection

results as the size of the dataset increases (asymptotically):

Theorem 3.5. The collision query performed using LSH-based k-NN will converge to exact collision

detection as the size of the dataset increases.

Proof. We only need to prove that both the probability of a false positive (i.e., returns in-collision

status when there is in fact no collision) and a false negative (i.e., returns collision-free when there is

in fact a collision) converges to zero, as the size of the database increases.

Given a query, we denote its r-neighborhood as Br, where r is the distance between the query

and its k-th nearest neighbor. For a point query, Br is an r-ball around it. For a line query, Br is the

set of all points with distance r to the line (i.e., a line swept-sphere volume). Let P1 =
µ(Br(1+ε)∩Cobs)

µ(C-space)

and P2 =
µ(Br(1+ε)∩Cfree)

µ(C-space) , which are the probabilities that a uniform sample in C-space is in-collision

or collision-free and within query’s r(1 + ε)-neighborhood. Here µ(·) is the volume measure. Let N

be the size of the database corresponding to the prior instances.

75

A false negative occurs if and only if the following two cases are true: 1) there are no in-collision

points within Br(1+ε), and therefore the approximate method always returns collision-free; 2) there

are in-collision points within Br(1+ε), but the classifier predicts the wrong label for the query point

or line.

First, we compute the probability for case 1. The event that there are no in-collision points

within Br(1+ε) happens either when no dataset point lies within Br(1+ε) or when there exist some

points within that ball which are missed due to the approximate nature of the LSH-based k-NN query.

According to Theorem 3.1, we have

P[case 1]

=
N∑
i=0

(
N

i

)
(1− P1)N−iP i1(1− (1/2− 1/e))i

= (1− P1(1/2− 1/e))N → 0 (as N →∞).

Case 2 occurs when case 1 does not happen and the classifier gives the wrong results. However,

since the classifier is effective, we have

P[case 2]

= (1− P[case 1]) · Perror[x or l in-collision;D]

= (1− P[case 1]) · Eerror[c(x) or c(l) | D]

→ 0 (as N →∞).

As a result, we have

P[false negative] = P[case 1] + P[case 2]→ 0 (as N →∞).

Similarly, a false positive occurs if there are no collision-free points within Br(1+ε) or if there

are collision-free points within Br(1+ε) but the classifier still predicts the wrong label for the query

point or line. The probability of case 1 can be given as

P[case 1] = (1− P2(1/2− 1/e))N

76

and the probability of case 2 is

P[case 2] = (1− P[case 1]) · Perror[x or l collision free;D]

= (1− P[case 1]) · Eerror[c(x) or c(l) | D].

(3.14)

Both terms converge to zero when the size of the database increases. As a result, we can conclude

that a false positive also converges to 0:

P[false positive] = P[case 1] + P[case 2]→ 0 (as N →∞).

3.6 Accelerating Sample-based Planners

In this section, we first discuss techniques for accelerating various sample-based planners using

our learning-based collision query, including 1) how the database is constructed and maintained;

2) how to accelerate various planners; 3) how to handle dynamic environments; and 4) how to

combine these techniques with non-uniform sampling techniques. Next, we analyze factors that can

influence the performance of planners using our approximate collision queries. Finally, we prove the

completeness and optimality of these modified sample-based planners.

3.6.1 Database Construction

When the planner thread starts, the database of prior collision query results is empty. Collision

queries are gradually added into the database during the execution of the motion planner. Given

a point query, we first compute its set of k-nearest neighboring points S. Based on S, we check

whether distance rejection is necessary. If so, we perform the exact collision test and add the query

result into the database. Otherwise, we estimate the query’s collision probability and the confidence

of our estimate, using the approach discussed in Section 3.5. Based on the outcome of checking for

ambiguity rejection, we may perform exact collision query and add the result to the database; or the

estimated collision result may be directly used by a sample-based planner. The processing pipeline is

77

similar for a local path query, except that when performing exact collision checking of the local path,

a series of point configurations on the local path are added to the database. In summary, we perform

exact collision tests only for queries that are located within regions not well covered by the current

database D, since the resulting query results are added into D. Later, as detailed in Section 3.6.2,

we verify the collision status of a query using the exact collision test even when it is estimated as

collision-free. This test is performed to make the overall motion planning algorithm conservative.

However, such queries are added to the database only if results from verification are different with

results from estimation.

Next, we discuss the efficiency of operations on the LSH-based database, which is implemented

as a hash table. The hash table starts out empty, so there is no pre-processing overhead. When we

decide to add the result for a collision query x into the database, we first compute its hashing code

ĥ(x) and then add it into the hash table. This step’s complexity remains constant. After warm-up,

performing learning-based k-NN query on the hash table has the complexity O(Nρ) (all symbols

are as defined in Theorem 3.4). Thus, after adding N items into the hash table and performing M

learning-based collision queries, the overall complexity of the database operations isO(N+M ·Nρ).

Note that the number of all collision queries is larger than max(N,M); therefore the amortized

learning overhead on each collision query is O(1).

3.6.2 Accelerating Various Planners

Algorithm 1 illustrates our basic approach for applying the learning framework: we use the

computed collision probability as a filter to reduce the number of exact collision queries. If a given

configuration or local path query is close to in-collision instances, then it has a high probability

of being in-collision. Similarly, if a query has many collision-free instances around it, it is likely

to be collision-free. In our implementation, we cull away only those queries with high collision

probabilities. For queries with high collision-free probability, we still perform exact collision tests

on them in order to guarantee that the overall collision detection algorithm is conservative. In

Figure 3.4(a), we show how our probabilistic culling strategy can be integrated with the PRM algo-

rithm by only performing exact collision checking (collide) for queries with collision probability

(icollide) larger than a given threshold t. Note that the neighborhood search routine (near) can

78

use the LSH-based point-point k-NN query. icollide is computed according to either Equation 3.7

or Equation 3.9.

sample(Dout, n)
V ← D ∩ Cfree, E ← ∅
foreach v ∈ V do
U ← near(GV,E , v,Din)
foreach u ∈ U do

if icollide(v, u,Din) < t
if ¬collide(v, u,Dout)
E ← E ∪ (v, u)

near: nearest neighbor search.
icollide: probabilistic collision checking based on k-NN.
collide: exact local path collision checking.
Din/out: prior instances as input/output.

(a) I-PRM

sample(Dout, n)
V ← D ∩ Cfree, E ← ∅
foreach v ∈ V do
U ← near(GV,E , v,Din){v}
foreach u ∈ U do
w ← icollide(v, u,Din)
l← ‖(v, u)‖
E ← E ∪ (v, u)w,l

do
search path p on G(V,E) which minimizes∑

e l(e) + λmine w(e).
foreach e ∈ p, collide(e,Dout)

while p not valid

(b) I-lazyPRM

V,D ← xinit, E ← ∅
while xgoal not reach
xrnd ← sample-free(Dout, 1)
xnst ← inearst(GV,E , xrnd,Din)
xnew ← isteer(xnst, xrnd,Din,out)
if icollide(xnst, xnew) < t

if ¬collide(xnst, xnew)
V ← V ∪ xnew, E ← E ∪ (xnew, xnst)

inearest: find the nearest tree node that is long and has high
collision-free probability.
isteer: steer from a tree node to a new node, using icollide
for validity checking.
rewire: RRT∗ routine used to update the tree topology for
optimality guarantee.

(c) I-RRT

V,D ← xinit, E ← ∅
while xgoal not reach
xrnd ← sample-free(Dout, 1)
xnst ← inearst(GV,E , xrnd,Din)
xnew ← isteer(xnst, xrnd,Din,out)
if icollide(xnst, xnew) < t

if ¬collide(xnst, xnew)
V ← V ∪ xnew
U ← near(GV,E , xnew)
foreach x ∈ U , compute weight c(x) =
λ‖(x, xnew)‖+ icollide(x, xnew,Din)

sort U according to weight c.
Let xmin be the first x ∈ U with ¬collide(x, xnew)
E ← E ∪ (xmin, xnew)
foreach x ∈ U , rewire(x)

(d) I-RRT∗

Figure 3.4: Instance-based learning framework can improve different motion planners. Here we
present four modified planners.

In Figure 3.4(b), we show how to use the collision probability as a cost function with the

lazyPRM algorithm (Kavraki et al., 1996). In the basic version of lazyPRM algorithm, the expensive

local path collision checking is delayed until the search phase: the algorithm repeatedly searches the

roadmap to compute the shortest path between the initial and goal nodes, performs collision checking

along the edges, and removes the in-collision edges from the roadmap. However, the shortest path

usually does not correspond to a collision-free path, especially in complex environments. We improve

this lazyPRM planner using learning-based collision queries. We compute the collision probability

for each roadmap edge during roadmap construction, based on Equation 3.12. The probability (w)

as well as the length of the edge (l) are stored as costs of the edge. During the search step, we

compute the shortest path with a minimum collision probability, i.e., a path that minimizes the cost

79

∑
e l(e) + λminew(e), where λ is a parameter that controls the relative weight of path length and

collision probability. Since prior knowledge about obstacles is implicitly taken into account based on

collision probability, the resulting path is more likely to be collision-free.

In addition, collision probabilities can be used by the motion planner to explore Cfree in an

efficient manner. We use RRT to illustrate this benefit (Figure 3.4(c)). Given a random sample

xrnd, RRT computes a node xnst among the prior collision-free configurations that are closest to xrnd

and expands from xnst towards xrnd. If there is no obstacle in C-space, this exploration technique is

based on the Voronoi heuristic that biases the planner towards the unexplored regions. However, the

existence of obstacles affects its performance: the planner may run into Cobs shortly after expansion,

and the resulting exploration is limited. Using instance-based learning, we can estimate the collision

probability for local paths connecting xrnd with each of its neighbors and choose xnst as the one with

both a long edge length and a small collision probability (i.e., xnst = argmax(l(e)−λ ·w(e)), where

λ is a parameter used to control the relative weight of these two terms). A similar strategy can also

be used for RRT∗, as shown in Figure 3.4(d).

3.6.3 Narrow Passages and Non-uniform Samples

Narrow passages are a key problem for sample-based motion planners. In general, it is difficult

to generate a sufficient number of samples in the narrow passages and capture the connectivity

of the free space. Narrow passages can lead to additional issues in terms of the learning-based

collision status classifier presented in Section 3.5.2. In narrow passages, a collision-free query

point configuration can be wrongly classified as in-collision. This is because the learning algorithm

assumes spatial coherency, i.e., nearby samples in the C-space tend to have the same collision status.

However, such spatial coherency may not apply to the regions around narrow passages, which may

reduce the accuracy of collision status estimated via the learning algorithm. Thus, the planner’s

performance in narrow passages may decrease. If a random planner can indeed generate a free-space

sample in the narrow passage, the learning algorithm may incorrectly classify it as in-collision and

may not add it to the database D and the roadmap/tree-structure used by the planner. As a result,

the planner may not be able to capture the connectivity of the space correctly around that narrow

passage.

80

One solution to the above problem is to verify a query’s collision status occasionally using the

exact collision test, even when the learning algorithm assigns the query a large collision probability.

In particular, suppose the estimated collision probability of a query is p, where p ∈ (0.5, 1]; then

with a probability of max(1− p, ps), we check the exact collision status of the query, where ps is a

small value (e.g., 0.01).

The non-uniform sampling strategies used in different sample-based planners (Boor et al., 1999;

Rodriguez et al., 2006; Sun et al., 2005) can be combined with our learning-based collision query to

generate more narrow passage samples in the database D and the planner’s roadmap. The samples

generated using these strategies are directly added into the database and used later by the learning

algorithm.

3.6.4 Performance Analysis

The instance learning-based planners are faster, mainly because we replace some of the expensive,

exact collision queries with relatively cheap k-NN queries. Let TC be the time cost for a single exact

collision query, and let Tk denote the time cost for a single k-NN query, where TK < TC . Suppose

the original planner performs C1 collision queries and the instance-based learning enhanced planners

performs C2 collision queries and C1 − C2 k-NN queries, where C2 < C1. We also assume that

the two planners spend the same time A on other computations within a planner, such as sample

generation, maintaining the roadmap or the tree structure, and so forth. Then the speedup ratio

obtained by the learning-based planner compared to the original planner is:

R =
TC · C1 +A

TC · C2 + TK · (C2 − C1) +A
. (3.15)

Therefore, if TC � TK and TC · C1 � A, we have R ≈ C1/C2. That is, the more exact collision

queries are culled, the higher the speedup is. The extreme speedup ratio C1/C2 may not be reached,

however, for two reasons. 1) TC · C1 � A may not hold, such as when the underlying collision-free

path solution lies in some narrow passages (A is large) or in open spaces (TC · C1 is small); or 2)

TC � TK may not hold, such as when the environment and robot have low geometric complexity

(i.e., TC is small) or the instance dataset is large and the cost of the resulting k-NN query is high

(i.e., TK is large).

81

Note that R is only an approximation of the actual acceleration ratio. It may overestimate the

speedup because a collision-free local path may have a collision probability higher than the given

threshold; our learning-based collision approach filters such high probabilities out. If a collision-free

local path is critical for the connectivity of the roadmap, such false positives due to instance-based

learning will cause the resulting planner to perform more exploration, and thereby the overall planning

time increases. As a result, we need to choose an appropriate threshold that provides a balance: we

need a large threshold to filter out more collision queries and increase R; at the same time, we need

to use a small threshold to reduce the number of false positives. However, as explained in Section 3.5,

the threshold choice is not important in the asymptotic sense. According to Theorem 3.5, the false

positive error converges to 0 when the database size increases. This further means that R becomes a

more accurate estimate of speedup as the database size increases.

R may also underestimate the actual speedup, because the time cost for exact collision queries

can be different. For configurations near the boundary of Cobs, collision queries are more expensive.

Thus, the time cost of checking the collision status for an in-collision local path is usually larger than

that of checking a collision-free local path, because the former always has at least one configuration

on the boundary of Cobs. As a result, it is possible to obtain a speedup larger than C1/C2.

3.6.5 Completeness and Optimality

As a natural consequence of Theorem 3.5, we can prove the probabilistic completeness and

optimality of the new planners described in Figure 3.4. To avoid narrow passage problems, in this

theorem we assume that the new planners apply the heuristics mentioned in Section 3.6.3. In other

words, we assume ps > 0 in order to guarantee that the critical samples in the narrow passage will

not be filtered out by mistake.

Theorem 3.6. I-PRM, I-lazyPRM, I-RRT are probabilistically complete. I-RRT∗ is probabilistically

complete and asymptotically optimal.

Proof. A motion planner MP is probabilistically complete if its failure probability. In other words,

MP is probabilistic complete when limN→∞ P[MP fails] = 0, where [MP fails] denotes the event

that the motion planner fails to find a collision-free path after N samples, even when one exists.

82

Suppose we replace MP’s exact collision detection query with the learning-based query and

denote the new planner as I-MP. I-MP can fail in two cases: 1) MP fails or 2) MP computes a solution

but some edges on the collision-free path are classified as in-collision by our learning algorithm.

Let L be the number of edges in the solution path and let Ei denote the event that the i-th edge is

incorrectly classified as in-collision. As a result, we have

P[I-MP fails]

= P[MP fails] + (1− P[MP fails]) · P[

L⋃
i=1

Ei]

≤ P[MP fails] +
L∑
i=1

P[Ei].

(3.16)

Analogous to [MP fails], the event [I-MP fails] denotes the event that the new motion planner

fails to find a collision-free path after N samples, when one exists. According to Theorem 3.5,

limN→∞ P[Ei] = 0 and L is a finite number, so we have limN→∞ P[I-MP fails] = 0. That is, I-MP

is probabilistically complete. Therefore, since PRM, lazyPRM, RRT and RRT∗ are all probabilisti-

cally complete, we can prove that I-PRM, I-lazyPRM, I-RRT and I-RRT∗ are all probabilistically

complete.

Similarly, if MP is asymptotically optimal, then I-MP does not converge to the optimal path

only when path edges are classified as in-collision by the learning algorithm and this probability

converges to zero. As a result, I-RRT∗ is asymptotically optimal.

3.7 Results and Discussions

In this section, we evaluate the performance of our new planners. Figure 3.5 and Figure 3.6 show

the articulated PR2 and rigid body benchmarks we used to evaluate the performance. We evaluate

each planner on different benchmarks. For each combination of planner and benchmark we ran 50

instances of the planner, and computed the average planning time as an estimate of the planner’s

performance on this benchmark. The algorithm is implemented in C++ and all of the experiments

are performed on a PC with an Intel Core i7 3.2GHz CPU and 2GB memory. The exact collision

tests are performed using the FCL collision library (Pan et al., 2012).

83

3.7.1 Pipeline and Results

The learning-based planners use a ‘cold start’: they start with an empty database of prior collision

query results, which means they have no knowledge about the environment in the beginning. As

a result, during the first few queries performed by the sample-based planner, the learning-based

collision framework will find that it has insufficient information to predict the collision status of

a given configuration or a local path. In these cases, we end up using exact collision checking

algorithms. During this phase, the learning-based planner will behave exactly the same as the original

planner, except that the results from exact collision queries will be stored in the database. This

process is called the ‘warm up’ of the instance-based learning framework. After several planning

queries, there will be enough information in the database about C-space to perform learning, and the

acceleration brought by the learning method begins to counteract its warm-up overhead during the

following queries.

The comparison results are shown in Table 3.1 and Table 3.2, which correspond to PR2 bench-

marks and rigid body benchmarks respectively. Based on these benchmarks, we observe that:

• The learning-based planners provide more speedup on articulated models. Exact collision

checking on articulated models is more expensive than exact collision checking on rigid

models, because for articulated models we need to compute self-collision as well as check for

collisions between each component of the body and each obstacle in the environment. As a

result, TC is larger and thus speedups are larger.

• The speedup of I-PRM over PRM is relatively large, since exact collision checking takes a

significant fraction of overall time within PRM algorithm. I-lazyPRM also provides significant

speedup because the candidate path is nearly collision-free and can greatly reduce the number

of exact collision queries in lazy planners. I-RRT and I-RRT∗ provide limited speedup and

can even be slower than the original planners, especially on simple rigid body benchmarks.

This is because the original planners are already quite efficient on simple benchmarks, and

instance-based learning involves overhead during the ‘warm up’ phase.

We also analyze the accuracy of our learning-based collision status estimation algorithm in

Figure 3.7. For databases of different sizes, we compute the average learning accuracy on 100 point

84

queries or local path queries. If an ambiguity rejection or a distance rejection happens for a query,

we measure the learning accuracy for this query as 0.5 because any estimate is no better than random

guess, and we in fact perform exact collision checking on such samples. Thus, the learning accuracy

is 0.5 when the database is empty. From the figure, we can see the learning accuracy increases as the

database becomes larger.

Since the learning-based planners use a ‘cold start’, the acceleration results shown in Table 3.1

and Table 3.2 show only a portion of the speedups that can be obtained using a learning-based

framework. As more collision queries are performed and their results are stored in the dataset,

the resulting planner has more information about Cobs and Cfree, so culling becomes more efficient.

Ideally, culling would filter out all in-collision queries and obtain a high speedup. In practice, we

do not achieve ideal speedups due to two reasons: 1) we only have a limited number of samples

in the dataset; and 2) the overhead of the k-NN query increases as the dataset size increases. As

a result, when we perform the global motion planning computation repeatedly, the planning time

will first decrease, and then eventually increase. This phenomenon is shown in Figure 3.8. To avoid

such problems, we monitor the average planning time of the most recent planning queries, and to

stop adding new data into the database when the average planning time starts to increase. The result

of this strategy is shown in Figure 3.9. In practice, the memory consumed by our modified motion

planners is about 2-3 times more than the original planners.

Figure 3.5: PR2 planning benchmarks: robot arms with different colors show the initial and goal
configurations. The first three benchmarks are of the same environment, but the robot’s arm must
perform different actions: (a) move arm from under desk to above desk; (b) move arm from under
desk to another position under desk; and (c) move arm from inside the box to outside the box. In the
final benchmark, the robot tries to move its arm from under a shelf to above it. The order of difficulty
of the four benchmarks is (c) > (d) > (b) > (a). These planning problems are for PR2’s 7-DOF robot
arm.

85

Figure 3.6: Rigid body planning benchmarks, from left to right: apartment, cubicles, easy, flange
and torus. In the apartment benchmark, the piano must move to the hallway near the door entrance;
in the cubicles benchmark, the robot moves through a simple office-like environment where the robot
needs to travel through the basement; in both the flange and torus benchmarks, there is a narrow
passage. Each of these problems contains 6 DOFs.

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

database size

a
c
c
u
ra

c
y

local path query

point query

Figure 3.7: The accuracy result for the benchmark shown in Figure 3.5(a). For databases of different
sizes, we compute the average accuracy on 100 point queries or local path queries. If an ambiguity
rejection or a distance rejection happens for a query, we measure its accuracy as 0.5 because no
estimate is better than a random guess, and we in fact perform exact collision checking on such
samples. This is why the accuracy is 0.5 when the database is empty.

3.7.2 Dynamic Environments

It is possible to extend our method to handle dynamic environments. Let the underlying obstacle

reside in the workspace W (R2 or R3). We divide the workspace into a set of grids. Then we define

86

PRM I-PRM lazyPRM I-lazyPRM RRT I-RRT RRT∗ I-RRT∗

(a) 12.78/0.49 9.61/1.15 (32%) 1.2/0.54 0.87/0.43 (37%) 0.96/0.34 0.75/0.35 (28%) 1.12/0.5 1.01/0.52 (11%)
(b) 23.7/6.25 12.1/4.3 (96%) 1.7/1.08 0.90/0.64 (88%) 1.36/0.85 0.89/0.46 (52%) 2.08/1.46 1.55/0.75 (34%)
(c) fail fail fail fail 4.15/2.23 2.77/1.18 (40%) 3.45/2.12 2.87/1.53 (20%)
(d) 18.5/8.3 13.6/6.62 (36%) 2.52/0.82 1.06/0.69 (37%) 7.72/2.96 5.33/1.81 (44%) 7.39/4.45 5.42/3.25 (36%)

Table 3.1: Performance comparison of different combinations of planners and PR2 benchmarks (in
milliseconds). We show both the average time and the standard deviation (average time/standard
deviation). ‘Fail’ means that none of the queries can find a collision-free path within 1, 000 sec-
onds. The percentage in the brackets shows the speedup obtained using instance-based learning.
Benchmarks (a)-(d) refer to the PR2 benchmarks shown in Figure 3.5.

PRM I-PRM lazyPRM I-lazyPRM RRT I-RRT RRT∗ I-RRT∗

apartment 5.25/0.81 2.54/0.65 (106%) 2.8/0.32 1.9/0.23 (47%) 0.09/0.12 0.10/0.11 (-10%) 0.22/0.16 0.23/0.14 (5%)
cubicles 3.92/0.66 2.44/0.51 (60%) 1.62/0.57 1.37/0.43 (19%) 0.89/0.52 0.87/0.44 (2%) 1.95/0.83 1.83/0.91 (7%)

easy 7.90/1.02 5.19/0.86 (52%) 3.03/1.12 2.01/0.94 (50%) 0.13/0.59 0.15/0.55 (-13%) 0.26/0.17 0.27/0.15 (-4%)
flange fail fail fail fail 48.47/25.43 25.6/11.17 (88%) 46.07/20.52 26.9/11.67 (73%)
torus 31.52/4.3 23.3/3.5 (39%) 4.16/0.91 2.75/0.88 (51%) 3.95/1.12 2.7/0.93 (46%) 6.01/2.1 4.23/1.65 (42%)

Table 3.2: Performance comparison of different combinations of planners and rigid body benchmarks
(in milliseconds). We show both the average time and the standard deviation (average time/stan-
dard deviation). ‘Fail’ means that none of the queries can find a collision-free path within 1, 000
seconds. The percentage in the brackets shows the speedup from using instance-based learning. The
benchmarks apartment, cubicles, easy, flange and torus are shown in Figure 3.6.

10 20 30 40 50 60 70 80 90 100

7.5

8

8.5

9

9.5

10

10.5

11

11.5

query id

p
l
a
n
n
i
n
g

t
i
m
e

Figure 3.8: The time taken by I-PRM when it runs more than 100 times on the benchmark shown
in Figure 3.5(a). The planning time of a single query first decreases and then increases. The best
acceleration acquired is 12.78/7.5 = 70%, larger than the 32% in Table 3.1.

two set valued functions,

o to grid : obstacles→ collection of grid indices

grid to c : grid indices→ collection of configurations.

87

10 20 30 40 50 60 70 80 90 100

7

7.5

8

8.5

9

9.5

10

10.5

11

11.5

query id

p
l
a
n
n
i
n
g

t
i
m
e

Figure 3.9: The time taken by I-PRM when it runs more than 100 times on the benchmark shown
in Figure 3.5(a). In this experiment, we monitor the average planning time of the most recent 10
queries and stop adding collision results into the database when average planning time increases.
Since the database size does not change after about the 60-th query, the system does not suffer from
the increase in the planning time.

The function o to grid(obstacle) returns the indices of the workspace grid cells that overlap with

the given obstacle; grid to c(grid index) returns the set of configuration samples in the database D

that correspond to the robot colliding with the given grid cell. The two functions can be implemented

as two spatial hash tables.

For a moving obstacle, we first find the set of grid cells that overlap with the obstacle’s swept vol-

ume (between two successive time instances) using the function o to grid, and next use grid to c

to get the set of configurations whose collision statuses may change after the movement. Finally,

we update the collision statuses for these samples in D using exact collision detection. This update

operation can be implemented efficiently since our database is implemented as a hash table.

3.8 Limitations, Conclusions, and Future Work

In this chapter, we use instance-based learning to improve the performance of sample-based

motion planners. The basic idea is to store the prior collision results as an approximate representation

of Cobs and Cfree, so we can replace the expensive exact collision detection query by a relatively cheap

probabilistic collision query. We integrate approximate collision routines with various sample-based

motion planners and observe 30− 100% speedup on rigid and articulated robots.

88

There are many avenues for future work. First, we need to find methods to adjust LSH parameters

adaptively so that the k-NN query becomes more efficient for varying dataset sizes. One option is to

change L (the number of hash tables), because a small L may provide sufficient k-NN candidates

for a large dataset. Second, for samples in regions that are already well-explored, we should avoid

inserting collision results into the dataset in order to limit the dataset size. Finally, we would like

to evaluate the performance of using instance-based learning with planning algorithms in dynamic

environments. Since prior collision results are stored in hash tables, updates to the database are

efficient; thus, our algorithm should be able to work efficiently in dynamic environments.

89

CHAPTER 4: GPU-BASED MOTION PLANNING

4.1 Introduction

There is extensive literature on motion planning and global navigation. Practical methods for

motion planning for high-DOF robots are often based on randomized sampling (Kavraki et al.,

1996; Kuffner and LaValle, 2000). These methods attempt to capture the topology of the free space

by generating random configurations and connecting nearby configurations using local planning

methods. The resulting algorithms are probabilistically complete and have been successfully used to

solve many high-DOF motion planning and navigation problems in different applications. However,

they are too slow for interactive applications or dynamic environments.

4.1.1 Main Results

We present a novel parallel algorithm for real-time motion planning of high-DOF robots that

exploits the computational capability of a $400 commodity graphics processing unit (GPU). Current

GPUs are programmable many-core processors that can support thousands of concurrent threads. We

use them for real-time computation of a probabilistic roadmap (PRM) and a lazy planner. We describe

efficient parallel strategies for constructing the roadmap that include sample generation, collision

detection, connecting nearby samples, and local planning. The query phase is also performed in

parallel based on graph search. In order to design an efficient single query planner, we use a lazy

strategy that defers collision checking and local planning. We also describe new hierarchy-based

collision detection algorithms, to accelerate the overall performance.

The performance of the algorithm is governed by the topology of the underlying free space as

well as the methods used for sample generation and nearest neighbor computation. In practice, our

algorithm can generate thousands of samples for robots with 3 or 6 DOF and compute the roadmap

for these samples at close to interactive rates, including construction of all hierarchies. Our algorithm

performs no precomputation and is applicable to dynamic scenes, articulated models, and non-rigid

robots. We evaluate its performance using multiple benchmarks on a commodity PC with a NVIDIA

GTX 285 GPU and observe a 10 to 80-fold improvement in performance, compared to CPU-based

implementations.

4.1.2 Organization

The rest of this chapter is organized as follows. We survey related work on real-time motion

planning and GPU-based algorithms in Section 4.2. Section 4.3 gives an overview of our approach

and we present parallel algorithms for the construction and query phase in Section 4.4. We evaluate

performance on different motion planning benchmarks in Section 4.5 and compare with prior

methods.

4.2 Related Work

In this section, we first provide background on current GPU architectures. Next, we give a brief

overview of prior work in real-time motion planning.

4.2.1 GPU Architectures

In recent years, the focus in processor architectures has shifted from increasing clock rate to

increasing parallelism. Commodity GPUs such as NVIDIA Fermi have theoretical peak performance

of Tera-FLOP/s for single precision computations and hundreds of Giga-FLOP/s for double precision

computations. This peak performance is significantly higher than current multi-core CPUs, thus

outpacing CPU architectures (Lindholm et al., 2008) at relatively modest cost of $400 to $500.

However, GPUs have different architectural characteristics and a different memory hierarchy, which

impose constraints in terms of designing appropriate algorithms. First, GPUs usually have a high

number of independent cores (e.g., the newest generation GTX 480 has 15 cores and each core has

32 streaming processors, resulting in total of 480 processors while GTX 280 has 240 processors).

Each of the individual cores is a vector processor capable of performing the same operation on

several elements simultaneously (32 elements for current GPUs). Second, the memory hierarchy

on GPUs is quite different from that of CPUs, and cache sizes on GPUs are considerably smaller.

Moreover, each GPU core can handle several separate tasks in parallel and switch between different

tasks in the hardware when one of them is waiting for a memory operation to complete. This

91

hardware multi-threading approach is designed to hide memory access latency. Third, all GPU

threads are logically grouped in blocks with a per-block high-speed shared memory, which provides

a weak synchronization capability between the GPU cores. Overall, shared memory is a limited

resource on GPUs: increasing the shared memory distributed for each thread can limit the extent

of parallelism. Finally, multiple GPU threads are physically managed and scheduled in the single-

instruction, multiple-thread (SIMT) way, i.e., threads are grouped into chunks and each chunk

executes one common instruction at a time. In contrast to single-instruction multiple-data (SIMD)

schemes, the SIMT scheme allows each thread to have its own instruction address counter and

register state, and therefore the freedom to branch and execute independently. However, a GPU’s

performance can reduce significantly when threads in the same chunk diverge considerably, because

these diverging portions are executed in a serial manner for all the branches. As a result, threads

with coherent branching decisions (e.g., threads traversing the same paths in the bounding volume

hierarchy structure for two objects involving in collision checking) are preferred on GPUs in order to

obtain higher performance (Gunther et al., 2007). All of these characteristics imply that – unlike

CPUs – achieving high performance in current GPUs depends on several factors:

1. Generating a sufficient number of parallel tasks so that all the cores are highly utilized.

2. Developing parallel algorithms such that the total number of tasks is higher than the number of

threads, so that each core has enough work to perform while waiting for data from relatively

slow memory accesses.

3. Assigning appropriate size for shared memory to accelerate memory accesses while not

reducing the level of parallelism.

4. Performing coherent or similar branching decisions for each parallel thread within a given

chunk.

These requirements impose constraints in terms of designing appropriate collision query algorithms

for running on GPUs.

92

4.2.2 Real-time Motion Planning

An excellent survey of various motion planning algorithms is given in (LaValle, 2006). Many

parallel algorithms have also been proposed for motion planning, that utilize the properties of

configuration spaces (Lozano-Pérez and O’Donnell, 1991). The distributed representation of mo-

tion planning (Barraquand and Latombe, 1991) can be easily parallelized. In order to deal with

high dimensional or difficult planning problems, distributed sampling-based techniques have been

proposed (Plaku et al., 2007).

The computational power of many-core GPUs has been used for many geometric and scientific

computations (Owens et al., 2007). The rasterization capabilities of a GPU can be used for real-time

motion planning of low DOF robots (Hoff et al., 2000; Sud et al., 2007) or for improving sample

generation in narrow passages (Pisula et al., 2000; Foskey et al., 2001).

4.3 Overview

In this section, we discuss some challenges in developing parallel motion planning algorithms

for current GPU architectures. One of our goals is to use sample-based planners that are relatively

easy to parallelize and can be used for single query and multiple queries.

We choose the PRM algorithm as the underlying method for parallel planning, because it is most

suitable to exploit multiple cores and data parallelism on GPUs. The PRM algorithm is composed

of several steps and each step performs similar operations on the input samples or the links joining

those samples. Many other efficient CPU-based algorithms have also been developed, including

RRT (Kuffner and LaValle, 2000) and SBL (Sanchez and Latombe, 2001). However, these methods

may not be able to exploit the GPU parallelism due to two reasons. First, these methods proceed in

an incremental manner in terms of adding new samples to the underlying tree structure. Second, the

order of adding new samples is critical in determining the expansion of the tree.

The PRM algorithm has two phases: roadmap construction and querying. The roadmap con-

struction phase includes four main steps: 1) generate samples in the configuration space; 2) compute

milestones that correspond to the samples in the free space by performing discrete collision queries;

3) for each milestone, find other milestones that are nearest to it; and 4) connect nearby milestones

using local planning and form a roadmap. The query phase includes two parts: 1) connect initial and

93

goal configurations of query to the roadmap, and 2) execute a graph search algorithm on the roadmap

and find collision free paths.

Parts of the PRM algorithm, such as the collision queries, are embarrassingly parallel (Amato

and Dale, 1999). However, we can use a many-core GPU to significantly enhance the performance

of the other components as well. The framework of our PRM algorithm on the GPU is shown in

Figure 4.1. We parallelize each of the 6 steps of the PRM algorithm efficiently: First, each thread

of a multi-core GPU generates a random configuration of robot, and some of these configurations

will collide with obstacles. All of the collision-free samples are milestones and become vertices of

the roadmap graph. Next, each GPU thread computes the k-nearest neighbors of a single milestone

and collects all the neighborhood pairs. Each thread then checks whether it is possible to connect

these adjacent pairs by performing local planning. If there is a collision-free path between that

neighborhood pair of milestones, we add the edge to the roadmap. Once the roadmap is built, queries

are connected to the roadmap in parallel and we use a parallel graph search algorithm to find paths.

The resulting GPU-based framework is very efficient for a multi-query version of the planning

problem. The most expensive step in this computation is the local planning algorithm; thus, we use

new collision detection algorithms to improve its performance. In order to accelerate the single-query

algorithm, we introduce a solution that uses a lazy strategy and defers collision checking for local

planning. In other words, the algorithm connects all the edges corresponding to the nearest neighbors

and searches for paths between the initial and final configurations. After that, it performs local

planning on the edges that constitute these paths.

4.4 Parallelized PRM Motion Planning Algorithm

In this section, we provide details about our algorithm and describe how each step is parallelized.

4.4.1 Hierarchy Computation

We construct a bounding volume hierarchy (BVH) for the robot and one for each of the obstacles

in the environment, to accelerate the collision queries. We use the GPU-based construction algorithm

introduced in (Lauterbach et al., 2009), which can construct the hierarchy of axis-aligned bounding

boxes (AABB) or oriented bounding boxes (OBB) in parallel on the GPU, for given triangle represen-

tation. For collision detection, we use the OBB hierarchy as it provides higher culling efficiency and

94

Figure 4.1: PRM overview and parallel components in our algorithm

improved performance on GPU-like architectures. These hierarchies are stored in the GPU memory

and we apply appropriate transformations for different configurations.

4.4.2 Roadmap Construction

The roadmap construction phase tries to capture the connectivity of the free configuration space,

which is the main computationally intensive part of the PRM algorithm.

4.4.2.1 Sample Generation

We first need to generate random samples within the configuration space. Since samples are

independent, we schedule enough parallel threads to utilize the GPU and use MD5 cryptographic

hash function (Tzeng and Wei, 2008) which in practice provides good randomness without a shared

seed.

95

4.4.2.2 Milestone Computation

For each configuration generated in the previous step, we need to check whether it is a milestone:

i.e., a configuration that lies in the free space and does not collide with obstacles. We use a hierarchical

collision detection approach using BVHs to test for overlap between the obstacles and the robot in

the configuration defined by the sample. The collision detection is performed in each thread by using

a traversal algorithm in the two BVHs. The traversal algorithm starts with the two BVH root nodes

and tests the OBB nodes for overlap in a recursive manner. If two nodes overlap, then all possible

pairings of their children should be recursively tested for intersection.

We also use GPUs to compute the actual BVH structure for both the robot and obstacles by using

a parallel hierarchy construction algorithm (Lauterbach et al., 2009). Since the robot’s geometric

objects move depending on the configuration, its BVH is only valid for the initial configuration. In

order to avoid recomputing a BVH for each configuration, we instead transform each node of the

robot’s BVH with the current configuration sample before performing overlap tests. Thus, only nodes

that are actually needed during collision testing are transformed.

Previous work (Lauterbach et al., 2010) has used BVH collision on GPUs to parallelize the

tests within one query. The approach here is different because we instead parallelize a high number

of collision queries, so each thread checks a fully independent collision. In addition, we do not

need to find the actual intersection, just whether one exists or not. Thus, we can abort the traversal

operation as soon as any collision is found and do not have to exhaustively search the hierarchy.

In our implementation, each thread performs traversal in a stack-based depth first search (DFS)

algorithm. We can store the DFS stack in the shared memory of the GPU, which has a higher access

speed than the global memory on the GPU. Moreover, the DFS algorithm supports early exit from

the traversal when the first collision between leaf nodes is computed.

4.4.2.3 Proximity Computation

For each milestone computed, we need to find its k-nearest neighbors. In general, there are two

types of k-NN algorithms: exact k-NN and approximate k-NN, which is faster by allowing a small

relaxation. Unlike previously proposed GPU solutions using brute force (Garcia et al., 2008), our

96

proximity algorithm is based on a range query that uses a BVH structure of the points in configuration

space. We describe the method for 3-DOF robots and then present its extension for high-DOF robots.

For 3-DOF Euclidean space, we first construct the BVH structure for all the milestones using

a parallel algorithm (Lauterbach et al., 2009). For each configuration q, we enclose it within an

axis-aligned ε box: a box with q as the center and with 2ε as the edge length. Next, we traverse

the BVH tree to find all leaf nodes (i.e., configurations) that are within the ε box. This reduces to a

range-query for q. For a non-Euclidean DOF, we duplicate samples to transform it into a Euclidean

space locally. For example, suppose one DOF is the rotation angle α ∈ [0, 2π]. We add another

sample α∗ ∈ [−π, 3π] with a distance 2π to α. If all 3-DOF are rotations, we need to add another 7

samples for each milestone. Once the range query finishes, we choose the k-nearest ones from all the

query results; this gives us the exact nearest neighbors.

For high dimensional spaces, we use a decomposition strategy to compute the approximate

nearest neighbors. We use 6-DOF as an example. We first decompose each configuration q into

3-DOF projections q1, q2 and obtain two 3-DOF groups. For each of them we build separate BVHs

and perform range queries. Suppose we find k1 neighbors within q1’s ε1 box and k2 neighbors within

q2’s ε2 box. We then compute the distances of these candidates to q in 6-DOF space and choose the

k of them that are nearest to q. For configuration spaces with higher dimensions, we just repeat the

above process until all dimensions are considered. The final result is the approximate k-NN that has

a distance to q of at most
√

3
∑

i εi.

To further improve the performance of proximity computation in high dimensional space, we

have developed a new k-nearest neighbor algorithm, which uses locality sensitive hashing (LSH) and

cuckoo hashing to efficiently compute approximate k-nearest neighbors in parallel on the GPU.

4.4.2.4 Local Planning

Local planning checks whether there is a local path between two milestones, which corresponds

to an edge on the roadmap. Many methods are available for local planning. The most common way

is to discretize the path between the two milestones into ni steps; we claim the local path exists when

all the intermediate samples are collision-free, determined by performing discrete collision queries

(DCD) at those steps. We can also perform local planning by using continuous collision detection

(CCD), a local RRT algorithm or computing distance bounds (Schwarzer et al., 2005).

97

Local planning is the most expensive part of the PRM algorithm. Suppose we have nm milestones,

and each milestone has at most nk nearest neighbors. Then the algorithm performs local planning at

most nm · nk times. If we use DCD, then we need to perform at most nl = nm · nk · ni collision

queries, which can be very high for a complex benchmark. For multi-query problems, this cost can

be amortized over multiple queries as the roadmap is constructed only once. For a single-query

problem, computing the whole roadmap is too expensive.

Therefore, in the single-query case, we use a lazy strategy to defer local planning until absolutely

necessary. Given a query, we compute several different candidate paths in the roadmap graph from

the initial to final configuration and only check local planning for roadmap edges on the candidate

paths. Local planning may conclude that some of these edges are not valid, and in that case, we

delete them from the roadmap. If there exists one candidate path without invalid edges, the algorithm

has found a collision-free solution. Otherwise, we compute candidate paths again on the updated

roadmap and repeat the above process. This lazy strategy can greatly improve performance for single

queries.

4.4.3 Query Phase

The query phase includes two parts: connecting queries to the roadmap and executing graph

searches to find paths.

4.4.3.1 Query Connection

Given the initial-goal configurations in a single query, we connect them to the roadmap. For

both of these configurations, we find the k nearest milestones on the roadmap and add edges between

the query and milestones that can be connected by local planning. We use the same algorithm from

the roadmap construction phase, except that the k used is 2− 3 times larger in order to increase the

probability of finding a path.

4.4.3.2 Graph Search

The search algorithm tries to find a path on the roadmap connecting initial and goal configurations.

Many solutions exist for this, such as DFS, BFS, A*, and R* (Kider et al., 2010). A* and R* can

find the shortest path, which is not necessary for the basic motion planning problem. Moreover,

98

A* and R* are not efficient when a lazy strategy is used. As a result, we use DFS or BFS. For the

multi-query case, each GPU thread traverses the roadmap for one query using DFS and the final

results are collision-free paths. For the single-query case, we exploit all the GPU threads to find the

path for one query using a BFS search: for nodes that are the same number of steps away from the

initial node, we add their unvisited neighbors into the queue in parallel. In other words, different

GPU cores traverse different parts of the graph. The main challenge of this method is that work is

generated dynamically as BFS traverse progresses, and the computational load on different cores

can change significantly. To address the problem of load balancing and work distribution so that

parallelism for all cores is maintained, we use the light-weight load balancing strategy in (Lauterbach

et al., 2010).

Since BFS is time-consuming, we use lazy strategy to further improve the graph search’s

performance. When using a lazy strategy, we first run BFS for several iterations to find a set of nodes

that are reachable from initial node. Then we run DFS/BFS/A* in each thread with one of these

nodes as the initial node and find several candidate paths. We use local planning to check whether

any one of these are collision-free paths. If yes, we return a valid path. Otherwise, we remove all

invalid edges from the roadmap and repeat the process again.

4.5 Implementation and Results

In this section, we present details of our implementation and evaluate the performance of our

algorithm on a set of benchmarks. All the timings reported here were taken on a machine using a

Intel Core i7 CPU (∼$600) at 3.2GHz CPU and 6GB memory. We implemented our algorithms

using CUDA on a NVIDIA GTX 285 GPU (∼$380) with 1GB of video memory.

Our algorithm is designed to work well on any massively processor- and data-parallel architecture

by using vector parallelism and low synchronization overhead. In this regard, both NVIDIA and ATI

(as well as Intel’s Larrabee processor) are relatively similar. We used CUDA since it was the most

stable development platform at the moment, but look forward to testing in OpenCL and comparing

across architectures.

We implement the PRM algorithm on the GPU (G-PRM) for multi-query planning problems and

implement its lazy version (GL-PRM) for single-query problems. We compare these with the PRM

and RRT algorithms implemented in the OOPSMP library (Plaku et al., 2007), which is a popular

99

Figure 4.2: The benchmark scenes used for our algorithms in the following order: piano (2484
triangles), helicopter (2484 triangles), maze3d1 (40 triangles), maze3d2 (40 triangles), maze3d3 (970
triangles), and alpha puzzle (2016 triangles).

library for motion planning algorithms on CPU. The benchmarks used are shown in Figure 4.2. Our

comparisons are designed as follows: for each benchmark, we find a suitable setting where C-PRM

finds a solution, and then we run G-PRM with a comparable number of samples. After that we run

GL-PRM with the same setting as G-PRM, and run C-RRT with the same setting as C-PRM. Of

course, the compared PRM algorithms on GPU and CPU are not identical in terms of the final result,

for instance, due to underlying random sample generation. Even though these random generators

are slightly different, the number of collision-free nodes and collision-free arcs in the computed

roadmaps are comparable. Moreover, the final paths computed by GPU algorithms are close to those

computed by CPU algorithms. In practice, the total work performed by the non-lazy GPU planner is

actually higher than the CPU version.

Table 4.1 shows the comparison of timings between algorithms. In general, G-PRM is about 10

times faster than C-PRM, and GL-PRM can provide another 10-fold acceleration for single query

problems. G-PRM is faster than C-PRM even for dynamic scenes. The current C-RRT and C-PRM

are both single-core versions. However, even a multi-core version of PRM would only improve the

timing by 4-fold at most, because on a 8-core CPU it is hard to scale the hierarchy computations and

nearest neighbor computations linearly. Therefore, our GPU algorithms can still provide performance

1-2 orders of magnitude higher than CPU algorithms.

Figure 4.3 shows the timing breakdown between various steps for G-PRM and GL-PRM. The

difference between the performance of two algorithms is clear: in G-PRM, local planning is the

bottleneck and dominates the timing, while in GL-PRM graph search takes longer because local

planning is performed in a lazy or output-sensitive manner. In GL-PRM, three components take

most timing: milestone construction, proximity computation, and graph search, because all of them

may perform collision queries heavily. If the environment is cluttered and the model has complex

geometry, milestone construction will be slow (Alpha puzzle in Figure 4.3). If the environment is an

100

open space and has many milestones, proximity computation will be the bottleneck (mazed3d2 in

Figure 4.3). If the lazy strategy can not guess a correct path, then graph search will be computationally

intensive due to the large number of collision queries (maze3d3 in Figure 4.3). However, in all these

environments, GL-RPM all outperforms other methods.

We test the scalability of G-PRM and GL-PRM on the maze3d3 benchmark and the result is

shown in Figure 4.4. It is obvious that GL-PRM is generally faster than G-PRM, and both algorithms

achieve near-linear scaling on the benchmark. However, observe that as the number of samples

increases, GL-PRM slows down faster than G-PRM. This is because when the number of samples

increases, proximity computation becomes increasingly expensive and dominates the timing when

the number of samples is near 1 million.

C-PRM C-RRT G-PRM GL-PRM
piano 6.53s 19.44s 1.71s 111.23ms

helicopter 8.20s 20.94s 2.22s 129.33ms
maze3d1 138s 21.18s 14.78s 71.24ms
maze3d2 69.76s 17.4s 14.47s 408.6ms
maze3d3 8.45s 4.3s 1.40s 96.37ms
alpha1.5 65.73s 2.8s 12.86s 1.446s

Table 4.1: The left two columns evaluate the performance of the PRM and RRT algorithms in the
OOPSMP. The right two columns evaluate the performance of our GPU-based algorithms.

4.6 Conclusions and Future Work

In this chapter, we have introduced a complete motion planning algorithm on GPUs. Our algo-

rithm can exploit all the parallelism within the PRM algorithm, including the high-level parallelism

provided by the PRM framework and the low-level parallelism within different components of the

PRM algorithm, such as collision detection and graph search. As a result, our method provides

performance 1-2 orders of magnitude higher than previous CPU-based planners. This makes our

method the first to perform real-time motion planning and global navigation in general environments.

There are many avenues for future work. For instance, we are interested in extending the GPU

planning algorithms to high-DOF articulated models. We are also interested in using exact algorithms

for local planning. Moreover, we hope to apply our real-time algorithms to dynamic scenarios. Lastly,

we will test our algorithm in OpenCL/DirectX11 and compare across different architectures.

101

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
graph search

query connection

local planning

proximity

collision queries

sampling

BVH computation

piano helicopter maze3d1 maze3d2 maze3d3 Alpha puzzle

Figure 4.3: Split-up of timings: the fraction of time spent in different parts of the G-PRM and
GL-PRM.

Figure 4.4: The scalability of the G-PRM and GL-PRM.

102

CHAPTER 5: GPU-BASED PARALLEL COLLISION CHECKING

5.1 Introduction

It is known that a significant fraction (i.e., 90% or more) of randomized sampling algorithms

is spent in collision checking. This includes checking whether a given configuration is in free-

space or not, as well as connecting two free-space configurations using a local planning algorithm.

In Chapter 4, we exploit the computational power and massive parallelism of commodity GPUs

(graphics processing units) for almost real-time computation. To enable this, we need to design

appropriate parallel collision algorithms that can map well to GPUs.

5.1.1 Main Results

We present a novel, parallel algorithm for performing collision queries for sample-based motion

planning. Our approach exploits parallelism at two levels: it checks multiple configurations simulta-

neously (to determine whether they are in free space or not) and performs parallel hierarchy traversal

for each collision query. Similar techniques are also used for local planning queries. We use clus-

tering techniques to appropriately allocate the collision queries to different cores. Furthermore, we

introduce the notion of collision-packet traversal, which ensures that all the configurations allocated

to a specific core result in similar hierarchical traversal patterns. The resulting approach also exploits

fine-grained parallelism which uses bounding volume overlap tests to balance the workload.

The resulting algorithms have been implemented on commodity NVIDIA GPUs. In practice,

we are able to process about 500, 000 collision queries per second on a $400 NVIDIA GeForce 480

desktop GPU, which is almost 10 times faster than prior GPU-based collision checking algorithms.

We also use our collision checking algorithm for GPU-based motion planners of high-DOF rigid

and articulated robots. The resulting planner can compute collision-free paths in less than 100

milliseconds for various benchmarks and appears to be 50-100 times faster than CPU-based PRM

planners.

5.1.2 Organization

The rest of this chapter is organized as follows. We survey related work on collision detection

algorithms in Section 5.2. Section 5.3 gives an overview of our approach, and we present parallel

algorithms for collision queries in Section 5.4. We evaluate the performance of our algorithm on

different benchmarks in Section 5.5.

5.2 Related Work

In this section, we give a brief overview of prior work in parallel algorithms for collision

detection.

5.2.1 Parallel Collision Queries

Some of the widely-used algorithms for collision checking are based on bounding volume

hierarchies (BVH), such as k-DOP trees, OBB trees, AABB trees, and so forth (Lin and Manocha,

2004). Recent developments include parallel hierarchical computations on multi-core CPUs (Kim

et al., 2009; Tang et al., 2010) and GPUs (Lauterbach et al., 2010). CPU-based approaches tend to

rely on fine-grained communication between processors, which is not suited for current GPU-like

architectures. On the other hand, GPU-based algorithms (Lauterbach et al., 2010) use work queues

to parallelize the computation on multiple cores. All of these approaches are primarily designed to

parallelize a single collision query.

However, the capability to efficiently perform high numbers of collision queries is essential in

motion planning algorithms; for example, multiple collision queries are used in milestone computa-

tion and local planning. Some existing algorithms perform parallel queries in a simple manner: each

thread handles a single collision query independently (Amato and Dale, 1999; Akinc et al., 2005).

Since current multi-core CPUs have the capability to perform multiple-instruction multiple-data

(MIMD) computations, these simple strategies can work well on CPUs. On the other hand, current

GPUs offer high data parallelism and the ability to execute a high number of threads in parallel to

overcome high memory latency. As a result, we need new parallel collision detection algorithms to

fully exploit the capabilities of GPUs.

104

5.3 Overview

In this section, we address some issues in designing efficient parallel algorithms to perform

collision queries.

5.3.1 Notation and Terminology

We define some terms and symbols used in the rest of this chapter.

chunk The minimum number of threads that GPUs manage, schedule and execute in parallel, which

is also called warp in GPU computing literature. The size of each chunk (chunk-size or

warp-size) is 32 on current NVIDIA GPUs (e.g., GTX 280 and 480).

block The logical collection of GPU threads that can be executed on the same GPU core. These

threads synchronize by using barriers and communicate via a small high-speed low-latency

shared memory.

BVHa The bounding volume hierarchy (BVH) tree for model a. It is a binary tree with L levels, with

nodes ordered in breadth-first order starting from the root node. The i-th BVH node is denoted

as BVHa[i] and its children nodes are BVHa[2i] and BVHa[2i+ 1] with 1 ≤ i ≤ 2L−1 − 1.

The nodes at the l-th level of a BVH tree are represented as BVHa[k], 2l ≤ k ≤ 2l+1 − 1 with

0 ≤ l < L. The inner nodes are also called bounding volumes (BV), and the leaf nodes also

have a link to the primitive triangles that are used to represent the model.

BVTTa,b The bounding volume test tree (BVTT) represents recursive collision query traversal be-

tween two objects a and b. It is a 4-ary tree, whose nodes are ordered in breadth-first order start-

ing from the root node. The i-th BVTT node is denoted as BVTTa,b[i] ≡ (BVHa[m], BVHb[n])

or simply (m,n), which checks the BV or primitive overlap between nodes BVHa[m] and

BVHb[n]. Here m = bi − 4M+2
3 c + 2M , n = {i − 4M+2

3 } + 2M and M = blog4(3i − 2)c,

where {x} = x−bxc. BVTT node (m,n)’s children are (2m, 2n), (2m, 2n+1), (2m+1, 2n),

and (2m+ 1, 2n+ 1).

q A configuration of the robot, which is randomly sampled within the configuration space (C-Space).

q is associated with the transformation Tq. The BVH of a model a after applying such a

transformation is given as BVHa(q).

105

The relationship between BVH trees and BVTT is also shown in Figure 5.1. Notice that given

the BVHs of two geometric models, the BVTT is completely determined using those BVHs and is

independent of the actual configuration of each model. The model configurations only affect the

actual traversal path of the BVTT.

Figure 5.1: BVH and BVTT: (a) shows two BVH trees and (b) shows the BVTT tree for the collision
checking between the two BVH trees.

5.3.2 Collision Queries: Hierarchical Traversal

Collision queries between the geometric models are usually accelerated with hierarchical tech-

niques based on BVHs, which correspond to traversing the BVTT (Larsen et al., 2000). The simplest

parallel algorithms used to perform multiple collision queries involve each thread traversing the

BVTT for a single configuration and checking whether the given configuration is in free space or not.

This simple parallel algorithm is shown in Algorithm 2. This strategy is easy to implement and has

been used in previous parallel planning algorithms based on multi-core or multiple CPUs. However,

it may not result in high parallel efficiency on current GPUs due to the following reasons. First, each

thread needs a local traversal stack for the BVTT, which is difficult for GPUs to store. The stack

size should be at least 3(log4(Na) + log4(Nb))) to avoid stack overflow, where Na and Nb are the

number of primitive triangles in BVHa and BVHb, respectively. The stack can be implemented using

either global memory or shared memory. Global memory access on GPUs tends to be slow, which

affects BVTT traversal. Shared memory access is much faster but it may be too small to hold the

large stack for complex geometric models composed of thousands of polygons, and increasing the

shared memory usage will limit the extent of parallelism. Second, different threads may traverse

the BVTT tree with incoherent patterns: there are many branching decisions performed during the

106

Algorithm 2 Simple parallel collision checking; such approaches are widely used on multi-core
CPUs

1: Input: N random configurations {qi}Ni=1, BVHa for the robot and BVHb for the obstacles
2: Output: return whether one configuration is in free space or not
3: tid ← thread id of the current thread
4: q← qtid
5: C traversal stack S[] is initialized with root nodes
6: shared/global S[] ≡ local traversal stack
7: S[]←BVTT[1] ≡ (BVHa(q)[1],BVHb[1])
8: C traverse BVTT for BVHa(q) and BVHb

9: loop
10: (x, y)← pop(S).
11: if overlap(BVHa(q)[x],BVHb[y]) then
12: if !isLeaf(x) && !isLeaf(y) then
13: S[]← (2x, 2y), (2x, 2y + 1), (2x+ 1, 2y), (2x+ 1, 2y + 1)
14: end if
15: if isLeaf(x) && !isLeaf(y) then
16: S[]← (2x, 2y), (2x, 2y + 1)
17: end if
18: if !isLeaf(x) && isLeaf(y) then
19: S[]← (2x, 2y), (2x+ 1, 2y)
20: end if
21: if isLeaf(x) && isLeaf(y)&&

exactIntersect(BVHa(q)[x],BVHb[y]) then
22: return collision
23: end if
24: end if
25: end loop
26: return collision-free

traversal (e.g., loop, if, return in the pseudo-code), and the traversal flow of the hierarchy in different

threads diverges quickly. Finally, different threads can have varying workloads, some may be busy

with the traversal while other threads may have finished the traversal early and are idle because there

is no BV overlap or a primitive collision has already been detected. These factors can negatively

affect the performance of the parallel algorithm.

The problems of low parallel efficiency in Algorithm 2 become more severe in complex and/or

articulated models. For such models, there are longer traversal paths in the hierarchy and the

differences between the lengths of these paths can be large for different configurations of a robot.

As a result, differences in the workloads of different threads can be high, which negatively affects

parallelism. For articulated models, each thread checks the collision status of all the links and stops

107

when a collision is detected for any link. Thus, more branching decisions are performed within

each thread, which can lead to more incoherent traversal. Similar issues also arise during local

planning, when each thread determines whether two milestones can be joined by a collision-free path

by checking for collisions along the trajectory connecting them.

5.4 Parallel Collision Detection on GPUs

In this section, we present two novel algorithms for efficient parallel collision checking on GPUs

between rigid and articulated models. Our methods check whether a configuration lies in the free

space or to perform local planning computations. The first algorithm uses clustering techniques and

fine-grained packet-traversal to improve the coherence of BVTT traversal for different threads. The

second algorithm uses queue-based techniques and lightweight workload balancing to achieve higher

parallel performance on the GPUs. In practice, the first method can provide 30%-50% speed up.

Moreover, it preserves the per-thread per-query structure of the naive parallel strategy. Therefore, it

is easy to implement and is suitable for cases where we need to perform additional computations

(e.g., retraction for handling narrow passages (Zhang and Manocha, 2008b)). The second method

can provide 5 to 10-fold speed up, but is relatively more complex to implement.

5.4.1 Parallel Collision-Packet Traversal

Our goal is to ensure that all the threads in a block that are performing BVTT-based collision

checking have similar workloads and coherent branching patterns. Our approach is motivated by

recent developments related to interactive ray-tracing on GPUs for visual rendering. Each collision

query traverses the BVTT and performs node-node or primitive-primitive intersection tests. In

comparison, ray-tracing algorithms traverse the BVH tree and perform ray-node or ray-primitive

intersections. Thus, parallel ray-tracing algorithms on GPUs also need to avoid incoherent branches

and varying workloads to achieve higher performance.

In real-time ray tracing, one approach handling the varying workloads and incoherent branches

is the use of ray-packets (Gunther et al., 2007; Aila and Laine, 2009). In ray-tracing terminology,

packet traversal implies that a group of rays follow exactly the same traversal path in the hierarchy.

This is achieved by sharing the traversal stack (similar to the BVTT traversal stack in Algorithm 2)

among the rays in the same warp-sized packet (i.e., threads that fit in one chunk on the GPU), instead

108

of each thread using an independent stack for a single ray. This implies that some additional nodes

in the hierarchy may be visited during ray intersection tests, even though there are no intersections

between the rays and those nodes. But the resulting traversal is coherent for different rays, because

each node is fetched only once per packet. In order to reduce the number of computations (i.e.,

unnecessary node intersection tests), all the rays in one packet should be similar to one another, i.e.,

have similar traversal paths with few differing branches. For ray tracing, the packet construction

is simple: as shown in Figure 5.2, rays passing through the same pixel on the image space make a

natural packet. We extend this idea to parallel collision checking and refer to our algorithm as the

multiple configuration-packet method.

Ray Packet 1

Ray Packet 2

Camera

Image Space
pixel

Figure 5.2: Ray packets for faster ray tracing. Nearby rays constitute a ray packet and this spatial
coherence is exploited for fast intersection tests.

The first challenge is to cluster similar collision queries into groups, because unlike ray tracing,

there are no natural packet construction rules for collision queries. In some cases, the sampling

scheme (e.g., the adaptive sampling for lazy PRM) can provide natural group partitions. However,

in most cases we need suitable algorithms to compute these clusters. Clustering algorithms are

109

natural choices for such a task; they aim to partition a set X of N data items {xi}Ni=1 into K groups

{Ck}Kk=1 such that the data items belonging to the same group are more “similar” than the data items

in different groups. The clustering algorithm used to group the configurations needs to satisfy some

additional constraints: |Ck| = chunk-size, 1 ≤ k ≤ K, where K = d N
chunk-sizee. That is, each cluster

should fit in one chunk on GPUs, except for the last cluster. Using the formulation of k-means, the

clustering problem can be formally described as:

Compute K = d N
chunk-sizee items {ck}Kk=1 that minimizes

N∑
i=1

K∑
k=1

1xi∈Ck‖xi − ck‖, (5.1)

with constraints |Ck| = chunk-size, 1 ≤ k ≤ K. To our knowledge, there are no existing clustering

algorithms designed for this specific problem. One possible solution is to use clustering with

balancing constraints (Banerjee and Ghosh, 2006), which has the additional constraints |Ck| ≥

m, 1 ≤ k ≤ K, where m ≤ N
K .

Instead of solving Equation (5.1) exactly, we use a simpler clustering scheme to compute an

approximate solution. First, we use the k-means algorithm to cluster the N queries into C clusters,

which can be implemented efficiently on GPUs (Che et al., 2008). Next, for k = 1, ..., C, we

divide the k-th cluster of size Sk into d Sk
chunk-sizee sub-clusters, each of which corresponds to a

configuration-packet. This simple method has some disadvantages. For example, the number of

clusters is
C∑
k=1

d Sk
chunk-size

e ≥ K = d N

chunk-size
e

, so we may not obtain an optimal solution for Equation (5.1). However, as shown later, even

this simple method can improve the performance of parallel collision queries. The configuration

clustering method is illustrated in Figure 5.3.

We then map each configuration-packet to a single chunk. Threads within one packet will

traverse the BVTT synchronously; i.e., the algorithm works on one BVTT node (x, y) at a time and

processes the whole packet against the node. If (x, y) is a leaf node, an exact intersection test is

performed for each thread. Otherwise, the algorithm loads its children nodes and tests the BVs for

overlap to determine the remaining traversal order, to select one child (xm, ym) as the next BVTT

110

Figure 5.3: Multiple configuration packets for parallel collision detection. Green points are random
configuration samples in C-space. Grey areas are C-obstacles. Configurations adjacent in C-space are
clustered into configuration packets (red circles). Some packets are completely in free space; some
packets are completely within C-obstacles; and some packets are near boundaries of C-obstacles.
Configurations in the same packet have similar BVTT traversal paths and are mapped to the same
warp on a GPU.

node to be traversed for the entire packet. We select (xm, ym) in a greedy manner: it corresponds to

the child node that is classified as overlapping with the most threads in the packet. We also push

other children into the packet’s traversal stack. In the case that no BV overlap is detected in all the

threads or (x, y) is a leaf node, (xm, ym) would be the top element in the packet’s traversal stack.

The traversal step is repeated recursively, until the stack is empty. Compared to Algorithm 2, all the

threads in one chunk share one traversal stack in shared memory, instead of using one stack for each

thread. Therefore, the size of shared memory used is reduced by the chunk-size and results in higher

parallel efficiency. The details of the traversal order decision rule are shown in Figure 5.4.

The traversal order described above is a greedy heuristic that tries to minimize the traversal path

of the entire packet. For one BVTT node (x, y), if no overlap is detected in any of the threads, it

implies that these threads will not traverse the sub-tree rooted at (x, y). Since all the threads in the

111

1

1 0

0010

00001000

1

0 1

0100

00100000

1

0 1

1000

01000000

1

0 1

1000

10000000

�

� �

� �

� � �� � �

� � �

�

� �

� � � �

�

�

�

�

��	

�

�

�

��

Figure 5.4: Synchronous BVTT traversal for packet configurations. The four trees in the first row
are the BVTT trees for configurations in the same chunk. For convenience, we represent BVTT as
binary tree instead of 4-ary tree. The 1 or 0 at each node represents whether the BV-overlap or exact
intersection test executed at that node is in-collision or collision-free. The red edges are the edges
visited by the BVTT traversal algorithm and the indices on those edges represent the traversal order.
In this case, the four different configurations have traversal paths of length 5, 5, 5 and 6. The leaf
nodes with a red 1 are locations where collisions are detected and the traversal stops. The tree in the
second row shows the synchronous BVTT traversal order determined by our heuristic rule, which
needs to visit 10 edges to detect the collisions of all four configurations.

packet are similar and traverse the BVTT in nearly the same order, this implies that other threads

in the same packet may not traverse the sub-tree either. We define the probability that the sub-tree

rooted at (x, y) will be traversed by one thread as

px,y =
number of overlap threads

packet-size
.

For any traversal pattern P for BVTT, the probability that it is carried out by BVTT traversal will be

pP =
∏

(x,y)∈P

px,y.

As a result, our new traversal strategy guarantees that the traversal pattern with higher traversal

probability will have a shorter traversal length, which therefore minimizes the overall path for the

packet.

112

The decision about which child node to choose for the next traversal step is computed using

sum reduction (Harris, 2009), which can compute the sum of n items in parallel with O(log(n))

complexity. Each thread writes a 1 in its own location in the shared memory if it detects overlap in

one child and 0 otherwise. The sum of the memory locations is computed in 5 steps for a size 32

chunk, and the packet chooses the child node with the maximum sum. The complete algorithm for

configuration-packet computation is described in Algorithm 3.

5.4.2 Parallel Collision Query with Workload Balancing

Both Algorithms 2 and 3 use the per-thread per-query strategy, which is relatively easy to

implement. However, when idle threads wait for busy threads or when the execution path of threads

diverges, the parallel efficiency on the GPUs decreases. Algorithm 3 can alleviate this problem in

some cases, but it still distributes the tasks among the separate GPU cores and thus cannot make full

use of the GPU’s computational power.

In this section, we present the parallel collision query algorithm based on workload balancing,

which further improves the performance. In this algorithm, the task of each thread is no longer one

complete collision query or continuous collision query (for local planning). Instead, each thread

only performs BV overlap tests. In other words, the unit task for each thread is more fine-grained.

Essentially, we formulate the problem of performing multiple collision queries as a pool of BV

overlap tests which can be performed in parallel. It is easier to distribute these fine-grained tasks in a

uniform manner onto all the GPU cores, thereby balancing the load among them, than to distribute

the collision query tasks in a uniform manner.

All the fine-grained tasks are stored in large work queues in the GPU’s main memory, which has a

higher latency compared to the shared memory. When computing a single collision query (Lauterbach

et al., 2010), the tasks are in the form of BVTT nodes (x, y). Each thread will fetch several tasks

from one work queue into its local work queue on the shared memory and then will traverse the

corresponding BVTT nodes. The children generated for each node are also pushed into the local

queue as new tasks. This process is repeated for all the tasks remaining in the queue, until the

number of threads with full or empty local work queues exceeds a given threshold (we use 50% in

our implementation), at which point non-empty local queues are copied back to the work queues on

main memory. Since each thread performs simple tasks with few branches, our algorithm can make

113

full use of GPU cores if there are enough tasks in all the work queues. However, during the BVTT

traversal, tasks are generated dynamically and thus different queues may have varying numbers of

tasks, which can lead to an uneven workload among the GPU cores. We use a balancing algorithm

that redistributes the tasks among work queues (Figure 5.5). Suppose the number of tasks in each

work queue is

ni, 1 ≤ i ≤ Q.

Whenever there exists i so that ni < Tl or ni > Tu, we execute our balancing algorithm among all

the queues, which causes the number of tasks in each queue to be

n∗i =

∑Q
k=1 nk
Q

, 1 ≤ i ≤ Q

. Tl and Tu are two thresholds; we set Tl to the chunk-size, and set Tu to W − chunk-size, where W

is the maximum size of the work queue.

We use several strategies in order to handle N collision queries simultaneously, which are

illustrated and compared in Figure 5.6. One option is to repeat the single query algorithm (Lauterbach

et al., 2010) introduced above for each query. However, this has two main disadvantages. First, the

GPU kernel has to be called N times from the CPU, and this is expensive for large N (which can be

� 10000 for sample-based motion planning). Second, for each query, work queues are initialized

with only one item (i.e., the root node of the BVTT); therefore, the GPU’s computational power

cannot be fully exploited at the beginning of each query, as shown in the slow ascending sections in

Figure 5.6(a). Similarly, at the end of each query, most tasks have been finished and some of the

GPU cores become idle, which corresponds to the slow descending parts in Figure 5.6(a).

As a result, we use the strategy shown in Figure 5.6(b): we divide the N queries into dNM e

different sets each of size M with M ≤ N and initialize the work queues with M different BVTT

roots for each iteration. Usually M cannot be equal to N because we need to use t ·M Bytes GPU

global memory to store the transform information for the queries, where the constant t satisfies

t ≤ size of global memory
M

114

and we usually use M = 50. In this case, we only need to invoke the solution kernel dNM e times.

The number of tasks available in the work queues changes more smoothly over time, with shorter

ascending and descending sections, which implies higher throughput of GPUs. Moreover, the work

queues are initialized with many more tasks, which results in high performance at the beginning of

each iteration. In practice, as nodes from more than one BVTT of different queries co-exist in the

same queue, we need to distinguish them by representing each BVTT node by (x, y, i) instead of

(x, y), where i is the index of collision query. The details for this strategy are shown in Algorithm 4.

We can further improve the efficiency by using the pump operation, as shown in Algorithm 5

and Figure 5.5. That is, instead of initializing a work queue after it is completely empty, we add

M BVTT root nodes of unresolved collision queries into a work queue when the number of tasks

it contains drops below a threshold (we use 10 · chunk-size). As a result, the few ascending and

descending sections in Figure 5.6(b) can be further flattened as shown in Figure 5.6(c). The pump

operation can reduce the timing overload of interrupting traversal kernels, as well as of copying

data between global memory and shared memory, and therefore improves the overall efficiency of

collision computation.

5.4.3 Analysis

In this section, we analyze the algorithms described above using the parallel random access ma-

chine (PRAM) model, which is a popular tool to analyze the complexity of parallel algorithms (JáJá,

1992). Of course, current GPU architectures have many properties that can not be described by the

PRAM model, such as SIMT, shared memory, etc. However, PRAM analysis can still provide some

insight into a GPU algorithm’s performance.

Suppose we are given n collision queries, which means that we need to traverse n BVTT of

the same tree structure but with different geometry configurations. We denote the complexity of the

serial algorithm as TS(n), the complexity of the naive parallel algorithm (Algorithm 2) as TN (n),

the complexity of the configuration-packet algorithm (Algorithm 3) as TP (n) and the complexity of

the workload balancing algorithm (Algorithm 5) as TB(n). Then we have the following result:

Lemma 5.1. Θ(TS(n)) = TN (n) ≥ TP (n) ≥ TB(n).

115

Figure 5.5: Load balancing strategy for our parallel collision query algorithm. Each thread keeps
its own local work queue in local memory. After processing a task, each thread is either able to
run further or has an empty or full work queue and terminates. Once the number of GPU cores
terminated exceeds a given threshold, the manage kernel is called and copies the local queues back
onto global work queues. If no work queue has too many or too few tasks, the task kernel restarts.
Otherwise, the balance kernel is called to balance the tasks among all the queues. If there are not
sufficient tasks in the queues, more BVTT root nodes will be ’pumped’ in by the pump kernel.

Remark In parallel computing, we say one parallel algorithm is work efficient if its complexity T (n)

is bounded both above and below asymptotically by S(n), the complexity of its serial version, i.e.,

T (n) = Θ(S(n)) (JáJá, 1992). In other words, Lemma 5.1 means that all the three parallel collision

algorithms are work-efficient, but the workload balancing is the most efficient and configuration-

packet algorithm is more efficient than the naive parallel scheme.

116

th
ro
u
g
h
p
u
t

th
ro
u
g
h
p
u
t

th
ro
u
g
h
p
u
t

time

time

time(a)

(b)

(c)

Figure 5.6: Different strategies for parallel collision query using work queues. (a) Naive approach:
repeat the single collision query algorithm. (b) Work queues are initialized with several BVTT root
nodes and this process is repeated until all queries are performed. (c) is similar to (b) except that new
BVTT root nodes are added to the work queues by the pump kernel, when there is not a sufficient
number of tasks in the queue.

Proof. Let the complexity to traverse the i-th BVTT be W (i), 1 ≤ i ≤ n. Then the complexity of a

sequential CPU algorithm is TS(n) =
∑n

i=1W (i). For GPU-based parallel algorithms, we assume

that the GPU has p processors or cores. For convenience, we assume n = ap, a ∈ Z.

For the naive parallel algorithm (Algorithm 2), each processor executes BVTT traversal inde-

pendently and the overall performance is determined by the most time-consuming BVTT traversal.

Therefore, its complexity becomes

TN (n) =

a−1∑
k=0

p
max
j=1

W (kp+ j).

If we sort {W (i)}ni=1 in ascending order and denote W ∗(i) as the i-th element in the new order, we

have
a−1∑
k=0

p
max
j=1

W (kp+ j) ≥
a∑
k=1

W ∗(kp). (5.2)

117

To prove this, we start from a = 2. In this case, the summation maxpj=1W (j) + maxpj=1W (p+ j)

achieves the minimum when min {W (p+ 1), · · · ,W (2p)} ≥ max {W (1), · · · ,W (p)}. Oth-

erwise, exchanging the minimum value in {W (p + 1), · · · ,W (2p)} and the maximum value

in {W (1), · · · ,W (p)} will increase the summation. For a > 2, using similar reasoning, we

can show that the minimum of
∑a−1

k=0 maxpj=1W (kp + j) happens when min
(j+1)p
k=jp+1 {W (k)} ≥

maxjp(j−1)p+1 {W (k)}, 1 ≤ j ≤ a− 1. This is satisfied by the ascending sorted result W ∗ and thus

the inequality (5.2) is proved.

Moreover, it is apparent that
∑n

i=1W (i) ≥ TN (n) ≥
∑n
i=1W (i)
p . Then we obtain

TS(n) ≥ TN (n) ≥ max
(TS(n)

p
,
a∑
k=1

W ∗(kp)
)
,

which implies TN (n) = Θ(TS(n)).

According to the analysis in Section 5.4.1, we know that the expected complexity Ŵ (i) for i-th

BVTT traversal in configuration-packet method (Algorithm 3) should be smaller than W (i) because

of the near-optimal traversing order. Moreover, the clustering strategy is similar to ordering different

BVTTs, so that the BVTTs with similar traversal paths are arranged closely to each other and thus

the probability is higher that they would be distributed on the same GPU core. In practice, we can

not implement such an ordering exactly because the complexity of BVTT traversal is not known a

priori. Therefore the complexity of Algorithm 3 is

TP (n) ≈
a∑
k=1

Ŵ ∗(kp),

with Ŵ ∗ ≤W ∗. As a result, we have TP (n) ≤ TN (n).

The complexity for the workload balancing method (Algorithm 5) can be given as:

TB(n) =

∑n
i=1W (i)

p
+B(n),

where the first item is the time complexity for BVTT traversal and the second item B(n) is the time

complexity for the balancing step. As B(n) > 0, the acceleration ratio of GPU with p-processors

is less than p. We need to reduce the load of the balancing step to improve the efficiency of

118

Algorithm 5. If balancing step is implemented efficiently: i.e., if B(n) = O(TS(n)), we have

TN (n) ≥ TP (n) ≥ TB(n).

5.5 Implementation and Results

In this section, we present details of the implementation and evaluate the performance of our

algorithm on different benchmarks. All the timings reported here were recorded on a machine

using an Intel Core i7 3.2GHz CPU and 6GB memory. We implemented our collision and planning

algorithms using CUDA on a NVIDIA GTX 480 GPU with 1GB of video memory.

5.5.1 GPU-based Planner

We use the motion planning framework called gPlanner introduced in Chapter 4, which uses

PRM as the underlying planning algorithm since it is more suitable to exploit the multiple cores and

data parallelism on GPUs. gPlanner is completely implemented on GPUs to avoid the expensive data

transfer the between CPU and GPU.

5.5.2 Implementation

As part of our implementation, we replace the collision detection module in gPlanner with the

new algorithms described above. As observed in Chapter 4, motion planning algorithms spend more

than 90% of their time in collision queries, i.e., milestone computation and local planning.

piano large-piano helicopter humanoid PR2
#faces of the robot mesh 6,540 34,880 3,612 27,749 31,384

#faces of the obstacle mesh 648 13,824 2,840 3,495 3,495
DOF 6 6 6 38 12 (one arm)

Table 5.1: Geometric complexity of our benchmarks. Large-piano is a piano model that has more
vertices and faces and is obtained by subdividing the original piano model.

In order to compare the performance of different parallel collision detection algorithms, we use

the benchmarks shown in Figure 5.7. The geometric complexity of these benchmarks is shown in

Table 5.1. For rigid body benchmarks, we generate 50, 000 random configurations and compute a

collision-free path by using different variants of our parallel collision detection algorithm. For articu-

lated model benchmarks, we generate 100, 000 random configurations. For milestone computation,

119

(a) piano (b) helicopter (c) humanoid (d) PR2

Figure 5.7: Benchmarks used in our experiments.

we directly use our collision detection algorithm. For local planning, we first need to unfold all the

interpolated configurations: we denote the BVTT for the j-th interpolated query within the i-th local

path as BVTT(i, j) and its node as (x, y, i, j). In order to avoid unnecessary computations, we first

add BVTT root nodes with small j into the work queues; (1, 1, i, j) ≺ (1, 1, i′, j′), ifj < j′. As a

result, once a collision is computed at BVTT(i, j0), we need not traverse BVTT(i, j) when j > j0.

For Algorithms 2 and 3, we further test the performance for different traversal stack sizes (32

and 128). Both algorithms give correct results when using a larger stack size (128). For smaller

stack sizes, the algorithms will stop once the stack is filled. Algorithm 2 may report a collision

when the stack overflows, while Algorithm 3 returns a collision-free query. Thus, Algorithm 2 may

suffer from false positive errors while Algorithm 3 may suffer from false negative errors. We also

compare the performances of Algorithm 2 and Algorithm 3 when the clustering algorithm described

in Section 5.4.1 is used and when it is not.

Algorithm 2 Algorithm 3 Algorithm 5
32, no-C 32, C 128, no-C 128, C 32, no-C 32, C 128, no-C 128, C traversal balancing

piano 117 113 239 224 177 131 168 130 68 3.69
large-piano 409 387 738 710 613 535 617 529 155 15.1
helicopter 158 151 286 272 224 166 226 163 56 2.3
humanoid 2,392 2,322 2,379 2,316 2,068 1,877 2,073 1,823 337 106

Table 5.2: Comparison of different algorithms in milestone computation (timing in milliseconds). 32
and 128 are the different sizes used for the traversal stack; C and no-C refer to using pre-clustering
and not using pre-clustering, respectively; the timing of Algorithm 5 includes two parts: traversal
and balancing.

The timing results are shown in Table 5.2 and Table 5.3. We make two main observations. First,

Algorithms 2 and 3 both work better when the local traversal stack is smaller and the pre-clustering

technique is used. However, for large models, a traversal stack of size 32 may lead to overflows, and

the collision results may be incorrect, which happens for the large-piano benchmark in Table 5.2

120

Figure 5.8: Our GPU-based motion planner can compute a collision-free path for PR2 in less than 1
second.

Algorithm 2 Algorithm 3 Algorithm 5
32, no-C 32, C 128, no-C 128, C 32, no-C 32, C 128, no-C 128, C traversal balancing

piano 1,203 1,148 2,213 2,076 1,018 822 1,520 1,344 1,054 34
large-piano 4,126 3,823 8,288 7,587 5,162 4,017 7,513 6,091 1,139 66
helicopter 4,528 4,388 7,646 7,413 3,941 3,339 5,219 4,645 913 41
humanoid 5,726 5,319 9,273 8,650 4,839 4,788 9,012 8,837 6,082 1,964

Table 5.3: Comparison of different algorithms in local planning (timing in milliseconds). 32 and
128 are the different sizes used for the traversal stack; C and no-C means refer to pre-clustering and
not using pre-clustering, respectively; the timing of Algorithm 5 includes two parts: traversal and
balancing.

and Table 5.3. Algorithm 2’s performance is considerably reduced when the size of traversal stack

increases to 128. This is due to the fact that Algorithm 3 uses per-packet stack, which is about 32

times smaller then using per-thread stack. Moreover, clustering and configuration-packet traversal

can result in more than 50% speed-up. The improvement in the performance of Algorithm 3 over

Algorithm 2 is more noticeable on complex models (e.g., large-piano). Second, we observe that

Algorithm 5 is usually the fastest among all variations of the three algorithms. It can result in more

than 5-10 times speedup over other methods.

121

0 0.02 0.04 0.06 0.08 0.1 0.12
0

1

2

3

4

5

6

7

8
x 10

4

timing

G
P

U
 t

h
ro

u
g

h
p

u
t

0 0.02 0.04 0.06 0.08 0.1 0.12
0

1

2

3

4

5

6

7

8

9

10
x 10

4

timing

G
P

U
 t

h
ro

u
g
h
p
u
t

Figure 5.9: GPU throughput improvement caused by the pump kernel. The left figure shows
throughput without using the pump kernel and the right figure shows throughput using the pump
kernel.

122

As observed in Chapter 4, the performance of the planner in these benchmarks is dominated by

milestone computation and local planning. Based on the novel collision detection algorithm, the

performance of PRM and lazy PRM planners can be improved by at least 40-45%.

In Figure 5.9, we also show how the pump kernel increases the GPU throughput (i.e., the

number of tasks available in work queues for GPU cores to fetch) in the workload-balancing-based

Algorithm 5. The maximum throughput (i.e., the maximum number of BV overlap tests performed

by GPU kernels) increases from 8× 104 to nearly 105, and the minimum throughput increases from

0 to 2.5 × 104. For the piano and helicopter models, we can compute a collision-free path from

the initial to the goal configuration in 879ms and 778ms, respectively, using PRM and 72.79ms or

72.68ms, respectively, using lazy PRM.

5.5.3 Articulated Models

Our parallel algorithms can be directly applied to articulated models. In this case, checking for

self-collisions among various links of a robot adds to the overall complexity. We use a model of

the PR2 robot as an articulated benchmark. The PR2 robot model has 65 links and 75 DOFs. We

only allow one arm (i.e., 12 DOFs) to be active in terms of motion. A naive approach would involve

exhaustive self-collision checking, and reduces to checking 65× (65− 1)/2 = 2, 080 self-collisions

among the links for each collision query. As shown in Table 5.4, GPU-based planner takes more than

10 seconds for the PR2 benchmark when performing exhaustive self-collision checking, though it is

still much faster than the CPU-based implementation.

However, exhaustive self-collision checking is usually not necessary for physical robots, because

the joint limits can filter out many of the self-collisions. The common method is to manually set

link pairs that need to be checked for self-collisions. This strategy can greatly reduce the number of

pairwise checks. As shown in Table 5.4, we can compute a collision-free path for the PR2 model in

less than 1 second, which can be further reduced to 300ms if the number of samples is reduced to

500. The collision-free path calculated by our planner is shown in Figure 5.8.

5.6 Conclusion and Future Work

In this chapter, we introduce two novel parallel collision query algorithms for real-time motion

planning on GPUs. The first algorithm is based on configuration-packet tracing, is easy to implement,

123

milestone computation local planning
exhaustive self-collision (CPU) 15,952 643,194
exhaustive self-collision (GPU) 652 13,513

manual self-collision (GPU) 391 392

Table 5.4: Collision timing on PR2 benchmark (timing in milliseconds). We use 1, 000 samples,
20-nearest neighbor, and discrete local planning with 20 interpolations. Manually specifying self-
collisions can greatly improve the performance of the GPU planner.

and can improve parallel performance by performing more coherent traversals and reducing the

memory consumed by traversal stacks. It can provide more than 50% speed-up compared to simple

parallel methods. This second algorithm is based on workload balancing, and decomposes parallel

collision queries into fine-grained tasks corresponding to BVTT node operations. The algorithm

uses a light-weight task-balancing strategy to guarantee that all GPU cores are fully utilized and

achieves close to peak performance on GPUs. In practice, we observe 5-10 times speed-up. These

new collision algorithms can improve the performance of GPU-based PRM planners by almost 50%.

There are many avenues for future work. We are interested in using more advanced sampling

schemes with the GPU-based planner to further improve its performance and deal with narrow

passages. Furthermore, we would like to modify the planner to generate smooth paths and integrate

our planner with physical robots (e.g., PR2). We would also like to take into account kinematic and

dynamic constraints.

124

Algorithm 3 Multiple Configuration-Packet Traversal

1: Input: N random configurations {qi}Ni=1, BVHa for the robot and BVHb for the obstacles
2: tid ← thread id of current thread
3: q← qtid
4: shared CN []≡ shared memory for children node
5: shared TS[]≡ local traversal stack
6: shared SM []≡ memory for sum reduction

7: if overlap(BVHa(q)[1], BVHb[1]) is false for all threads in chunk then
8: return
9: end if

10: (x, y) = (1, 1)
11: loop
12: if isLeaf(x) && isLeaf(y) then
13: if exactIntersect(BVHa(q)[x],BVHb[y]) then
14: update collision status of q
15: end if
16: if TS is empty then
17: break
18: end if
19: (x, y)← pop(TS)
20: else
21: C decide the next node to be traversed
22: CN []← (x, y)’s children nodes
23: for all (xc, yc) ∈ CN do
24: C compute the number of threads that detect overlap at node (xc, yc)
25: write overlap(BVHa(q)[xc],BVHb[yc]) (0 or 1) into SM [tid] accordingly
26: compute local summation sc in parallel by all threads in chunk
27: end for
28: if maxc sc > 0 then
29: C select the node that is overlapped in the most threads
30: (x, y)← CN [argmaxc sc] and push others into TS
31: else
32: C select the node from the top of stack
33: if TS is empty then
34: break
35: end if
36: (x, y)← pop(TS)
37: end if
38: end if
39: end loop

125

Algorithm 4 Traversal with Workload Balancing: Task Kernel

1: Input: abort signal signal, N random configurations {qi}Ni=1, BVHa for the robot and BVHb

for the obstacles
2: shared WQ[] ≡ local work queue
3: initialize WQ by tasks in global work queues
4: C traverse on work queues instead of BVTTs
5: loop
6: (x, y, i)← pop(WQ)
7: if overlap(BVHa(qi)[x],BVHb[y]) then
8: if isLeaf(x) && isLeaf(y) then
9: if exactIntersect(BVHa(qi)[x],BVHb[y]) then

10: update collision status of i-th query
11: end if
12: else
13: WQ[]← (x, y, i)’s children
14: end if
15: end if
16: if WQ is full or empty then
17: atomically increment signal, break
18: end if
19: end loop
20: return if signal > 50%Q

Algorithm 5 Traversal with Workload Balancing: Manage Kernel
1: Input: Q global work queues
2: copy local queues on shared memory back to Q global work queues on global memory
3: compute the number of tasks in each work queue ni, 1 ≤ i ≤ Q
4: compute the number of tasks in all queues n =

∑Q
k=1 nk

5: if n < Tpump then
6: call pump kernel: add more tasks in global queue from unresolved collision queries
7: else if ∃i, ni < Tl||ni > Tu then

8: call balance kernel: rearrange the tasks so that each queue has n∗i =
∑Q
k=1 nk
Q tasks

9: end if
10: call task kernel again

126

CHAPTER 6: GPU-BASED APPROXIMATE K-NEAREST NEIGHBOR COMPUTATION

6.1 Introduction

Nearest neighbor search in high-dimensional spaces is an important problem in many areas,

including databases, data mining and computer vision. It is a high-dimensional spatial proximity

query used to perform similarity search among feature-rich data, such as digital audio, images, or

video, which are typically represented as high-dimensional feature vectors. The problem of exact

or approximate k-nearest neighbor search is well studied in existing literature. It is regarded as a

challenging problem due to its intrinsic complexity and the accuracy issues that arise in terms of

computing the appropriate k-nearest neighbors.

In terms of runtime cost, an ideal approximate nearest neighbor query should take O(1) or

O(lnn) time per query, because the size of the dataset (n) can be very large (e.g., > 1 million).

The space required should be O(n) in order to handle large datasets. In terms of quality, each

query should return k-nearest neighbor results that are close enough to the exact k-nearest neighbors

computed via a brute-force, linear-scan approach that has a high O(n) per-query complexity.

Most prior approaches for k-nearest neighbor computation can be slow on large high-dimensional

datasets. For example, tree-based methods (Samet, 2005) can compute accurate results efficiently only

on low dimensional datasets. In fact, when the dimensionality exceeds 10, these space partitioning-

based methods can be slower than the brute-force approach (Weber et al., 1998). Methods based

on Voronoi graphs are widely used in k-nearest neighbor query for spatial databases (Kolahdouzan

and Shahabi, 2004; Hu et al., 2010), which have similar performance issues. Approximate nearest

neighbor algorithms compute neighbors that are close enough to the query item instead of the exact k-

nearest neighbors, and have a lower runtime and space overhead than the exact algorithms (Kleinberg,

1997). For high-dimensional k-nearest neighbor search, one of the widely-used approximate methods

is locality-sensitive hashing (LSH) (Datar et al., 2004), which uses a family of hash functions to group

or collect nearby items with a high probability into the same bucket. These buckets are stored in a

hash table called the LSH hash table. In order to perform a similarity query, LSH-based algorithms

hash the query item into one bucket in the hash table and use the data items within that bucket as

potential candidates for the final results. The items in the bucket are ranked according to the exact

distance to the query item in order to compute the k-nearest neighbors. The final ranking computation

among the candidates is called the short-list search, which is regarded as the main bottleneck in

LSH-based algorithms. However, there is relatively little work on accelerating the performance of

short-list search or the overall performance of LSH-based k-nearest neighbor algorithms.

6.1.1 Main Results

In this chapter, we present a GPU-based parallel algorithm for efficient k-nearest neighbor

search in a high-dimensional space. We use the Bi-level LSH framework (Pan and Manocha, 2012),

which offers improved quality of the nearest neighbors selected compared to prior LSH methods;

the framework exploits the high number of cores and data parallelism within GPUs to improve the

performance of LSH hash table construction and short-list search. For LSH hash table construction,

we compute the LSH hashing value for each data item in parallel and then store these values using

a cuckoo hashing table. In the query step, we use a work-queue based algorithm to significantly

accelerate short-list search, for single-query as well as multi-query cases. In particular, our GPU-

based parallel Bi-level LSH algorithm can provide more than 40-fold acceleration over single-core

CPU implementations that do not perform single instruction, multiple data (SIMD) optimizations.

6.1.2 Organization

The rest of this chapter is organized as follows. We give an overview of LSH computation

and briefly survey prior methods related to k-nearest neighbor (k-NN) computation in Section 6.2.

Section 6.3 gives an overview of the Bi-level LSH scheme. In Section 6.4, we describe some parallel

primitives that are used in our GPU-based algorithm. We present our detailed GPU-based Bi-level

LSH algorithm in Section 6.5, and highlight its performance in Section 6.6.

6.2 Background and Related Work

In this section, we first give an overview of LSH based k-nearest neighbor computation. Next,

we give a brief survey of different algorithms used for k-NN query.

128

6.2.1 Basic LSH

Given a metric space (X, ‖·‖) and a database S ⊆ X, for any query v ∈ X the k-nearest neighbor

algorithm computes a set of k points I(v) ⊆ S that are closest to v. We assume that X is embedded

in a D-dimensional Euclidean space RD and that each item is represented as a high-dimensional

vector, i.e., v = (v1, ..., vD).

The basic LSH algorithm is an approximate method to compute k-nearest neighbors, which

uses M (M � D) hash functions h1(·), ..., hM (·) to transform RD into a lattice space ZM and

distributes each data item into one lattice cell:

H(v) = 〈h1(v), h2(v), ..., hM (v)〉. (6.1)

The lattice space is usually implemented as a hash table, since many of the cells may be empty. LSH

algorithms have been developed for several distance measures, such as lp distance. For lp space,

p ∈ (0, 2] (Datar et al., 2004), and

hi(v) = bai · v + bi
W

c, (6.2)

where the D-dimensional vector ai consists of i.i.d. entries from the Gaussian distribution N(0, 1)

and bi is drawn from a uniform distribution U [0,W). M and W control the dimension and size

of each lattice cell and therefore control the locality sensitivity of the hash functions. In order to

achieve high quality results in terms of accuracy, L hash tables are used with independent dim-M

hash functions H(·). Given a query item v, we first compute its hash code using H(v) and locate

the hash bucket that contains v. All the points in the bucket will belong to its potential k-nearest

neighbor candidate set, and we represent that set as A(v). Next, we perform a local scan on A(v) to

compute the k-nearest neighbors I(v) to the query item v. This step is called short-list search and is

the main bottleneck of the LSH framework.

There are several known metrics used to measure the performance of a k-nearest neighbor search

algorithm. First is the recall ratio, i.e., the percentage of the exact k-nearest neighbors N(v) in the

returned results I(v):

ρ(v) =
|N(v) ∩ I(v)|
|N(v)| =

|N(v) ∩A(v)|
|N(v)| , (6.3)

129

where N(v) can be computed using any exact k-nearest neighbor approach and serves as the

ground-truth.

The second metric is the error ratio (Gionis et al., 1999), i.e., the relationship between the v’s

distance to N(v) and I(v):

κ(v) =
1

k

k∑
i=1

‖v −N(v)i‖
‖v − I(v)i‖

, (6.4)

where N(v)i or I(v)i is v’s i-th nearest neighbor in N(v) or I(v). We use recall and error ratios to

measure the quality of the LSH algorithm; our goal is to compute approximate k-nearest neighbors

with large recall and error ratios, which are both within the interval [0, 1].

The final metric is selectivity (Dong et al., 2008), which measures the runtime cost of the

short-list search:

τ(v) = |A(v)|/|S|, (6.5)

where |S| is the size of the dataset.

6.2.2 Variations of LSH

Many techniques have been proposed to improve the basic LSH algorithm. LSH-forest (Bawa

et al., 2005) avoids tuning of the parameter M by representing the hash table as a prefix tree; the

parameter M is computed based on the depth of the corresponding prefix-tree leaf node. Multi-probe

LSH (Lv et al., 2007) systematically probes the buckets near the query points in a query-dependent

manner, instead of only probing the bucket that contains the query point. It can obtain a higher

recall ratio with fewer hash tables, but may result in larger selectivity from additional probes. (Dong

et al., 2008) construct a statistical quality and runtime model with a small sample dataset, and then

compute M and W , which can result in a good balance between high recall and low selectivity. (Joly

and Buisson, 2008) improve the multi-probe LSH by also using prior information collected from a

sampled dataset.

Many approaches have been proposed to design better hash functions. ZM lattice may suffer

from the curse of dimensionality: in a high dimensional space, the density of ZM lattice (i.e., the ratio

between the volume of one ZM cell and the volume of its inscribed sphere,) increases very quickly as

the dimensionality increases. In order to overcome these problems, lattices with densities close to one

130

are used as space quantizers, e.g., the E8-lattice (Jégou et al., 2008) and the Leech lattice (Andoni

and Indyk, 2006) are used for 8-dimensional and 24-dimensional data items, respectively.

6.3 Bi-level Locality-Sensitive Hashing

In this section, we first give an overview of our new Bi-level LSH scheme. Next we address

some issues in designing an efficient GPU-based parallel Bi-level LSH algorithm.

6.3.1 Bi-level LSH Scheme

The Bi-level LSH scheme (Pan and Manocha, 2012) is designed to obtain better performance and

accuracy on datasets composed of multiple clusters with different data distributions. The approach

takes into account the properties of datasets and can generate high quality LSH codes. It can also

reduce the performance and quality variance caused by randomness in the LSH scheme or different

queries.

An overview of our algorithm is shown in Figure 6.1 and includes two levels. In the first level,

we construct a random projection tree (RP-tree) (Freund et al., 2007; Dasgupta and Freund, 2008),

which is a space-partitioning data structure that is used to organize high-dimensional data items into

several subsets. In a RP-tree, each subset is represented as one leaf node. Compared to other methods

such as Kd-tree or K-means, the RP-tree has many good properties, including fast convergence speed

and guaranteed ‘roundness’ of leaf nodes (Dasgupta and Freund, 2008; Dhesi and Kar, 2010). These

properties are useful for generating compact LSH code and reducing the algorithm’s performance

and quality variance. During the second level, we construct locality-sensitive hash (LSH) tables for

each of the subsets generated in the first level. Unlike prior methods, our LSH table has a hierarchical

structure that is constructed using a Morton curve. This hierarchical LSH table can reduce the

performance and quality variance among different queries: for query within regions with high data

density, the algorithm only needs to search the buckets nearby; for query within regions with low

data density, the algorithm can automatically search in far away buckets to provide enough k-nearest

neighbor candidates. We also enhance the hierarchy using an E8 lattice , which can overcome the

ZM lattice’s drawbacks for high-dimensional datasets and can improve the accuracy of the results.

For each item v in the dataset, our method finds the RP-tree leaf node RP-tree(v) that contains

v and computes its LSH code H(v) using LSH parameters for that subset in the second level. As a

131

!"
#
$
%
&
'(
!%
)*
+,
%
#
'-
!*
*
''

+.
/
0-
*
!1
#
2
'

3
1*
!"
!+
3
1+
"
.'
45
6
'-
"
7
.*
'

89':*+%$*!' 89':*+%$*!' 89':*+%$*!' 89':*+%$*!'

456'(!%)*+,%#0' 456'(!%)*+,%#0' 456'(!%)*+,%#0' 456'(!%)*+,%#0'

;
"
!"
..*
.'<
;
=-!*

*
'

>5
*
+?'@

?A
B'

;
"
!"
..*
.'C
1=.*

D
*
.'45

6
'

E
"
7
.*
' >5

*
+?'@

?F
B'

;
"
!"
..*
.'

G
/
*
!H
'

>5
*
+?'@

?I
B'

&/.,(.*'JKK'L/*!1*0'

Figure 6.1: The framework for Bi-level LSH. The first level is the random projection tree. The
second level is the hierarchical lattice for each RP-Tree leaf node. Both levels are parallelized
utilizing the multiple cores on a GPU.

result, our Bi-level LSH scheme decomposes the basic LSH code into two parts: the RP-tree leaf

node index and the LSH code corresponding to the subset, i.e., H̃(v) = (RP-tree(v), H(v)). Such a

Bi-level code can remove the redundancy in the traditional LSH code (Pan and Manocha, 2012). The

resulting Bi-level LSH code H̃(v) is stored in a hash table.

Given one query, we first traverse the RP-tree to find the leaf node that it belongs to, and then

compute its Bi-level LSH code within the subset. Based on the hash code, we compute the buckets

in the hash table with same or similar hash codes, which are used as the candidates for k-nearest

neighbors. Finally, we perform short-list search on the candidates to compute the k items closest to

the query. For more details of the Bi-level LSH algorithm, such as how E8 lattice and Morton curve

hierarchy are integrated into the LSH framework, please refer to (Pan and Manocha, 2012).

132

6.3.2 GPU and Parallel LSH

Many techniques used in previous LSH algorithms are not suitable for current GPU architecture.

For example, the prefix tree used in LSH-forest (Bawa et al., 2005) and the PCA used in spectral

hashing (Weiss et al., 2008) are not the best candidates for GPU parallelization. When using LSH

schemes to compute k-nearest neighbors for multiple queries, the simplest way to parallelize is by

using independent GPU threads for different k-NN queries. However, such a per-thread per-query

approach has several drawbacks. First, the multi-probe technique (Lv et al., 2007) uses a query-

dependent sequence to decide the optimal visiting order for nearby hash buckets. This will cause

branch divergence among threads and will reduce the overall performance. Second, different queries

may result in intermediate data structures of varying sizes (i.e., short-lists with different sizes), which

results in work-load imbalance among GPU cores: some cores are busy performing exact distance

comparisons among candidates while others may be idle. Finally, this scheme may leave many GPU

processors idle when the number of queries is small.

6.4 GPU Primitives

In this section, we present the underlying parallel primitives that are used frequently by our

GPU-based k-NN algorithm.

6.4.1 Standard Primitives

The following primitives have been used in the literature and can be efficiently implemented on

current GPUs.

Gather and Scatter As defined in (He et al., 2007), scatter rearranges the elements in an array Rin

to another array Rout according to a location array index and gather does the opposite of scatter.

Usually the location array is a permutation array.

Primitive: Rout = scatter(Rin, index)

Input: Rin[1:n], index[1:n]

Output: Rout[1:n]

Function: Rout[index[i]] = Rin[i], i = 1, ..., n

133

Primitive: Rout = gather(Rin, index)

Input: Rin[1:n], index[1:n]

Output: Rout[1:n]

Function: Rout[i] = Rin[index[i]], i = 1, ..., n

Compact/Pack Compact or pack scatters the elements which are marked as true (Horn, 2005).

Primitive: Rout = compact(Rin, F , index)

Input: Rin[1:n], F [1:n], index[1:n]

Output: Rout[1:m]

Function: if F [i] = 1, Rout[index[i]] = Rin[i], i = 1, ..., n

Reduction and Segmented-Reduction Reduction takes a sequence of values and applies an

associative binary operator on the array to output a single value. The associative operator can be +,

max, min, and so forth. Segmented-reduction performs reduction operation on elements with the

same segmentation index (Zhou et al., 2008).

Primitive: Rout = reduction(Rin,
⊕

)

Input: Rin[1:n], associative operator
⊕

Output: Rout

Function: Rout =
⊕n

i=1Rin[i]

Primitive: Rout = segmented-reduction(Rin, segId,
⊕

)

Input: Rin[1:n], segId[1:n], associative operator
⊕

Output: Rout[1:m]

Function: Rout[i] =
⊕

segId[j]=iRin[j], i = 1, ...,m

Scan and Segmented-Scan Scan (Horn, 2005), also called prefix-sums, takes a binary operator,

an identity function, and an array, and returns a new array in which each element is the sum of

all previous elements (where sum is defined relative to the associative operator). The associative

operator includes +, max, min, and so on. There are two types of scan, exclusive and inclusive scan.

Inclusive scan includes the element at the current position while exclusive scan does not.

134

Primitive: Rout = scan(Rin,
⊕

)

Input: Rin[1:n], associative operator
⊕

Output: Rout[1:n]

Function: Rout[i] =
⊕

j<iRin[j] (exclusive) or Rout[i] =
⊕

j≤iRin[j] (inclusive),

i = 1, ..., n

Primitive: Rout = segmented-scan(Rin, segId,
⊕

)

Input: Rin[1:n], segId[1:n], associative operator
⊕

Output: Rout[1:n]

Function: Rout[i] =
⊕

j<i,segId[j]=segId[i]Rin[j] (exclusive) or Rout[i] =⊕
j≤i,segId[j]=segId[i]Rin[j] (inclusive), i = 1, ..., n

Radix sort Radix sort (Sengupta et al., 2007) rearranges an array in ascending order in linear time.

It can also sort an associative array according to the keys, where the associative value is often the

element’s position before and after sorting.

Primitive: radix-sort(keys, values[optional])

Input: keys[1:n] and values[1:n]

Output: Sorted keys[1:n] and updated values[1:n]

Function: radix sort, keys stores the comparison key value for each element, while values

stores the associative values

6.4.2 Primitives for Clustered Data

In addition to the aforementioned primitives, we have developed new GPU primitives for our

Bi-level LSH algorithm. As discussed in Section 6.3.1, we frequently perform operations on the entire

dataset, which has already been partitioned into several groups by the RP-tree. These operations

include: (1) sort the whole dataset, but keep the relative order between different groups; (2) compute

the sum, mean or median for each group. We can perform such operations for each group sequentially,

but that may not achieve peak performance on parallel architectures like GPUs, especially when the

number of groups is large. We can design more efficient algorithms, based on the fact that the data

items belonging to the same group are located in adjacent positions in memory, and we know the

beginning position B and number of items N of each group. Thus, we can design more efficient

135

algorithms on the partitioned data instead of simply applying the segmented version of standard

primitives (e.g., segmented-scan or segmented-reduct). In order to distinguish from segmented

primitives, we name the operations on clustered data sets as clustered primitives.

Clustered-sort Clustered-sort rearranges a partitioned array in ascending order in parallel but keeps

the relative order between the different groups.

Primitive: clustered-sort(keys,groupId,values[optional])

Input: keys[1:n], groupId[1:n], values[1:n]

Output: keys[1:n] and values[1:n]

Function: Radix sort but also keeps the relative order between groups

One way to implement clustered-sort is via standard radix sorting on data (groupId × keys)

according to dictionary order, i.e., radix-sort(groupId × keys, values). Another method is

to modulate the keys using groupId values so that elements belonging to different groups can

be distinguished according to different keys’ values. For example, we can change keys[i] to be

keys′[i] = keys[i] + groupId[i] · ∆, where ∆ = reduct(keys, max). Then we only perform

standard radix sort on the modulated keys, i.e., radix-sort(keys′, values). Both methods can be

implemented efficiently on GPUs, but the second one is more memory efficient.

Clustered-sum Clustered-sum computes the sum of elements in each of the m groups. We first

apply the scan primitive to the entire dataset and then apply the compact primitive to the scan results

to obtain the summation for each group.

Primitive: Rout = clustered-sum(Rin, B, N)

Input: Rin[1:n], group start positions B[1:m] and group sizes N [1:m]

Output: per-group summation Rout[1:m]

Function:

Rtemp = inclusive-scan(Rin, max)

index[i] = B[i] +N [i], i = 1, ...,m− 1; index[m] = reduction(N , +)

Rout = compact(Rtemp, index)

136

The GPU primitives used to compute mean or median of the clustered data items are similar to

clustered-sum.

6.5 Parallel Bi-level Locality Sensitive Hashing

In this section, we describe the parallel Bi-level LSH algorithm.

6.5.1 First Level: RP-tree

During the first level, we use a random projection tree (RP-tree) (Freund et al., 2007; Dasgupta

and Freund, 2008) to divide the dataset into several small clusters with good properties for subsequent

LSH-based operations. The RP-tree construction algorithm is similar to Kd-tree computation: given a

data set, we use a split rule to divide it into two subsets, which are split recursively until the resulting

tree has a desired depth. Kd-tree chooses a coordinate direction (typically the coordinate with the

largest spread) and then splits the data according to the median value for that coordinate. Unlike

Kd-tree, RP-tree projects the data onto a randomly chosen unit direction and then splits the set into

two roughly equal-sized sets using new split rules. (Dasgupta and Freund, 2008) have proposed two

rules for RP-trees: RP-tree max and RP-tree mean. The difference between the two rules is that the

RP-tree mean occasionally performs a different kind of split based on the distance from the mean of

the coordinates. In practice, we observe that the RP-tree mean rule tends to compute the k-nearest

neighbor results with better quality in terms of the recall ratio. Therefore, we use the RP-tree mean

rule to construct the RP-tree for Bi-level LSH.

To apply the RP-tree mean rule, we need to efficiently compute ∆(S), the diameter for a given

point set S in a high-dimensional space, which is in fact as difficult as the original k-nearest neighbor

query. There are many known algorithms for approximating the diameter efficiently, and we use the

iterative method proposed by (Egecioglu and Kalantari, 1989). In practice, it converges fast to an ap-

proximation with good precision and can be easily parallelized. The diameter computation algorithm

uses a series of m values r1, ..., rm to approximate the diameter for a point set S, where m ≤ |S|.

It can be proved that r1 < r2 < ... < rm ≤ ∆(S) ≤ min(
√

3r1,
√

5− 2
√

3rm) (Egecioglu and

Kalantari, 1989). In practice, we find that rm is usually a good approximation of ∆(S) even when

m is small (e.g., 40). The time complexity of this approximate diameter algorithm is O(m|S|) and

the time it takes to construct each level of the RP-tree is linear in the size of the entire dataset. As a

137

result, the overall complexity for partitioning the dataset into g groups is O(ln(g)n). The parallel

algorithm for approximate diameter computation is highlighted in Algorithm 6.

During the construction of RP-tree, we start from all elements in one group and then compute

the mean and diameter of each group to decide the split vector and split position. Then we compute

the new group index of each element according to whether it lies on the right or left side of the split

line. Finally we perform clustered-sort on the data to partition the dataset into two. We repeat this

process until the algorithm reaches the appropriate depth of a RP-tree. The parallel tree construction

algorithm is shown in Algorithm 7.

Algorithm 6 Parallel Approximate Diameter Computation
1: Input: Dim-D data set S[1:n] partitioned into m groups; group indices G[1:n], group begin

positions B[1:m]; group sizes N [1:m]
2: randomly select one point per group to make the query set P [1:m] in parallel
3: initialize the active mark set I[1:m] to all 1 (all active)
4: initialize the distances to query point dist[1:n] to 0
5: initialize element positions index[1:n] to [1, 2, ..., n]
6: compute the group end positions E[1:m] from B and N in parallel
7: loop
8: compute the distance of each element to the query point with the same group index in parallel:

dist[i]← ‖P [G[i]]− S[index[i]]‖, i = 1, ..., n
9: clustered-sort(dist, G, index)

10: indexc = compact(index, E)
11: set Q and Ψ store the compact results in parallel: Q[i] = S[indexc[i]] and Ψ[i] =

dist[indexc[i]]
12: compute the distance to the query point in Q in parallel: dist[i]← ‖Q[G[ti]]−S[index[i]]‖
13: clustered-sort(dist, G, index)
14: indexc = compact(index, E)
15: set Q′ and Ψ′ store the compact results in parallel: Q′[i] = S[indexc[i]] and Ψ′[i] =

dist[indexc[i]]
16: remove points in P and Q by setting 0 in corresponding position in I
17: update P in parallel: P [i]← Q[i] + Ψ[i]

Ψ′[i](P [i]−Q[i])
18: n← reduction(I , +)
19: break if n = 0 or all elements in Ψ′ starts decreasing.
20: end loop
21: return Ψ′

6.5.2 LSH Hash Table

In the second level of the bi-level algorithm, we construct a LSH hash table for each leaf node

cell calculated during the first level. An item’s LSH code and leaf node index composes its Bi-level

LSH code, i.e., H̃(v) = (RP-tree(v), H(v)).

138

Algorithm 7 Parallel RP-tree Construction
1: Input: Dim-D data set S[1:n]; element positions index[1:n], group indices G[1:n]; RP-tree

depth depth
2: Initialize G to all 1
3: Initialize index to [1, 2, ..., n]
4: for i = 1 to depth do
5: compute properties (mean, diameter, average diameter) needed for each group in parallel
6: decide the split vector and position for each group, according to the RP-tree mean rule, which

need parallel median and mean operations
7: update the group index for each item according to the split vector/position in parallel: if the

item goes to the left node, G[i]← 2G[i]− 1, otherwise G[i]← 2G[i]
8: clustered-sort(S, G, index)
9: end for

10: return S, index and G

The LSH table is implemented as a linear array along with an indexing table. The linear array

contains the Bi-level LSH codes of all the items in the dataset, which have been sorted to collect

items with same LSH codes together. All the data items with the same LSH code constitute a bucket

which is described by the start and end positions of the bucket in the sorted linear array. As each

bucket uniquely corresponds to one LSH code, we can use the terminology ‘bucket’ and ‘unique

LSH code’ in the same sense. The indexing table is a cuckoo hash table with each key corresponding

to one LSH code; the value associated with each key is the corresponding bucket interval for the LSH

code in the linear array. In practice, the key — a dim-M LSH code — is compressed to a dim-1 key

by using another hash function. The structure of the LSH hash table is shown in Figure 6.2, which is

implemented as a cuckoo hashing table on GPUs.

Cuckoo hashing (Pagh and Rodler, 2004) places at most one item at each location in the hash

table by allowing items to be moved after their initial placement. It stores the key-value pairs in f

hash sub-tables (e.g., f = 3 in Figure 6.2) with different hash functions for each sub-table. The

serial (CPU) implementation inserts items one by one by first checking its f buckets to see any of

them is empty. If none of them are empty, it evicts the old item and replaces it with the new value.

The process is repeated recursively until every item finds a position in the table. In theory, a poor

choice of hash function could cause placing items to take a long time; however such cases are rare

in practice. Cuckoo hashing has several advantages over other hashing techniques. First, its space

overload is small: the f sub-tables only need N(1 + γ) memory to store N items, with γ = 0.408.

In practice cuckoo hashing can achieve about 90% occupancy. Second, cuckoo hashing can provide

139

linear array

In
d

e
x
in

g
 ta

b
le

Figure 6.2: LSH hash table for Bi-level LSH: the linear array stores LSH codes and the indexing
table is a cuckoo hash table, which stores unique LSH codes and the intervals for these codes in the
linear array. Different colors are for items with different LSH hashing values.

collision-free storage for N items with very high probability. In practice we can restart cuckoo

hashing with different random parameters even after it fails. In practice, the probability that a restart

is needed is rather low (0.088% ∼ 0.5% for millions of items (Alcantara et al., 2009)). Moreover, the

lookups take only constant time, as only f buckets must be checked. Lastly, the cuckoo hashing is

GPU-friendly, as it main operations (hashing, insert, evict) are performed in an independent manner

for different elements.

In our implementation, we use the GPU cuckoo hashing method proposed in (Alcantara et al.,

2009). However, we do not construct a hash table for each data group. Instead, we store all the

Bi-level LSH codes in one hash table, because the group index (i.e., the output from the RP-tree) can

distinguish codes from different groups.

We also enhance the LSH table with a hierarchical structure using Morton curves. The Morton

curve maps the multi-dimensional data to a single dimension and tries to maintain the neighborhood

relationship, i.e., nearby points in the high-dimensional space are likely to be close on the one-

dimensional curve. Conceptually, the Morton curve can be constructed by recursively dividing a

dim-D cube into two cubes and then ordering the cubes, until at most one point resides in each cube.

140

The resulting hierarchical structure is useful in terms of reducing the quality variance among different

queries. The Morton curve can be constructed and searched efficiently on the GPU (Lauterbach et al.,

2009).

6.5.3 Short-list Search

Short-list search ranks the distances of neighborhood candidates to the query and chooses the k

candidates that are closest to the query item. It is usually implemented by inserting the candidates

sequentially into a max-heap with maximum size k, which maintains the k best candidates up to this

point. Short-list search is the main bottleneck in the LSH algorithm and can take over 95% of the

overall running time.

We describe a GPU-based algorithm to accelerate short-list searches for multiple queries. One

naive approach is to let each GPU thread handle the short-list search for one query (Pan et al., 2010).

This is simple to implement but is not efficient. First, different queries may consider different number

of candidates. Such imbalance of tasks will make some threads busy for heap operations, while other

threads are idle, and the speed of the overall algorithm is limited by the slowest thread. Second, the

max-heap computation is usually implemented on the slow global memory instead of the high-speed

shared memory, because the size of max-heap is usually too large for shared memory. Thus, this

method can not benefit from shared memory to accelerate data access. Finally, the heap operation

(insert, heapify, etc) is related to tree traversal, and is performed in an independent manner for

different queries. As a result, instruction divergence and non-coalesced memory accesses will occur

among various threads and thereby reduce overall performance on GPUs.

One possibility is to let each thread perform the heap-insert operation for one candidate, for

one of the queries. This strategy has been used before to handle multiple collision detection queries

on GPUs (Lauterbach et al., 2010). In collision detection queries, each thread only traverses one

binary tree, but does not update the tree so there are no conflicts among parallel queries. However,

each thread may add one candidate to the max-heap and may remove another item. Different threads

may operate on the same max-heap simultaneously. To avoid conflicts between threads, we use

a heap representation that allows concurrent access of different threads. Most concurrent heap

approaches (Rao and Kumar, 1988) are based on mutual exclusion, locking part of a heap when

inserting or deleting the nodes so that other threads cannot access the currently updated element.

141

However, this blocking-based algorithm limits the potential performance to a certain degree, since it

involves several drawbacks such as deadlock and starvation, which causes the system to be in idle

or wait states. Moreover, it is not easy to implement such lock mechanisms on current CPUs. The

lock-free approach (Sundell and Tsigas, 2005) avoids blocking by using atomic synchronization

primitives and guarantees that at least one active operation can be processed. However, lock-free

methods (Sundell and Tsigas, 2005) can be inefficient on current GPU architectures. Any such

algorithm needs to synchronize the time that different threads access the heap, which will result in

many locks that can involve mutual exclusion and make the operations nearly sequential. Moreover,

the algorithm in (Sundell and Tsigas, 2005) uses the skip-list data structure, which is also difficult to

implement efficiently on current GPUs.

Our solution uses work queues allocated on the global memory to accelerate short-list search,

and is shown in Figure 6.3. Given multiple queries and their candidate sets, we first compute the

number of queries that the global memory can store both the candidate sets and initial k-nearest

neighbors. The initial k-nearest neighbors are empty or are the results from previous LSH tables (as

introduced in Section 6.2.1, there are L LSH tables). We copy the initial sets and the candidate sets

to the work queue and perform clustered-sort on the distances between the points in the work queue

and the query points. Finally, we perform a compact operation to obtain updated k-nearest neighbor

results. This process is repeated until all the candidates have been processed.

6.5.4 Analysis

Admittedly, sorting on n elements is a more expensive operation than selecting k smallest

elements from n elements (which is a special case of the (n, k) multiple-selection problem (Knuth,

1998)). However, as we show below, our parallel algorithm is work efficient (JáJá, 1992), i.e., its

complexity is bounded both above and below asymptotically by the complexity of the most efficient

serial algorithm for (n, k) multiple-selection.

Suppose we need to solve the (n, k) multiple-selection problem. (Knuth, 1998) gives a complex-

ity lower bound for the serial algorithm: T 1
S(n) ≥ n+ k + min(b(n− k)/2c, k)− 3 and (Kaligosi

et al., 2005) gives another lower bound: T 2
S(n) ≥ k lnn+ (n− k) ln n

n−k . The complexity of the

heap-insert based serial algorithm is T 3
S(n) = ln k ·n. Suppose there are p cores available for parallel

implementation. According to (Merrill and Grimshaw, 2010), the complexity of radix sorting on a

142

!"!#$%&'((&)*+)&

,-./&01*1*&

2%
1
)+
*
.*
3
4)
-
.+
&

2-
5
6
$
2+
&

163$+*3&'((&)*+)&

2$"3!3$+*&)*+)&

Figure 6.3: Work-queue based parallel short-list search: different colors are for different queries.
Clustered-sort collects the candidates for the same query together in ascending order of distance.
Compact primitive computes the first k elements for the reordered candidates, which have the smallest
distance to the query.

GPU is about 40n/p, so our work-queue based parallel method has a complexity TP (n) = 40n/p.

Therefore, our approach is work efficient and is faster than serial implementations, especially when k

is large.

Our approach has many other advantages over the per-thread per-query method. First, it depends

on radix sorting, which can benefit the high-speed shared memory and can be implemented efficiently

on GPUs. Second, the time cost for our method is almost constant when k increases, because

clustered-sort is performed for all candidates, which is the same for different k. The only difference

is in the compact step, which collects the first k items in the sorted work queue and only takes a

small portion of the entire time cost. The naive heap-sort method’s time cost increases faster than

linearly when k increases because of instruction divergence and memory non-coalescence. Moreover,

our algorithm behaves much better than the naive method when the number of queries is small. In

such cases, the naive method uses only a few threads (the same number as query number) and cannot

provide enough tasks for GPU cores. Our method performs parallel sorting on the candidates, which

still utilizes all GPU cores. Finally, we can conveniently implement the work queue technique in an

out-of-core manner so as to handle very large datasets that cannot fit into the GPU/CPU memory.

143

6.6 Results

In this section, we compare the performance of our Bi-level LSH algorithm with prior LSH

methods. All the experiments are performed on a PC with an Intel Core i7 3.2GHz CPU and NVIDIA

GTX 480 GPU. The system has 2GB memory and 1GB video memory. The timing results for GPU

algorithms include the time needed to transfer data and results between the CPU and GPU.

We use the LabelMe image dataset (http://labelme.csail.mit.edu) to evaluate our method.

This dataset includes nearly 2 million images, where each image is represented as a GIST feature

of dimension 512. The Bi-level LSH can provide results with higher quality than prior LSH

algorithms, given the same computational budget. We show one comparison result in Figure 6.4.

More comparison results are shown in (Pan and Manocha, 2012).

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

selectivity

q
u
a
lit

y

LSH recall

LSH error

Bi−level LSH recall

Bi−level LSH error

Figure 6.4: Quality comparison between our Bi-level LSH and the standard LSH algorithm, where
M = 8 and the RP-tree partitions the dataset into 16 groups in the first level. The ellipses show the
standard variations in selectivity and recall/error ratio caused by random projections.

The results on GPU parallelization consist of two parts. First, we compare the speed of the

naive GPU implementation (i.e., the heap-sort) and the CPU implementations. Next, we show the

acceleration over naive GPU implementation obtained using work queues.

For the first level of the Bi-level LSH scheme, the comparison result is shown in Figure 6.5. The

dataset has 100,000 items and is partitioned into 16 clusters. The K-means algorithm runs for 40

iterations. For both RP-tree and K-means computations, the GPU implementation is 50-70 times

faster than a single-core CPU implementation without any SIMD optimizations. We also compare

144

the relative GPU performance for RP-tree and K-means: RP-tree is 2-8 times faster than K-means.

The acceleration of RP-tree over K-means will be greater for larger datasets.

For the second level of our Bi-level LSH scheme, we compare the efficiency of three approaches.

The first is our naive GPU implementation, which uses a parallel hash table based on cuckoo hashing

to accelerate hash table access and uses parallel heap-sorting for shortlist search. The second

approach replaces the parallel shortlist search by a serial shortlist search on the GPU, but still uses

parallel hash tables. The final method is based on LSHKIT (http://lshkit.sourceforge.net),

where the hash table and shortlist search are implemented on a CPU. In our experiments, we change

the bucket size (W) to generate different number of shortlist candidates. For different numbers of

shortlist candidates, the timing result for the three approaches is shown in Figure 6.6. The second

method is about twice as fast as than the third one, where the acceleration is obtained by GPU parallel

hash table. The first method is about 15-20 times faster than the second one; the main acceleration is

obtained based on the GPU shortlist search. Overall, our GPU-based per-thread per-query Bi-Level

algorithm can provide a 40-fold acceleration over the CPU implementation.

We now compare the timing performance of two GPU approaches: the naive heap-sort method

and the work-queue based method. First, we show their performances when the number of queries

changes and the neighborhood size (K) is 500. As shown in Figures 6.7(a) and (b), the work-queue

based method is about 2-10 times faster than the naive heap-sort method when the number of queries

is small (i.e., < 10,000) because in such cases the naive per-thread per-query strategy cannot provide

enough degrees of parallelism to benefit from the high number of GPU cores. When the number of

queries increase, the speed up of the work-queue based method over the naive method decreases.

Next, we compare the performance of the two approaches when the neighborhood size (K)

changes. As shown in Figure 6.7(c)(d), unless K is very small (5 or 50 in the example), the work-

queue based method is much faster than the heap-sort method. When K increases, the heap-sort

method’s time cost will increase super linearly with respect to K, while the work-queue based

method takes nearly constant time. Figures 6.7(e) and (f) show the relative comparison between

the two approaches when the bucket size (W) is large. Notice that the work-queue based method is

faster than heap-sort method only when K > 200 or K > 500, respectively. The reason is that the

work-queue based method needs additional memory to store the work queue, which is limited by the

overall size of GPU memory. As a result, when W is large, i.e., there are many candidates, we have

145

to split the candidates into many parts so that each part can fit into the work queue. This will break

one sorting computation on a work queue into multiple sorting computations, which could reduce the

overall efficiency. However, for large K, the work-queue based method is still more efficient, which

verifies our analysis in Section 6.5.3.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

2

4

6

8

10

12

14
x 10

4

size of dataset

rp
tr

e
e
 t
im

in
g
 (

m
s
)

CPU

GPU

(a) RP-tree CPU vs. GPU

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

2

4

6

8

10

12

14
x 10

5

size of dataset

k
m

e
a
n
s
 t
im

in
g
 (

m
s
)

CPU

GPU

(b) K-means CPU vs. GPU

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

200

400

600

800

1000

1200

1400

1600

size of dataset

rp
tr

e
e
 t
im

in
g
 (

m
s
)

RP−tree

K−means

(c) RP-tree and K-means GPU

Figure 6.5: Performance comparisons between CPU and GPU on the partitioning algorithm used in
Level 1.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
9

0.5

1

1.5

2
x 10

6

shortlist candidate num

s
h
o
rt

lis
t
s
e
a
rc

h
 t
im

in
g
 (

m
s
)

GPU

CPU−shortlist

CPU−lshkit

Figure 6.6: Performance comparison on shortlist search: training set size 100,000, testing set
size 100,000, K = 500, L = 10,M = 8. We vary W to generate different numbers of shortlist
candidates. We compare different methods: pure CPU (CPU-lshkit), GPU hash table with CPU
short-list search (CPU-shortlist), and pure GPU (GPU).

6.7 Conclusions and Future Work

We present an efficient GPU-based parallel Bi-level LSH algorithm to perform approximate

k-nearest neighbor search in high-dimensional space. The Bi-level scheme can provide k-nearest

146

1 2 3 4 5 6 7 8 9 10

x 10
4

1

2

3

4

5

6

7

8

9

x 10
4

number of queries

ti
m

in
g
 (

m
s
)

heap−sort method

queue−based method

(a)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0.5

1

1.5

2

2.5

x 10
4

number of queries

ti
m

in
g

 (
m

s
)

heap−sort method

queue−based method

(b) detail of (a)

100 200 300 400 500 600 700 800

0.5

1

1.5

2

2.5

3
x 10

4

neighborhood size k

ti
m

in
g

 (
m

s
)

heap−sort method

queue−based method

(c)

100 200 300 400 500 600 700 800

1

1.5

2

2.5

3

3.5
x 10

4

neighborhood size k

ti
m

in
g

 (
m

s
)

heap−sort method

queue−based method

(d)

100 200 300 400 500 600 700 800

1

2

3

4

5

x 10
4

neighborhood size k

ti
m

in
g
 (

m
s
)

heap−sort method

queue−based method

(e)

100 200 300 400 500 600 700 800

1

2

3

4

5

6

x 10
4

neighborhood size k

ti
m

in
g
 (

m
s
)

heap−sort method

queue−based method

(f)

Figure 6.7: Performance comparison on shortlist search between heap-sort and work-queue based
methods: (a) training set size 100,000, test set size changes from 1 to 100,000, K = 500, L =
10,M = 8,W = W0; (b) shows the close-up of (a) for testing set sizes from 1 to 20,000; (c) training
set size 100,000, testing set size 5,000, L = 10,M = 8,W = W0, K varies from 1 to 800; (d)
training set size 100,000, testing set size 10,000, L = 10,M = 8,W = W0, K varies from 1 to 800;
(e) same as (c), except W = 5W0; (f) same as (d), except W = 5W0.

neighbor results with higher quality than previous methods. In addition, our parallel algorithm

provides more than a 40-fold acceleration over LSH algorithms on CPUs.

There are many avenues for future work. We hope to test our algorithm on more real-world

datasets, including images, textures, videos, and so on. We also need to design efficient out-of-core

algorithms to handle very large datasets (e.g., > 100GB), as the on-chip memory on a GPU is limited

to a few GBs. Finally, we need to further analyze the quality of our Bi-Level scheme on large spatial

databases.

147

CHAPTER 7: PROXIMITY COMPUTATIONS ON NOISY SENSOR DATA

7.1 Introduction

The problems of collision detection and proximity computation are widely studied in different

areas, including robotics, physically-based modeling, haptics and virtual environments. In particular,

reliable and fast collision detection algorithms are required for robot motion planning, grasping and

dynamics simulation to enforce the non-penetration constraints with the environment.

Most of the prior work on collision detection assumes an exact geometric description of the

objects in the scene, typically represented as a polygon mesh. However, these methods may not

work well for robots operating in real-world environments, where only partial observations of the

environment are possible based on robot sensors. For example, inaccurate motor control makes a

robot deviate from its exact configuration, and sensors tend to add noise to environment measurements.

Current robot sensors (including cameras, LIDAR, and new devices such as the Kinect) can easily

generate detailed point cloud data of real-world environments. However, it is hard to directly use

exact collision detection algorithms, which perform a boolean query and compute a yes/no answer.

Moreover, exact collision checking may not be suitable in terms of handling uncertainty in perception

and control, which also causes uncertainty in collision results. For many robotics applications, such

as grasping or motion planning, we need to reduce the risk of physical contacts between the robot

and the environment that may result in damage. Hence, we need to develop methods that minimize

the probability of collisions. For this purpose, we require a collision or proximity algorithm that uses

point cloud data. This algorithm can also improve many methods’ feasibility and robustness in real

world. For example, many algorithms in tactile manipulation, e.g., (Petrovskaya and Khatib, 2011),

require an exact or approximated mesh model of the manipulated object; our algorithm can help

extend these methods to work with easily-obtained point clouds instead of mesh models.

7.1.1 Main Results

In this chapter, we present a probabilistic collision detection algorithm that can handle envi-

ronments with uncertainty. Our approach can handle noisy or inexact point data representations

that are gathered using sensors. In order to handle point cloud data with noise, we reformulate the

collision detection problem as a two-class classification problem, where points of different objects

belong to different classes. The collision probability is then directly related to the separability of the

corresponding two-class problem, which can be elegantly and efficiently solved using support vector

machines (SVMs). We accelerate the computation using bounding volume hierarchies and perform a

stochastic traversal of the hierarchies that takes into account noise and uncertainty. These hierarchies

are updated for dynamic scenes and when the robot head or gripper moves. Our probabilistic collision

algorithm also estimates contact points and contact normals. We test our algorithm on point clouds

generated from PR2 sensors and synthetic data sets. Our method can provide robust results for

probabilistic collision detection, and its runtime performance is similar to that of hierarchy-based

collision detection algorithms for triangle meshes (e.g., 500-1000ms for 10K points on a single CPU

core).

Figure 7.1: A visual representation of the collision information generated by sensors on the PR2 robot.
(Left) The environment includes the points in a collision map (in light blue), mesh representations
for known objects detected through visual sensing (the green cylindrical object on table), and an
exact geometric representation of the table surface (the green flat surface). A detailed mesh model
for the robot is also seen in the picture. (Right) A representation of the collision points (shown by
red spheres) between the gripper and the object on the table. We use our probabilistic algorithm for
robust collision checking with noisy point clouds at interactive rates.

The rest of this chapter is organized as follows. We survey related work in Section 7.2. We

introduce our notation and give an overview of the approach in Section 7.3. Section 7.4 shows

how probabilistic collision detection computation is reduced to robust classification and Section 7.5

149

describes the use of bounding volume hierarchies to accelerate the computation. We evaluate the

performance of our algorithm on different benchmarks in Section 7.6.

7.2 Related Work

The field of probabilistic robotics provides a mathematical framework for handling the uncer-

tainty that exists in the physical world (Thrun et al., 2005). It deals with representing uncertainty

explicitly using the calculus of probability distribution and obtaining robust control choices relative

to the uncertainty in the robot system. Probabilistic robotics can handle perception uncertainty (or

environment uncertainty) due to sensor and action errors. However, previous approaches tend to use

simple methods to model environment uncertainty, such as feature-based methods or occupancy grid

based methods. These models can only provide a rough description of the environment, while many

robot actions (e.g., grasping) require more detailed information for robust computation.

7.2.1 Uncertainty of Point Cloud Data

Raw point cloud data obtained from sensors can have a high degree of uncertainty, which results

mainly from discretization error and noise. As a result, it is difficult to obtain robust estimation of

high-order features such as surface normals. This causes difficulty for many applications that require

precise estimates of normal vectors at the boundary, such as grasping.

Many approaches consider uncertainty of point clouds implicitly. For example, (Steinke et al.,

2005; Schölkopf et al., 2005) encode surface uncertainty as a parameter tolerance for learning

algorithms when they apply geometric operations (e.g., reconstruction) on the point clouds. However,

without an explicit model of uncertainty, we can only consider a single uncertainty formulation for

the overall surface, so we may not be able to model varying uncertainty at different parts of the

surface for local control.

There is recent work on explicitly modeling the uncertainty of point cloud data for different

applications. (Bae et al., 2009) present a closed-form expression for the positional uncertainty of point

clouds. (Pauly et al., 2004) propose two methods, confidence map and likelihood map, to analyze

shape uncertainty in point clouds for re-sampling and reconstruction applications. (Jenke et al., 2006)

describe a Bayesian model for incorporating point cloud uncertainty in surface reconstruction.

150

7.2.2 Collision Detection

In order to handle the interaction between point cloud data, we need efficient and accurate

collision detection algorithms between point cloud data; these algorithms should take into account

the uncertainty of point cloud data in a formal manner. However, prior collision detection methods

mainly focus on performing efficient and accurate contact computations between objects represented

by triangulated primitives (Lin and Manocha, 2004).

In terms of collision checking with point clouds, there are several simple methods. For example,

we can first reconstruct triangle meshes from point clouds and then perform exact collision checking

between the reconstructed surfaces. However, this approach suffers from inefficiency (> 10 s for 10K

points) and robustness issues that arise from using reconstruction algorithms (e.g., reconstruction

quality, sensitiveness to parameter and noise, etc). We can also simply expand every point as

a sphere with suitable radius and approximate the object as a union of spheres (Hubbard, 1996)

for collision checking. The main difficulty with this approach is automatically choosing different

sphere radii for different points. Other direct collision checking methods for point cloud data are

based on using bounding volume hierarchies (Klein and Zachmann, 2004; Steinemann et al., 2007)

and reconstructing implicit functions at the leaf nodes, which are also prone to robustness issues.

Minkowski sums of point clouds have also been used for collision queries (Lien, 2007). (Sucan et al.,

2010) describe a collision map data structure, which uses axis aligned cubes to model the point cloud

and to perform collisions with a robot. Some applications, including virtual reality and haptics, need

real-time collision checking, and use probabilistic criteria based on minimum distance computation

between the point sets (Lee and Kim, 2007). However, these methods do not take into account the

inherent shape uncertainty of point cloud data that arises from discretization or sampling (Pauly et al.,

2004).

There has been relatively little work in terms of handling uncertainty in collision detection. A

special type of collision uncertainty is discussed in (Govindaraju et al., 2006), which projects objects

onto different image planes to perform collision culling using GPU-based computation. (Guibas

et al., 2009) propose a method to compute the collision probability between 2D objects composed of

line segments in a 2D environment with uncertainty. In order to estimate collision uncertainty, this

method models the endpoints of a line segment as probability distributions with a rectangular support

151

region. (Missiuro and Roy, 2006) also try to model uncertainty in probabilistic roadmaps by using

the collision probability of a configuration to bias the sampling process for roadmap computation.

7.3 Overview

In this section we introduce the notation used in the rest of the chapter and give an overview of

our approach.

The main pipeline of our system consists of three steps: 1) Obtain raw data from sensors

and filter the point clouds to remove points on the robot and reduce the shadow effect (Sucan

et al., 2010); 2) Compute the separating surface between two point clouds by estimating the noise

from sensor parameters (Sections 7.4.1-7.4.3); and 3) Estimate the collision probability for each

point and the overall collision probability between two point clouds (Section 7.4.4). Moreover, we

use bounding volume hierarchies to accelerate the computation and recompute the hierarchies for

dynamic environments (Section 7.5).

The inputs to our collision detection algorithm are the point clouds. In some cases, we need

to perform the collision query between two different point clouds or between a point cloud and a

polygonal object (e.g., when the mesh representation of a robot hand or gripper is available). We first

present our approach for two different point clouds, and later show how it can be applied to a point

cloud and a polygonal object.

Let the two point clouds be denoted asC1 andC2. We assume that each point cloudC is obtained

from sensors and is a partial and noisy representation of the underlying exact surface S. There are

two kinds of errors introduced in the generation of point clouds: discretization errors and position

errors, or noise uncertainty. Intuitively, discretization error refers to how these point samples are

distributed on the boundary of the surface, and the position error measures the imprecision in the

coordinates of each point. Formally, we assume C is generated from S according to the following

process: first a series of n sample points x′i is generated according to some sampling process and

we use the symbol p(x′i|S) to represent the distribution of coordinates for a random point x′i; this

models the discretization error. Next, xi is generated from x′i according to some noise distribution

p(xi|x′i; Σi); this models the position error. Generally p(x′i|S) is not given, but we can estimate

it based on the observed point-cloud data, with some assumptions about surface smoothness and

sampling density. The symbol Σi is used to model a point cloud’s uncertainty due to noise, and is

152

typically computed based on sensor characteristics. For example, Σi may measure the level of noise

that is a combination of sensing noise, motion uncertainty, and deformation error. Then the overall

uncertainty of a point xi can be modeled as

xi|S ∼ p(xi|S) =

∫
p(x′i|S)p(xi|x′i; Σi) dx

′
i. (7.1)

In this formulation, there exists an implicit assumption that the sensor is able to capture the features

of the underlying surface. For example, more sample points x′i must be generated near the sharp

features, so that we can reconstruct the necessary features of the original model.

The output of the collision detection algorithm is a probability PC1,C2 that estimates whether

two point clouds C1 and C2 are in-collision.

7.3.1 Separating Surface

Given a point cloud, we can potentially reconstruct a triangulated surface representation using

Bayesian optimization. That is, the underlying surface should be the one with the maximum

probability:

Ŝ = argmaxS p(S|{xi}ni=1) = argmaxS p(S)
∏
i

p(xi|S). (7.2)

Next, we can perform collision checking based on reconstructed models. However, reconstructions

are only estimations, so computing collisions based on reconstructions can be rather inaccurate. Our

formulation is based on the theory of convex sets: two convex sets are non-intersecting if there exists

an oriented separating plane P so that one set is completely in the positive (open) halfspace P+ and

the other is completely in the negative (open) halfspace P− (Mount, 2004). For non-convex sets, we

extend the concept of the separating plane to the separating surface: two sets are non-intersecting (or

separable) if and only if there exists a separating surface P between them. Previous work in collision

detection (Mount, 2004; Ponamgi et al., 1995) is limited to the special case when P is composed of

multiple planes.

We extend the idea of separating surfaces to handle point clouds. Given two point clouds

C1 = {x1
i }n1
i=1 and C2 = {x2

i }n2
i=1 with n1 and n2 elements, respectively, a separating surface P is

a surface that can separate the two sets completely with C1 in P+ and C2 in P−. In this case, P+

and P− represent a partition of the space R3 into two parts. Notice that here P should not be an

153

arbitrary surface: i.e., it should not be a very complex function in terms of acting as a valid separating

surface. Otherwise, even if P can completely separate the point clouds, it may not be able to separate

the underlying surfaces. Such a problem is called overfitting in machine learning literature, which

describes when the statistical model is biased too much towards the observed data and thus may not

be able to predict the underlying model correctly. In order to avoid overfitting, we assume regularity

conditions for P , which intuitively impose suitable smoothness constraints on the separating surface.

In our algorithm, we represent P as a parameterized implicit surface {x : f(x; θ) = 0} with θ as its

parameters. In this case, the regularity condition can limit the value of f ′(x; θ). Moreover, P+ and

P− can be represented as {x : f(x; θ) > 0} and {x : f(x; θ) < 0}, respectively. As a result, the

collision detection problem is reduced to finding the separating surface, i.e., deciding the parameter

set θ, that can separate C1 and C2.

There is one major difference between point clouds and convex/non-convex sets. In particular,

for point cloud data, the existence of a separating surface is not a necessary or sufficient condition

for non-intersection between the two sets. If two point clouds are noise-free and separable, their

underlying surfaces may still be in-collision, as shown in Figure 7.2(a)-(b). This is due to the

discretization error from point-cloud sampling. This issue becomes more complicated when point

clouds have position errors, as shown in Figure 7.2(c)-(d). This property of point cloud sets makes it

difficult to perform exact collision checking, but is suitable for statistical learning approaches like

SVM (Bi and Zhang, 2005). As a result, the probabilistic collision detection problem can be reduced

to computing the optimal separating surface that minimizes the separating error for underlying

surfaces: i.e., find θ that minimizes

∫
x∈S1

1{x∈P (θ)−} dx +

∫
x∈S2

1{x∈P (θ)+} dx, (7.3)

where S1 and S2 are the underlying surfaces for point clouds C1 and C2, respectively.

7.3.2 Probabilistic Model for Point Cloud Collision

We now present the probabilistic model for using point cloud collision checking to compute

the optimal separating surface. We rewrite xli with l ∈ {1, 2} as (xi, ci), where xi = xli and

ci = (−1)l+1 ∈ {−1, 1} denotes which object the point xi belongs to. As a result, we have n1 + n2

154

(a) (b) (c) (d)

Figure 7.2: Separating surface for point cloud sets. Point clouds in (a) and (b) are noise-free and
are separable. However, due to discretization uncertainty, the underlying surfaces can be either
collision-free (a) or in-collision (b). Point clouds in (c) and (d) have some noise and may not be
separable, and the underlying surfaces can be either collision-free (c) or in-collision (d). Notice
that we require suitable regularity or smoothness on the separating surface to avoid overfitting. For
example, the separating surface provided in (c) has too large of a curvature and therefore is not valid.
Thus, collision results based on reconstructed meshes may not be reliable due to discretization error,
as in examples (a) and (b), or position noise, as in examples (c) and (d), or unsuitable parameters.

elements in {(xi, ci)}. As discussed in Section 7.3.1, collision checking between two point sets

reduces to finding an optimal separating surface P . In machine learning terminology, this corresponds

to finding an optimal classifier that can minimize the expected risk on the classification problem

whose data is drawn from {x : x ∈ S1
⋃
S2} and its training set is {(xi, ci)}. As a result, the

collision detection problem is reduced to a machine learning problem. However, unlike typical

machine learning algorithms only dealing with cases in which (xi, ci) are specified exactly, we also

need to take into account the noise in xi. Our solution is based on the maximum-likelihood (ML)

scheme, which chooses the optimal surface to maximize the probability on the observed inputs

{(xi, ci)}.

Similar to Equation 7.1, the joint probability for (xi, ci) can be expressed as

p(xi, ci) =

∫
p(x′i, ci; θ)p(xi|x′i; Σi) dx

′
i. (7.4)

Here θ is the parameter set used to represent the separating surface P . For example, P is {x :

wTx + b = 0} if P is a plane and θ = {w, b}. Or, P is {x : wTΦ(x) + b = 0} if P is a hyper-plane

in some high-dimensional inner product spaceH and Φ is the mapping Φ : R3 7→ H. The unknown

surface parameter θ can be estimated from the point cloud data using ML:

θ∗ = argmaxθ
∑
i

ln

∫
p(x′i, ci; θ)p(xi|x′i; Σi) dx

′
i (7.5)

155

In practice, the integration over the unknown underlying surface sample x′i makes it hard to compute

the surface parameter. As a result, we consider an alternative form that is computationally more

efficient. Specifically, we use an approximation to Equation 7.5 based on a widely-used heuristic for

mixture estimation: we simply regard x′i as a parameter of the model instead of a random variable.

Then Equation 7.5 reduces to:

θ∗ = argmaxθ
∑
i

ln sup
x′i

p(x′i, ci; θ)p(xi|x′i; Σi). (7.6)

We present an algorithm to solve Equation 7.6 in the following section.

7.4 Probabilistic Collision Checking between Point Clouds

In this section, we present our probabilistic algorithm for collision checking between point

clouds using two-class classification. This reduces to computing the optimal separating surface that

minimizes the function in Equation 7.6.

7.4.1 Basic Formulation

For convenience, we first assume that the separating surface is a plane, i.e., P = {x : wTx+b =

0}. We also assume that the uncertainty due to noise can be described by a Gaussian distribution. We

will relax these assumptions later on. Based on these two assumptions, we have

p(x′i, ci; θ) ∼ p(x′i) exp(−(wTx′i + b− ci)2

σ2
) (7.7)

and

p(xi|x′i; Σi) ∼ exp(−(xi − x′i)
TΣ−1

i (xi − x′i)), (7.8)

where σ and Σi are the covariance parameters of a Gaussian distribution.

As we will show in Section 7.6, the discretization uncertainty at x′i can also be estimated

as a Gaussian distribution with the observation xi as the mean. That is, p(x′i) ∼ exp(−(x′i −

xi)
TΨ−1

i (x′i − xi)), where Ψi is the covariance parameter for discretization uncertainty. Here we

assume that the observed data xi is fixed and the true value x′i is subject to random errors. This is

equivalent to the so-called Berkson’s model in statistics literature (Berkson, 1950). Then Equation 7.6

156

becomes

θ∗ = argmaxθ
∑
i

inf
x′i

[(wTx′i + b− ci)2

σ2
+ (xi − x′i)

T Σ̃−1
i (xi − x′i)

]
, (7.9)

where θ = {w, b} and Σ̃−1
i = Σ−1

i + Ψ−1
i .

Moreover, notice that if (xi − x′i)
T Σ̃−1

i (xi − x′i) is large, then the p(x′i, ci; θ) term will have a

small value and can be ignored in the integration for p(xi, ci). As a result, we can constrain x′i to

lie within the ellipsoid Ei = {x′i : (xi − x′i)
T Σ̃−1

i (xi − x′i) ≤ r2
i } and this will not influence the

final result considerably. Also, considering the regularity of separating surfaces, Equation 7.9 can

be approximated by an optimization formulation that is similar to that used for the support vector

machine (SVM):

minimize
w,b,ξi

1

2
‖w‖2 + λ

n∑
i=1

ξi

subject to ci(w
Tx′i + b) ≥ 1− ξi, ∀x′i ∈ Ei, ∀1 ≤ i ≤ n;

ξi ≥ 0, ∀1 ≤ i ≤ n,

(7.10)

The above formulation minimizes the upper bound on the classification error, which is equivalent to

the separating error in Equation 7.3. Errors occur when ξi ≥ 1, as x′i lies on the wrong side of P .

The quantity λ is the penalty for any data point x′i that either lies within the margin on the correct

side of P (0 < ξi ≤ 1) or on the wrong side of P (ξi > 1). ‖w‖ is the regularization term which

controls the smoothness of the separating surface.

It is easy to verify that ci(wTx′i + b) reaches its minimum at point xi − ri(wT Σ̃iw)1/2Σ̃iw

and the minimum value is ci(wTxi + b)− ri(wT Σ̃iw)1/2. As a result, Equation 7.10 can be further

written as:

minimize
w,b,ξi

1

2
‖w‖2 + λ

n∑
i=1

ξi

subject to ci(w
Txi + b) ≥ 1− ξi + ri‖Σ̃1/2

i w‖, ∀1 ≤ i ≤ n;

ξi ≥ 0, ∀1 ≤ i ≤ n.

(7.11)

157

Such optimization problems have been studied in the literature (Shivaswamy et al., 2006) and can be

solved using second order cone programming (SOCP) methods. Once w and b are computed, we can

compute ξi = max(0, 1− ci(wTxi + b) + ri‖Σ̃1/2
i w‖).

7.4.2 Non-Gaussian Uncertainty

The uncertainty of real-world sensors may not be accurately modeled using a Gaussian distribu-

tion. Our approach can also handle non-Gaussian uncertainty.

(Shivaswamy et al., 2006) point out that the ellipsoid radius ri is related to the confidence of

the classification result when the training data contains noise. Briefly, if we desire the underlying

surface point x′i with a Gaussian distribution to lie on the correct side of the separating surface with a

probability greater than κi; i.e.,

P
x′i∼N (xi,Σ̃i)

(
(ci(w

Tx′i + b) ≥ 1− ξi
)
≥ κi, (7.12)

then ri = cdf−1(κi), where cdf(u) = 1√
2π

∫ u
−∞ exp(− s2

2)ds. Applying the multivariate Chebyshev

inequality, this relationship between κi and ri can be further extended to the case when x′i follows

non-Gaussian distribution. That is, if x′i ∼ (xi, Σ̃i) represents a family of distributions with a

common mean and covariance given by xi and Σ̃i, and we want x′i to lie on the correct side of the

separating surface with a probability greater than κi; i.e.,

sup
x′i∼(xi,Σ̃i)

Px′i

(
(ci(w

Tx′i + b) ≥ 1− ξi
)
≥ κi, (7.13)

then ri =
√

κi
1−κi . This formulation implies that we can perform collision detection using Equa-

tion 7.11 even when the uncertainty is non-Gaussian.

7.4.3 Non-linear Separating Surface

Using a linear separating surface is mainly limited to the case when all the underlying surfaces

are convex. If any one of them is non-convex, a separating plane may not exist even when the

surfaces are collision-free. Therefore, we need to extend our algorithm to non-linear P . Similar to

typical SVM algorithms (Vapnik, 1995), we can remove the linear separating surface assumption by

158

applying a kernel trick on the dual form of Equation 7.11. Briefly, the kernel trick is a method that

transforms the Euclidean spaceRn into an inner spaceH using the mapping Φ, replacing the inner

product 〈y, z〉Rn by the new inner product K(y, z) = 〈Φ(y),Φ(z)〉H in space H. Here K(·, ·) is

called the kernel function. Usually a hyper-plane in H will correspond to a non-linear surface in

Rn, which is a popular way to construct non-linear classifiers in machine learning (Hofmann et al.,

2008). A couple of widely-used kernel functions include the linear (K(y, z) = yT z) and Gaussian

(K(y, z) = exp(−γ‖y − z‖2)) kernels.

Based on the kernel trick, the non-linear separating surface can be formulated as P = {x :

wTΦ(x) + b = 0}. To compute P , we first transform Equation 7.11 into its dual form. Next, based

on the Taylor-expansion technique (Bi and Zhang, 2005), we replace yT z by kernel function K(y, z)

and replace y by the kernel gradient ∂K(y,z)
∂z and finally obtain the optimization formulation in the

non-linear case as

maximize
αi,vi

n∑
i=1

αi −
1

2

(n∑
i=1

n∑
j=1

αiαjcicjK(xi,xj) +

n∑
i=1

n∑
j=1

αici
(
Σ̃

1/2
j

∂K(xi,xj)

∂xj

)T
vj

+

n∑
i=1

n∑
j=1

αjcj
(
Σ̃

1/2
i

∂K(xi,xj)

∂xi

)T
vi +

n∑
i=1

n∑
j=1

vTi
(
Σ̃

1/2
i

∂2K(xi,xj)

∂xi∂xj
Σ̃
T/2
j

)
vj

)
subject to ‖vi‖ ≤ riαi, 0 ≤ αi ≤ C, ∀1 ≤ i ≤ n; and

n∑
i=1

αici = 0;

(7.14)

where C is a regularity term similar to λ in Equation 7.11. Once αi and vi are computed, we can

compute the formulation for the separating surface P as

f(x) = b+

n∑
j=1

αjcjK(xj ,x) +

n∑
j=1

vTj Σ̃
1/2
j

∂K(xj ,x)

∂xj
(7.15)

and ξi = max(0, ξ′i), where

ξ′i = 1− cif(xi) + ri‖Σ̃1/2
i f ′(xi)‖. (7.16)

Notice that the surface parameter b does not appear in the dual form, but it can be computed based

on Karush–Kuhn–Tucker conditions (Chang and Lin, 2001). We first choose i so that 0 < αi <

C, ‖vi‖ < riαi, and then set ξ′i = 0 in Equation 7.16 to obtain b. Moreover, notice that all the results

159

for non-linear separating surfaces are consistent with those for linear separating surfaces, which use

the linear kernel K(y, z) = yT z.

7.4.4 Probabilistic Collision Decision

Based on the computed separating surface, we present a simple scheme to perform probabilistic

collision detection between the point clouds. First, we compute the collision probability for each

point, i.e., the probability that x′i lies on the wrong side of separating surface:

P
x′i∼N (xi,Σ̃i)

(cif(x′i) ≤ 0) = cdf(−cif(xi)/‖Σ̃1/2
i f ′(xi)‖). (7.17)

We denote this per-point probability as P(xi). Next, we need to use an appropriate metric to measure

the collision probability between two point clouds. For two exact models, collision occurs if any

subsets of them are in-collision. Therefore, for point clouds C1 and C2, it seems reasonable to define

the collision probability between them as 1−∏x∈{C1
⋃
C2}[1−P(x)]. However, this metric has some

problems: when the number of points increases, its value will go to zero instead of converging to the

real collision probability. The reason for this is that this metric does not consider the dependency

between collision states of nearby points. In contrast, our approach for computing collision probability

only involves far-away points with large per-point collision probabilities. First, we compute the

maximum per-point collision probability maxx P(x). Next, we find all the points whose per-point

collision probabilities are near the maximum value, e.g., more than 0.8 maxx P(x). For points that

are close to each other, we only use one of them in the whole body collision probability computation.

The first rule filters out points whose collision probabilities are not large enough to improve the

stability of collision results, while the second rule filters out points that are closely correlated. Finally,

we compute the collision probability between point clouds based on the left m � n points {x̃i}:

PC1,C2 = 1 − ∏m
i=1[1 − P(x̃i)]. We can also use a simpler version of this metric, which only

considers the point with the maximum collision probability: PC1,C2 = maxx∈C1
⋃
C2

P(x). For

collision between exact models, the two metrics are equivalent, as P(x̃i) = maxx P(x) = 1, for all

i. The simpler metric can not distinguish the collision states when point clouds have one or more

far-away points with large per-point collision probability, but it is more efficient for distinguishing

between collision-free and in-collision cases.

160

7.4.5 Handling Polygonal Objects

In many cases, the exact mesh representation of one of the objects is known (e.g., the model of

the robot operating in the environment). We assume that the object is represented using a triangle

mesh and we extend our point-cloud algorithm to handle such models. It turns out that we only

need to represent a triangle by four noise-free points: three vertices and the centroid point. The

regularity of a separating surface guarantees that if these four points are separated from the other

point cloud (say C1) then the entire triangle lies on one side of the separating surface. Thus, we

can use the framework above to compute the collision probability; the only difference is that we set

ri = 0 and use a larger value for λ or C in Equation 7.14 for the points from the triangles, to bias

the optimization solver to minimize the error for the points that lie on the triangles. The collision

probability for a noisy point can still be computed by Equation 7.17, while the collision probability

for any exact point is equal to 1 if it lies on the wrong side of the separating surface.

7.5 Acceleration using Bounding Volume Hierarchies

We have reduced the problem of collision detection between two point clouds to a two-class

classification problem and can solve it with SVM. However, performing collision detection by

directly using Equation 7.14 introduces some challenges. First, the time complexity of SVM can be

O(n3), where n = n1 + n2 is the total number of points in the two point clouds. As a result, the

underlying algorithm can be slow for dense point clouds. Second, the two point clouds corresponding

to different objects may have different numbers of points, which can result in unbalanced training

data. Moreover, if the two point clouds under consideration correspond to objects with different

sizes (e.g., a large room and a small robot), it will cause the optimization algorithm to have a lower

separating error for the larger object and higher error for the smaller object.

We use bounding volume hierarchies (BVH) to overcome these problems. These hierarchies

quickly identify objects or parts of an object that can be easily culled away, and therefore perform

exact collision queries on relatively few primitives. In our algorithm, each leaf node of our BVH

contains a subset of the point clouds. The BVH is computed in a top-down manner, and we terminate

the BV split recursion according to the covariance of points and the number of points within the given

BV. For each BV, we compute the covariance matrix C = 1
m

∑m
i=1(xi−x)(xi−x)T , where {xi}mi=1

161

are the points in the BV and x is their mean. Next, we compute C’s three eigenvalues σ1, σ2, σ3,

assuming σ1 ≤ σ2 ≤ σ3. We define σn = σ1
σ1+σ2+σ3

as the BV’s variation, where 0 ≤ σn ≤ 1/3.

σn = 1/3 means points in the BV are completely isotropically distributed, while σn = 0 means

all these points lie in a plane. We continue splitting the given BV along its longest axis (i.e., the

eigenvector of C corresponding to σ3) if the number of points it contains is larger than nmax or the

corresponding σn is above σmax, where nmax and σmax are two thresholds.

In prior BVH-based algorithms for triangulated models, the children nodes split from the same

parent node will typically have no common triangles. However, for point clouds, the BVH constructed

in this manner will result in false negatives (i.e., missed collisions). As shown in Figure 7.3(a), the

BVs of two objects can be collision-free even when the underlying surfaces are non-separable, and

the algorithm will return incorrect an collision-free result without checking for collisions between any

leaf nodes. To overcome this problem, we require BVs split from the same parent to contain ε-overlap

with each other. We usually set ε to be 1%− 5%. Such an overlap will result in some redundancy

in terms of point storage: for one object with n points, its BVH will store about (1 + ε ln n
nmax

)n

points, where nmax > 1 is the threshold used in BV splitting.

In the case of point clouds, a BVH may not fully enclose the point primitives that lie within it.

There is a small probability that the underlying surface may not be completely enclosed. Thus, even

if two nodes are non-intersecting, we still need to check the collision between the point clouds within

them with a small probability. We call this probability the leakage probability, which causes BVH

traversal to be stochastic, rather than deterministic. We estimate the leakage probability for each

BVH node in the following manner. For a given BV, suppose one pair of its parallel boundary planes

are B1 = {x : wTx + b1 = 0} and B2 = {x : −wTx + b2 = 0}, where w and −w are plane

normals pointing to the outside of that BV. For one point x ∼ N (µ,Σ) in the BV, the probability that

it lies between the two planes is PB1,2 = cdf(−b1−w
Tµ√

wTΣw
)− cdf(b2−w

Tµ√
wTΣw

). Then the probability that x

lies outside the BV is Px ≈ 1−min(PB1,2 ,PB3,4 ,PB5,6), where B1, ..., B6 are the six boundaries of

BV. We define the leakage probability for the BV as the ratio of the underlying surface outside of the

BV: Pleak(BV) =
∑m
i=1 w(xi)Pxi∑m
i=1 w(xi)

, where {xi}mi=1 are the points in the BV. Here w(xi) is the weight

for one point according to the size of the surface region that it represents, which is approximated by

the area of the enclosing sphere of its k-nearest neighbors. We also define the coverage probability

for the BV as Pcov(BV) = 1− Pleak(BV).

162

Once the BVHs for the two objects are constructed, the collision detection algorithm traverses

the BVHs recursively. In our case, the operation between two leaf nodes corresponds to collision

checking between two point subsets using the two-class classification method proposed in Section 7.4.

When two non-leaf BVs are non-intersecting in terms of point clouds, because of the existence of

BV leakage probability, we still need to visit the BVs’ children with a small probability. Suppose the

coverage probabilities for the two BVs are Pcov(BV1) and Pcov(BV2), then the probability that we

do not need to check their children BVs is Pcov(BV1) · Pcov(BV2) because the points are completely

enclosed within BVs and thus if the BVs are collision-free, it implies that the resulting points are

also collision-free. As a result, the algorithm continues traversing the subtrees with the probability

1− Pcov(BV1) · Pcov(BV2).

There are two minor limitations of the BVH framework. First, the BV decomposition will

lose global information about the entire object, and therefore cannot detect points that are deeply

penetrating, as shown in Figure 7.3(c). This is not a big issue in the real world, as robots or grippers

typically do not penetrate deeply inside objects. Second, the BVH traversal stops when one large

collision probability is at a leaf node. As a result, the algorithm only returns a lower bound for

the actual collision probability, but it is still large enough to distinguish between collision-free and

in-collision configurations.

(a) BVH without overlap (b) BVH with overlap

BV-1 BV-2 BV-1

BV-2

(c) BVH for deep penetration

Deep-penetrating points

Penetration depth

Figure 7.3: Green and red points are the point clouds for two objects. Green and red intersecting
lines are the underlying surfaces in collision. In (a), BVs split from the same parent node have no
overlap and the collision detection algorithm returns collision-free. In (b), the BVs have overlap and
the collision detection algorithm returns in-collision. (c) shows the deep-penetration case for which
BVH may underestimate the collision probability for deeply-penetrating points.

163

7.6 Implementation and Results

In this section, we describe some details of our implementation and evaluate its performance on

several benchmarks.

7.6.1 Implementation

First, we discuss how to estimate the distribution of the underlying surface sample p(x′i). The

mean of p(x′i) is xi, due to our unbiased assumption. We estimate the covariance Ψi based on the

formulation described in (Pauly et al., 2004):

Ψi =

∑n
j=1(xj − xi)(xj − xi)

T exp(−‖xi − xj‖2/τ2
i)∑n

j=1 exp(−‖xi − xj‖2/τ2
i)

, (7.18)

where n is the total number of points and τi is a parameter used to downweight the influence of

points that are too far away from xi. We set τi = τ · ηi. τ is a global scale parameter, and the variable

ηi = r√
k

denotes the local sample spacing estimated from a k-neighborhood, where r is the radius of

the enclosing sphere of the k-nearest neighbors of xi.

Our algorithm is based on machine learning techniques and includes some parameters that need

to be tuned. Fortunately, we find that our method is not sensitive to the choice of parameters if we

preprocess the data by scaling it to a [0, 1]3 volume in 3D. Scaling is considered important in terms

of the robustness of SVM, especially for the non-linear case. Moreover, scaling also helps us in

computing parameters that are suitable for point clouds with different sizes or configurations. In

practice, scaling also changes the uncertainty of each point, so we need to update the noise level

from Σ̃i to SΣ̃iS
T , where S = diag(s1, s2, s3) is the scaling matrix.

We have used our algorithm on data captured using robot sensors. Note that our method is

designed for noisy environments where the ground-truth for collision detection is unknown. In this

case, exact collision algorithms are not applicable, since we do not have an exact representation of

the environment. Therefore, it is difficult to directly compare the quality or accuracy of our algorithm

with prior methods. However, our method can guarantee: 1) For easy collision queries, i.e., when

the distance between two collision-free objects is large or the two objects are in deep-penetration,

our method will give collision probability near 0 or 1. In this case, only very large noise can reverse

the outcome of the query. With this degree of large noise, our probabilistic algorithm would give

164

the same (incorrect) result as the exact approach that first performs mesh reconstruction from the

point clouds. 2) For challenging queries, i.e., when two objects are almost in-contact or have a small

penetration, our method computes a collision probability near 0.5, because these configurations

are more susceptible to noise. Exact collision algorithms will still provide a yes-no result, but the

accuracy of the exact algorithm is governed by the underlying sampling and mesh reconstruction

algorithm. If a yes-no collision answer is required, our algorithm uses two thresholds A ≥ 0.5 ≥ B:

if the collision probability is > A, we report collision-free; if the collision probability is < B, we

report in-collision; if the collision probability is betweenA andB, we report in-contact. For example,

when collision-avoidance is critical for underlying applications, we can use a large conservative

value for A and a small conservative value for B to achieve better guarantees.

7.6.2 Results

We evaluate the performance of our algorithm on real-world point clouds as well as synthetic

data sets. We also compare its accuracy with prior collision detection techniques. The running time

of our probabilistic algorithm is similar to that of exact collision detection algorithms and varies

based on the number of primitives and their relative configurations.

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

collision query

c
o
lli

s
io

n
 f
re

e
 p

ro
b
a
b
ili

ty

collision on reconstructed mesh

normalized separation distance

ROS collision using ODE

probabilistic collision: our algorithm

(PQP)

Figure 7.4: Comparison on point-cloud data generated by the PR2 robot’s sensor: we use our
probabilistic collision detection on the noisy point cloud vs. results computed by the ODE package
used in ROS vs. exact collision and distance queries on the reconstructed mesh model. Our results
on the point cloud are more robust than that of the ODE package.

165

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

collision query

c
o
lli

s
io

n
 f
re

e
 p

ro
b
a
b
ili

ty

collision on triangle mesh

normalized separation distance

probabilistic collision: our algorithm

regression curve for separation distance

regression curve for probabilistic collision

(PQP)

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

collision query

c
o
lli

s
io

n
 f
re

e
 p

ro
b
a
b
ili

ty

collision on triangle mesh

normalized separation distance

probabilistic collision: our algorithm

regression curve for separation distance

regression curve for probabilistic collision

(PQP)

Figure 7.5: Comparison between the results for 100 random queries between prior collision detection
algorithms for exact triangle meshes and our algorithm on the point clouds (generated by sampling
and adding noise). We show the results of exact collision detection and separation distance as well. If
the noise in the point cloud is small (the upper figure), our method returns a 0 or 1 collision probability
for most queries. When the queries correspond to a small separation distance or penetration depth
(i.e., difficult cases), our algorithm computes a collision-free probability close to 0.5. Furthermore,
the collision-free probability is higher when the separation distance is large for non-overlapping
objects. If the noise is large (the bottom figure), fewer queries return a 0 or 1 collision probability.
We see a close correlation between the regression curves computed by our algorithm and the exact
queries on these synthetic datasets.

We evaluated the performance of our algorithm on a synthetic data set corresponding to a moving

piano in a room with tables. We generated a point cloud by sampling the polygons and adding some

noise. We used the PQP package to perform exact collision detection and separation distance query

between the exact, triangulated model and compared the results with probabilistic collision detection

166

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

collision query

c
o

lli
s
io

n
 f

re
e

 p
ro

b
a

b
ili

ty

collision on triangle mesh

normalized separation distance

probabilistic collision: our algorithm

Figure 7.6: (a) Kinect data; (b) Robust Classification of contact status between the point clouds
generated using Kinect.

on the resulting point cloud (Figure 7.5). We see a high correlation between our results and the

actual separation distance, and it varies based on the level of noise. This shows that our approach is

quite robust and even works well in degenerate configurations, e.g., when the two objects are barely

touching or very close to each other. Such configurations are more susceptible to noise and the exact

collision detection algorithms are very sensitive to these configurations.

We have applied our probabilistic collision detection to the point cloud data generated for

manipulation using the PR2 robot. Point cloud data on the PR2 robot is generated from a scanning

laser range finder (Hokuyo Top-URG(UTM-30LX)) and a stereo camera (WGE-100), which is

combined with an active texture projector to obtain good 3D data from untextured objects. The

robot is placed in front of a table with multiple household objects (e.g., bowls, cans) on the table

167

at a distance of about 1.5 m from the robot’s sensors. The point clouds are a discretized (about

+/-1.5 cm in range) representation of the real environment and are generated periodically by each

sensor. The data is noisy and exhibits speckles, especially in the vicinity of boundaries of objects

and boundaries of the sensor’s field of view. The sensors are calibrated with respect to each other

and the arms using a known calibration pattern. The known position of the arms, measured using

encoders, is used to filter out the points corresponding to the arms from the point clouds obtained

by the sensors. Typical point clouds generated by the stereo sensors on the PR2 robot have more

than 40, 000 points and are generated at 20 Hz. Point clouds generated by the laser range scanners

typically have about 10, 000 points. Data from the point clouds is aggregated into a collision map

representation. The collision map is a 3-dimensional occupancy grid maintained at a fixed resolution.

The resulting collision maps are at 1 cm resolution and have about 2, 000 occupied cells. A complete

triangulated mesh representation of the robot, including the arms and the gripper, is also available as

input for the collision checker.

There are very few algorithms or systems available for collision checking between noisy point

clouds. As a result, we resort to comparing our algorithm with the implementation in ROS (based on

ODE) and exact collision detection on reconstructed meshes.

The collision checking procedures used in ROS are currently based on the collision checking

implementation in the ODE software package. The input to the collision checker includes mesh

models for the robot and objects in the environment, as well as the collision map. The points in the

collision map are represented as axis-aligned box primitives whose length is equal to the resolution

at which the collision map is maintained. The current representation of the collision space considers

every point in the collision map to be a potential obstacle. Thus, noise in the sensor data can

frequently lead to false positives, i.e., the detection of potential collisions in parts of the environment

where there are no obstacles. There is no robust criterion to compute the box size (e.g., a function

of noise), so we cannot compare all the features of our method with ODE collision checking. We

also use a reconstruction algorithm to compute a triangle mesh from the point clouds and perform

triangle-based collision as well as separation distance computation using PQP. This formulation only

provides an approximation of the ground truth and is used to evaluate the robustness of our algorithm.

As shown in Figure 7.4, our result is comparable to in quality with the exact collision detection

algorithm, especially for computing the separation distance. Furthermore, we notice that the collision

168

probability of our approach changes slowly when the noise increases. It is more robust than the

yes-no result computed by ODE on the point clouds, which is likely to frequently switch between

collision-free and in-contact configurations when the noise level changes. Moreover, from Figures 7.4

and 7.5, we observe that configurations with the same distances to the obstacles can have large spread

in the computed collision probabilities. The reason is that distance is only a partial measurement of

collision status, while our collision probability is a more complete description about collision status

and provides more detailed information about the relative configurations.

For one query, our method needs about 500-1000 ms for about 10,000 points on one Intel Core

i7 3.2GHz CPU, based on BVH acceleration. It is about 5-10 times slower than optimized collision

packages on models with 10K triangles (e.g., PQP can compute collisions in such situations in about

50ms-100ms). However, the reconstruction algorithms take more than 10 seconds to compute the

triangulated mesh from the point cloud. Moreover, our current implementation can be optimized in

several ways, such as replacing the non-linear kernel by the approximated linear kernel (Rahimi and

Recht, 2007) and using more efficient SVM methods designed for large scale data (Fan et al., 2008).

We expect an optimized probabilistic collision method to have similar speed to the PQP algorithm.

Furthermore, our approach can provide more detailed information and can be easily combined with

planning and reasoning algorithms. For example, we can combine it with trajectory optimization

algorithms (e.g., CHOMP (Ratliff et al., 2009), STOMP (Kalakrishnan et al., 2011)) to find a smooth

path that has a minimum probability of colliding with the obstacles.

Additionally, we show in Figure 7.6(b) the collision results between the PR2 robot and the Kinect

data shown in Figure 7.6(a). We compare the result of our method with exact collision detection on

reconstructed meshes.

7.7 Conclusions and Future Work

We have presented a novel and robust method for contact computation using noisy point

cloud data, by applying machine learning methods. We reformulate collision detection as a two-

classification problem and compute the collision probability at each point using support vector

machines. This algorithm can be accelerated by using bounding volume hierarchies and performing

a stochastic traversal. We have tested the results on synthetic and real-world data sets, and the

preliminary results are promising.

169

There are many avenues for future work. We need to test the performance on different robotic

systems and evaluate its performance on tasks such as planning and grasping. It would be useful to

extend this approach to continuous collision checking, which takes into account the motion of the

robot between discrete intervals along its path. Similar probabilistic methods can also be developed

for other queries, including separation and penetration depth computation. Finally, we are interested

in improving the algorithm to handle dynamic environments where points may change position or can

be added or removed from the environment due to movement, occlusion, or incremental data, based

on incremental SVM (Cauwenberghs and Poggio, 2001) and BVH refitting techniques (Lauterbach

et al., 2010).

170

CHAPTER 8: PROXIMITY COMPUTATIONS ON STREAMING SENSOR DATA

8.1 Introduction

In this chapter, we continue addressing the issue of collision detection and distance computation

on point cloud data generated from robot sensors. However, unlike Chapter 7, we focus more on

sensor data streams. This includes data streams provided by visual sensors that can compute depth

information in the form of a point cloud (e.g., laser sensors, stereo cameras, and time-of-flight

cameras). We assume these sensors periodically generate point cloud data corresponding to their

field of view. We call each view of the environment a “frame” of the stream.

These generated point clouds correspond to samples on the visible parts of the various objects in

the environment. Dealing with these samples of the environment introduces many challenges: 1) it

can be expensive to extract objects from the sensor data because such operations involve complex

steps such as segmentation (Rusu et al., 2009a) or object recognition (Muja et al., 2011), among

others; 2) tracking objects among different frames of sensor data is challenging due to noise and

the amount of sensor data; 3) the amount of sensor data is large and is typically received at high

frame rates; for example, typical RGB-D sensors like the Microsoft Kinect sensor can generate a

detailed point cloud with around 300,000 points at 30 Hz; and 4) sensor data usually contains some

level of noise and uncertainty, and may not represent the environment fully (i.e., some parts are

occluded). However, most collision and distance computation algorithms assume that a geometric

model for each object in the environment is available. Furthermore, there are two additional issues

related to applying existing algorithms to dynamically-generated sensor data. First, most proximity

algorithms tend to compute complex acceleration data structures before performing actual queries.

The computational overhead of such data structures can be high for large sensor data. Second, parts

of the environment may not be well captured by the sensor data. In traditional approaches such

regions are considered either as free space (optimistic, but unsafe) or as occupied (safe, but perhaps

too conservative). Instead, we need techniques that model the uncertainty in the captured point-cloud

data.

In this chapter, we present real-time collision detection and distance computation algorithms for

a point cloud sensor data stream. Our approach is general and is applicable to all sensors that can

generate point clouds. Given one point cloud frame, we first convert it into an octree, a compact data

structure for modeling arbitrary environments; the octree encodes the uncertainty in the sensor data

and in the occluded space (Wurm et al., 2010). Based on the octree representation, we present two

techniques to perform efficient collision and distance queries on the sensor data:

• We amortize the cost of initialization over multiple or all proximity queries. That is, we

initialize the acceleration data structure (a dynamic AABB tree) for collision or distance

queries using a simple technique that is not optimal but fast, and then we incrementally

improve the tree’s quality as more proximity queries are performed.

• In the second strategy, we completely avoid the initialization overhead by performing collision

and distance queries directly with the octree representing the sensor. In this case, each query

may be slightly more expensive than using traditional methods. However, we save the overhead

of computing a spatial data structure that is used to accelerate the queries.

These two strategies are complementary and used in different settings. Each of them can provide

up to an order of magnitude improvement over prior methods for proximity computations over sensor

data. In order to handle occlusions and uncertainty in sensor data, our new algorithms assume that

each leaf node in the octree specifies a probability of occupancy (Wurm et al., 2010). As sensor

data is received, the probability of occupancy is maintained to be an average of occupancy over a

number of previously observed frames. Our approach uses the probability of occupancy specified

in the octree and can report a set of axis-aligned bounding boxes, that correspond to intersections

of robot links and octree nodes. These bounding boxes also specify the probability of occupancy

carried over from the octree node. Using this set of bounding boxes, a notion of cost can be defined

for collision detection. A simple example of cost is the weighted sum of the box volumes, using the

probabilities of occupancy as weights.

172

We validate the performance of our new algorithms on both synthetic sensor data and real sensor

data generated with a RGB-D sensor. These algorithms are implemented in the open source library

FCL (Pan et al., 2012).

The rest of this chapter is organized as follows. We survey related work using collision checking

and distance computation on sensor data in Section 8.2. Section 8.3 explains why previous methods

are not efficient for sensor data streams and gives an overview of our new methods. Section 8.4

discusses the details of our new approaches. We present the results in Section 8.5.

8.2 Problem Definition and Related Work

The general collision query is defined as follows:

Given two sets of objects {Ai}ni=1 and {Bi}mi=1 with n and m objects, respectively, as well as

their configurations, the collision detection query returns a yes/no answer about whether any pairs

of objects, one from each set, are in collision with each other. Optionally, it also returns all pairs of

colliding objects.

A special case of the collision query is when the two sets of objects are the same, which is called

the self-collision query. For example, a self-collision check is useful to test whether a configuration

of an articulated model is valid.

The general distance query is defined as follows:

Given two sets of objects {Ai}ni=1 and {Bi}mi=1 with n and m objects, respectively, as well as

their configurations, the distance query returns the minimum separation distance between the two

sets. Optionally, it also returns the pair of objects that are closest to each other.

In order to avoid the quadratic worst-case complexity of collision checking or distance computa-

tion between every pair of objects, prior techniques use a two-phased approach: a broad phase and

a narrow phase. Intuitively, broad-phase computation excludes object pairs that definitely are not

colliding or are far away, and identifies the pairs of objects that may be colliding or may contribute

to the minimum distance between the two sets (Ericson, 2004; Pan et al., 2012). The narrow-phase

computation corresponds to exact, pairwise collision or distance tests between the identified pairs.

To efficiently cull out object pairs that are definitely not colliding or are far away, special data

structures are used to manage all the objects in the given set. For example, interval trees (Tracy et al.,

2009) are used in sweep-and-prune (SaP) based broad-phase algorithms; spatial partitioning trees

173

such as octrees and k-d trees can also be used (Bandi and Thalmann, 1993); and hash tables are

used in spatial-hashing based approaches (Ericson, 2004). SaP is essentially a dimension reduction

approach in which objects are projected onto a lower dimension and then overlap tests are performed

by sweeping a hyperplane along the dimensional axis. In spatial-hashing, objects are registered into

some form of grid, and collision tests are performed locally inside the grid cells. SaP is effective

when moving objects have a high spatial coherence, while spatial-hashing is effective for objects of

similar size. These broad-phase data structures are designed so they can be updated efficiently when

the underlying objects change their positions or when objects are added into or removed from the

environment. In traditional broad-phase approaches, the overhead to initialize the broad-phase data

structure is usually ignored, because the broad-phase data structure is typically used for a long time

over many queries. As a result, the initialization overhead is negligible when compared to the total

time of a large number of collision or distance queries performed by the underlying algorithm.

Previous work on proximity queries on sensor data tends to ignore the fact that the underlying

data can be updated quickly when a new frame is received from the sensor. For example, the sensor

data is first converted into a set of boxes (Rusu et al., 2009b), and then ODE (Smith, 2000) is used

to check for collisions between these boxes and the robot. Passing the sensor data to the collision

checker in this manner is relatively slow when the frame rate of the sensor is high.

Some recent work attempts to handle collision checking with sensor data in a more sophisticated

manner. For real-time haptics rendering, (Leeper et al., 2012) represent the point cloud using an

implicit surface and use that implicit surface for collision checking. The accuracy of this method

depends on the parameters used for the implicit surface fitting.

8.3 Overview

Current collision detection algorithms make assumptions that may no longer hold when dealing

with data from real sensors. All existing methods require their inputs in terms of a set of objects. An

object is defined as a collection of geometric elements (points, triangles, etc) that have a well-defined

boundary (Alexe et al., 2010) – for example, a desk, a cup on the desk, and so forth. In synthetic

environments the objects are provided by default, in the form of meshes or geometric primitives.

However, for sensor data, the entire environment is in the form of a single point cloud, and different

objects contained in the environment are not easily separable in the point cloud. To extract objects

174

from the point cloud, expensive object recognition and reconstruction algorithms, such as (Muja

et al., 2011), are necessary. To bypass such difficulties, one widely-used solution is to discretize the

space that contains the points into small axis-aligned cubes and model the sensor data as a collection

of boxes with localized points. This representation is referred to as a collision map in (Rusu et al.,

2009b; Sucan et al., 2010). After converting the sensor data to a set of boxes, the collision or distance

query between the robot and the environment becomes a query between the robot and the set of boxes.

Broad-phase structures for both the robot and for the boxes can be constructed before performing

actual queries. A diagram of this pipeline (used in (Rusu et al., 2009b; Sucan et al., 2010)) is shown

in Figure 8.1(a).

In pipelines such as the ones presented in (Rusu et al., 2009b) and (Sucan et al., 2010), raw

sensor data in the form of point clouds is first converted into a collision map structure. We denote the

time required to construct the collision map as T0, which is small compared to the time taken by other

components in the pipeline. It takes time T1 to convert the collision map into a data structure suitable

for broad-phase approaches, which includes two parts: 1) T1,1: the time cost from the collision map

to boxes; and 2) T1,2: the time cost from boxes to broad-phase structures. T1,2 can be expensive if

the sensor data is large and there are many boxes. For example, the PR2’s stereo sensor data usually

contains tens of thousands of points and is converted to thousands of boxes. An additional challenge

is that these generated data structures cannot be easily reused when new sensor data comes in, as

is assumed by traditional approaches. This is because the boxes managed by the structure are not

trackable objects: they are just spatial cells that contain several points belonging to one frame of the

sensor data. Given a new frame of sensor data, it is difficult to identify each box’s correspondence

in the prior frames, but traditional approaches depend on easily-identified correspondence to prior

frames in order to compute the objects’ movements and update the broad-phase structure accordingly.

Therefore, once a new frame of sensor data is received, we need to discard the old broad-phase

structure and reconstruct a new one from scratch. Moreover, as the sensor data is received at high

frame rates (e.g., Kinect frame rates can be 30 Hz and the stereo sensors on the PR2 generate data at

20 Hz), we can only perform a few (e.g., N < 1, 000) queries during the lifetime of a broad-phase

structure. As a result, for sensor data it is possible that:

T1 = T1,1 + T1,2 ∼ T2 = N · Tq, (8.1)

175

where Tq is the time cost for a single query. In other words, the overhead to process the sensor data

for queries can be comparable to the total time spent on the actual queries and is in fact not negligible.

According to the analysis above, the overall time to handle one frame of sensor data is:

T = T0 + T1 + T2 = T0 + T1,1 + T1,2 +N · Tq. (8.2)

To improve performance for large point cloud datasets, we provide two strategies. The first strategy

reduces the broad-phase structure construction time T1,2 by amortizing the cost over allN queries. We

first construct a low-quality broad-phase structure, which is less effective in culling but is much faster

than the near-optimal broad-phase structure used before; the new construction time is T̃1,2 � T1,2.

When performing the actual queries, we can improve the broad-phase structure gradually with

each query. The new broad-phase structure can slow down the actual queries because we may

perform more narrow-phase computations, i.e., T̃q > Tq. However, the incremental refinement of the

broad-phase structure guarantees that over the long term with many queries, there may be no overall

decrease in performance. As long as T1,2 +N · Tq > T̃1,2 +N · T̃q, i.e.,

N ≤ T1,2 − T̃1,2

T̃q − Tq
, (8.3)

the amortized method will be faster than the original method.

The second strategy is to support collision or distance queries directly, using the octree directly

provided by the sensor data. This means that we no longer need a broad-phase structure to manage

the sensor data. As shown in Figure 8.1(b), this approach does not compute any data structures

and overcomes the overhead T1. However, because this approach uses the octree as a low-quality

broad-phase structure, the performance of actual collision/distance queries may be somewhat slower.

Suppose the time taken by the actual query in this case is T̃ ′q; then, the second strategy is better than

the previous methods if N ≤ T1,2

T̃ ′q−Tq
.

Both of these strategies can be extended to handle sensor data with uncertain or unknown regions.

The octree represents an uncertain or unknown region as an octree leaf node with an occupancy

probability smaller than 1 (Wurm et al., 2010). When using the first strategy, the boxes generated can

store an occupancy probability with them, which will be considered in the narrow-phase algorithms.

176

If the second strategy is used, the octree’s occupancy probability will be directly involved when

performing collision or distance queries with the octree structure.

sensor data collision map boxes
broadphase

structure setup

collision check

distance comp.

T0

T1,1 T1,2

T2 = N · TqT1

(a) Pipeline for collision or distance computation: The sensor data is first represented as a collision
map constructed in T0 time. Next, the collision map is converted into a set of boxes in T1,1 time.
Finally, a broad-phase data structure is constructed in T1,2 time in order to manage these boxes.
Thus, the overhead to prepare the sensor data is T1 = T1,1 + T1,2. Once the data is prepared, the
actual time to perform N collision or distance queries is T2 = N · Tq , where Tq is the time cost for
a single query. In traditional approaches, N is assumed to be infinite, while for sensor data, N is
usually small (< 1,000).

sensor data octree
collision check

distance comp.

(b) By supporting the collision or distance query directly with the sensor data represented as an
octree, we no longer need the long conversion pipeline from octree to broad-phase structures and
thus can completely avoid the main overhead T1.

Figure 8.1: Comparison between possible pipelines for environment representation and collision
detection.

8.4 Efficient Collision and Distance Queries on Sensor Data

In this section, we discuss the details of our new algorithms, which are optimized to handle

sensor data. In all the descriptions that follow, we use the dynamic AABB (Axis Aligned Bounding

Box) tree as the default broad-phase data structure to manage all the boxes converted from sensor

data into the form of an octree or collision map. A dynamic AABB tree is a binary tree structure

used to organize objects in a hierarchical manner. The dynamic AABB tree recursively splits a set of

objects into two subsets; this process continues until the set contains only one object and is used as a

leaf node. Previous methods have tried to construct a high-quality AABB tree in order to perform

broad-phase culling effectively; e.g., the split axis is selected to minimize the bounding boxes of

the children nodes. When new objects are added to or old objects are removed from the tree, the

dynamic AABB tree must be re-balanced and the tree structure must be adjusted to minimize the

bounding volume of each tree node. Such re-balancing operations are also necessary when objects

have moved. The time complexity to construct a balanced dynamic AABB tree is O(n log n) where

177

n is the number of objects managed by the tree. This is because the tree has log n levels and each

level needs O(n) time to rearrange the objects. If n is large, this construction step can be expensive.

For sensor data, n is the number of boxes computed from the sensor data and can be as high as

10,000.

8.4.1 Amortized broad-phase Algorithm

Our first method attempts to reduce the construction time of a dynamic AABB tree, i.e., T1,2 in

Equation 8.2. Instead of constructing a high-quality dynamic AABB tree, we start with a low-quality

binary tree and then gradually improve it during the following actual queries. The initial binary tree

is constructed by using the well known space-filling Morton curve (Morton, 1966) – also known as

the Lebesgue and z-order curve – to order all the boxes converted from the sensor data. We assume

that the enclosing AABB of the entire environment is known. We take the barycenter of each of the n

boxes as its representative point. By constructing a 2k · 2k · 2k lattice within the enclosing AABB, we

can quantize each of the three coordinates of the representative points into k-bit integers. The 3k-bit

Morton code for a point is computed by interleaving the successive bits of its quantized coordinates.

Figure 8.2 shows a 2D-example of this construction. Sorting the representative points in increasing

order of their Morton codes will lay them out in order along the Morton curve. Therefore, it will also

order the corresponding boxes in a spatially coherent way, which directly determines a binary tree

structure for the set of boxes. The time cost of this new tree construction method is dominated by the

time required to sort n 3k-bit integers, which is of time complexity O(3k · n) if we use radix sorting.

If k is smaller than log n, the Morton curve based construction method is cheaper than the traditional

AABB tree construction method. k also enables us to control the quality of the resulting initial tree:

we can obtain broad-phase structure with better culling efficiency by using larger k.

The AABB tree constructed as above may not be as effective at culling as the high-quality AABB

tree constructed with traditional approaches, so the time cost of each actual query can increase;

i.e., Tq in Equation 8.2 can be larger. To overcome this problem, our solution is to incrementally

refine the initial binary tree while performing each query. First, we encode each traversing path

connecting the tree root node to one of the leave nodes as an O(log n)-bit integer, according to

whether the left or right child is selected during the traversal. Next, while performing the actual

query, we periodically select one of the traversing paths and re-compute the bounding boxes for all

178

the nodes on the path. We begin from the leaf node, which has time complexity O(log n). Then,

after (at most) n iterations, the binary tree will become an AABB tree that is able to cull effectively.

In practice, we have observed that the dynamic tree’s culling efficiency can be almost as good as the

near-optimal binary tree in only a few iterations. As a result, we can assume that the actual query

cost when using the amortized method is T̃q = Tq +O(log n).

SupposeN queries are performed during the lifetime of the dynamic AABB tree. Then, according

to Equation 8.2, if N < c1·n logn−c2·3k·n
c3·logn , the amortized method will have better performance than

the traditional methods. Here c1, c2 and c3 are constant coefficients for O(n log n), O(3k · n), and

O(log n): c1 is the cost to place a given AABB on one side of an axis-aligned plane according to its

center coordinates; c2 is the cost to decide whether to exchange the position of two 3k-bit integers by

comparing one of the 3k bits; and c3 is the cost to test whether a given AABB is completely within

another AABB and if not, enlarge the second AABB. For c3 > c1 > c2, we have that the above

upper bound for N can be approximated by N < c1
c3
n.

Figure 8.2: Example of 2-D Morton curve. According to the first two bits of the Morton code, we
can order the objects in a hierarchical manner.

8.4.2 Proximity Computation using Octrees

The amortized method cannot avoid the overhead of T1,1 in Equation 8.2, which can still be

expensive for large sensor data. To avoid such overhead, our second method performs proximity

179

queries directly on the sensor data in the form of an octree (as shown in Figure 8.1(b)); this completely

avoids the long pipeline shown in (Figure 8.1(a)) required to prepare sensor data. In other words,

we use the octree as a low-quality broad-phase structure for the sensor data. Octrees may not be as

efficient at culling as a dynamic AABB tree, so the cost for a single collision or query cost can be

larger than using the traditional pipeline; i.e., T̃ ′q > T̃q > Tq. However, as only a small number of

queries are performed for each frame of sensor data, saving on sensor data preparation time may

make this strategy more efficient than the amortized strategy.

Algorithm 8 collisionRecurse(node1, node2)

1: if node1.isLeaf() and node2.isLeaf() then
2: if overlap(node1.bv, node2.bv) then
3: narrow-phase collision between the octree box in node1 and the object in node2

4: end if
5: return collision status
6: end if
7: if node2.isLeaf() or (node1.hasChildren() and node1.bv > node2.bv) then
8: for i = 1 to 8 do
9: if node1.child(i).occupancy prob() > threshold then

10: collisionRecurse(node1.child(i), node2)
11: end if
12: end for
13: else
14: collisionRecurse(node1, node2.leftChild())
15: collisionRecurse(node1, node2.rightChild())
16: end if

We will now illustrate the use of this algorithm to perform collision checking between an

articulated robot and objects in the environment, using sensor data. The desired query can be

implemented as a collision query between trees: the set of objects in the environment is represented

as an octree and the robot is represented as a binary dynamic AABB tree. The algorithm is shown

in Algorithm 8, which is a recursive method. We start with two root nodes of the two trees. If both

of them are leaf nodes, we perform narrow-phase collision between the object corresponding to the

given dynamic AABB tree node and one cubic cell in the octree. Otherwise, we need to check for

collisions between the subtrees rooted at the two corresponding nodes. If the given octree node is not

a leaf node, we recursively perform collision queries between the given dynamic AABB node and

each of its eight children nodes. Otherwise, we recursively perform collision queries between the

given octree node and the two children of the given dynamic AABB node. The recursion continues

180

Algorithm 9 distanceRecurse(node1, node2, dmin), node1 is one node of the octree structure, and
node2 is one node from the other binary tree structure that is used to perform distance computation
with the octree. dmin keeps the minimum distance computed till now and is initialized to be∞. The
second tree structure can represent a dynamic AABB tree working as the broad-phase structure for
all the links of an robot, or an OBB tree for one mesh, or even a single geometric shape (i.e., a tree
with only one node).

1: if node1.isLeaf() and node2.isLeaf() then
2: d← narrow-phase distance between the octree box in node1 and the object in node2

3: dmin ← min(d, dmin)
4: return
5: end if
6: if node2.isLeaf() or (node1.hasChildren() and node1.bv > node2.bv) then
7: for i = 1 to 8 do
8: if node1.child(i).occupancy prob() > threshold then
9: if distance(node1.bv, node2.bv) < dmin then

10: distanceRecurse(node1.child(i), node2, dmin)
11: end if
12: end if
13: end for
14: else
15: distanceRecurse(node1, node2.leftChild(), dmin)
16: distanceRecurse(node1, node2.rightChild(), dmin)
17: end if

until the collision is detected. One major issue is mentioned in Algorithm 8 at line 8: we only

perform collision queries for octree cells with occupancy probabilities larger than a given threshold.

This is because the octree representation of the sensor data can encode uncertain or unknown regions

in the environment, and we want the result computed by the new method to be consistent with the

result provided by the simpler pipeline in Figure 8.1(a), where octree cells are converted into boxes

only if their occupancy probability is larger than a given threshold.

Similar recursive traversal can handle the distance query between the robot and sensor data.

Moreover, a binary tree can also represent other types of data; e.g., a mesh can be represented as

a binary AABB or OBB tree (Pan et al., 2012) and a geometric primitive (e.g., a sphere) can be

represented as a binary tree with only the root node. As a result, the same recursive formulation can

handle the proximity query between the sensor data and either a mesh or a geometric primitive.

181

8.4.3 Collision Checking with Uncertain/Unknown Regions

Based on our collision checking algorithm using octrees, we can determine whether a moving

robot will collide with workspace regions that are unknown or uncertain to the robot according to

acquired sensor data. Such information can help the robot to work reliably in dynamic environments

with moving obstacles.

Data gathered by sensors tend to have error and noise. Many sensors only have limited precision,

which results in sampling error in the sensor data. Often, part of the environment may not be

observed by the sensor, because sensors only have limited field of view and may have a large blind

spot. Moreover, the camera or laser may not be perfectly calibrated; thus the generated point clouds

may have systematic bias. It is important to handle the uncertain or unknown part of the sensor data

so that robots can work robustly in real world scenarios.

The unknown or uncertain regions are usually assumed to be collision-free; e.g., such an

optimistic assumption is made in (Rusu et al., 2009b). This assumption can cause serious problems

in some cases. In the example shown in Figure 8.3(a), the sensor mounted on the robot’s head cannot

sense the region near the robot’s left arm. Thus, given a path for the left arm moving through the

unknown region, the collision checking routine will always assume it to be collision-free, even if

obstacles exist in that region. Our solution here is to compute a set of boxes representing different

regions in the unknown space that intersect with the swept volume of the robot’s path. Only boxes

with the largest occupancy probability are returned, because they are the most important regions

to check when determining whether the given path is collision free. Given these boxes as shown

in Figure 8.3(b), users can implement different strategies according to different applications. For

example, the robot can try to avoid the unknown regions completely, minimize its motion through

the unknown regions, or actively sense the unknown regions to gain more information about them.

The intersection between the unknown space and the swept volume of the robot’s path can be

performed by checking the collisions between the octree and a series of samples on the path. Each

collision query can be performed based on a recursive method similar to Algorithm 8.

182

(a) Collision checking only performed between the planned
trajectory and regions that are known to be occupied (the
blue part) in the sensor data.

(b) Collision checking is performed between the
planned trajectory and both regions that are known
to be occupied (the blue part) and unknown regions in
the sensor data.

Figure 8.3: The environment representation can contain unknown or uncertain regions in the
environment. In the case shown by (a), the sensor on the robot’s head cannot sense the region near its
left arm. Therefore, a path for the left arm will always appear valid if we ignore unknown regions of
the environment and make an optimistic assumption, even though obstacles could possibly exist in
that region. Our solution is shown in (b), where we compute a set of boxes (shown in brown) that
cover the intersections of robot links and unknown parts of the environment. Using these boxes, a
notion of cost can be easily defined by the user, using the sum of the occupancy probability of all the
boxes.

8.5 Results

In this section, we present the performance of our new collision checking and distance computa-

tion algorithms when handling sensor data streams.

In the first experiment, we use a synthetic environment. First, we generate 300 randomly located

objects (100 spheres, 100 boxes and 100 cylinders). We then construct a dynamic AABB tree

broad-phase structure to manage these objects. Next, we randomly generate an octree structure with

7, 784 cells to simulate the sensor data. Our task is to perform collision or distance queries between

the dynamic AABB tree and the sensor data. The reported performance for a single query is the

average of the cost for 1, 000 queries. For all experiments on collision queries, we compare the

overall timing when performing 10 and 100 queries. For all experiments on distance queries, we only

compare the overall timing when performing a single query, because distance queries are much more

expensive than collision queries, and thus the time slot for one sensor frame is usually only enough

for a single query.

183

First, we compare the performance between our amortized approach and the traditional non-

amortized method; the results are shown in Table 8.1. We can see that the amortized approach saves

more than 50% of the broad-phase structure construction time, while the actual collision query is only

slightly slower. According to this result, the amortized approach is faster than traditional methods

when the number of actual queries is 10 and 100. As a matter of fact, the amortized approach is

faster than traditional methods if the number of actual queries is smaller than 38, 300, which is much

larger than the number of collision queries that can be performed during one sensor data frame.

Next, we compare the performance between the baseline pipeline in (Rusu et al., 2009b) and

our new pipeline. The results for the collision query are shown in Table 8.2. In Table 8.2(a), all the

objects are represented as primitive shapes, and the octree is also converted into primitive boxes for

the baseline pipeline. In Table 8.2(b), the objects and boxes generated from octree are in the form of

meshes. In the first case, the actual collision cost in the new pipeline is about two times the cost in

the baseline pipeline, but the saved overhead cost is much larger than the actual query cost of a single

query. As a result, the new pipeline performs better than the baseline pipeline if the actual number of

queries is smaller than 300. In the second case, even the cost of a single query in the new pipeline is

smaller than the baseline pipeline. The results for the distance query are shown in Table 8.3. As in the

collision case, the overhead cost is saved in distance query, and the overall performance is improved

in the new pipeline. However, since the distance query is much more expensive than the collision

query, the performance improvement from saving the overhead of data preparation is not as large as

in the collision case. Moreover, note that we assume that all the steps in both pipelines can share the

data efficiently, and thus we can ignore the data transmission overhead between different steps. For

distributed robot systems, such transmission overhead can be large and therefore we underestimate

the performance improvement of the new pipeline, because the new pipeline has fewer steps than the

baseline pipeline.

In the second experiment, we perform collision or distance queries between a PR2 robot and

the sensor data. The PR2 robot has 88 links, some in the form of primitive geometric shapes (e.g.,

cylinders and spheres) and others represented as meshes. The sensor data is an octree with 24, 803

cells. For collision queries, the PR2’s average penetration depth into obstacles is 2.8 cm. For distance

queries, the PR2’s average distance to obstacles is 3.4 cm. Note that collision and distance queries

are slow in case of small penetration depth or small distance to the obstacles, since the AABB cannot

184

perform culling effectively in such cases. As a result, the PR2 robot scene is challenging for both

collision and distance queries. The results are shown in Table 8.4; we observe similar performance

improvements on real-world sensor data with the PR2 robot, as in the synthetic case.

From these results, we can see the difference between the baseline pipeline using the amortized

approach and the new pipeline. The amortized approach only reduces the overhead instead of

completely avoiding it, but the performance reduction on a single actual query is small. The new

pipeline completely avoids the overhead, but the time cost for one actual query may be notably

larger than in the traditional pipeline. As a result, the amortized approach is more suitable for cases

in which the number of actual queries per sensor frame is large, e.g., when the environment does

not change frequently and the sensor frame rate is small; or when there are only a few obstacles in

the environment. The method using the new pipeline is more suitable for dynamic environments

with high sensor data frame rates, or for environments with many obstacles. Moreover, we have

observed that the collision query benefits more from our new pipeline than the distance query, since

the distance query is usually more expensive and the initialization overhead is less significant. Finally,

the speedup caused by the new pipeline is more considerable for scenarios with many obstacles,

since the initialization overhead increases with the number of obstacles.

Figure 8.3 shows how a motion planner can use the results provided by our algorithms to improve

its performance in environment with unknown or uncertain regions. Given a task, the planner first

computes a trajectory that does not collide with the region known to be occupied by obstacles.

Then, using our methods, we can compute the part of unknown regions that intersect with the robot,

which is marked using brown color in Figure 8.3(b). The motion planner needs more information

about these regions in order to determine whether the trajectory is indeed collision-free, which can

be performed via various strategies; e.g., turning the sensor towards the marked region with the

maximum entropy. Given the regions with large collision probability, robots can use active sensing to

reduce the uncertainty in these regions and therefore improve execution safety by avoiding collision

with objects in these unknown regions, as shown in Figure 8.4.

8.6 Conclusions

We have presented two approaches for efficiently performing collision and distance queries

on sensor data. The first method amortizes the sensor data pre-processing overhead over all the

185

Figure 8.4: Comparison experiments on the PR2 robot without active sensing (first row) and with
active sensing (second row). When using active sensing, the robot can safely avoid the cupboard not
covered by the initial sensor data.

T1 Tq T1 + 10 · Tq T1 + 102 · Tq
non-amortized 2.07 4.49 · 10−3 2.11 2.52

amortized 0.92 4.52 · 10−3 0.96 1.37

Table 8.1: Performance comparison between baseline pipeline with and without amortized broad-
phase structure construction (in ms). The high-quality broad-phase structure computed by the non-
amortized algorithm improves the total computation only when there are more than Nmin = 38333
collision queries for one frame of sensor data, and the total time required for Nmin queries is 174 ms,
which is much longer than the sensor data’s update period (30 ms for data arriving at 30 Hz).

queries, and is suitable for static or simple environments. The second method shortens the traditional

pipeline by directly performing queries between the robot links and an octree that represents sensor

data. This approach completely avoids the data pre-processing overhead, and is suitable for dynamic

or complex environments. We demonstrated the performance of the two methods on synthetic

benchmarks and on environments constructed using the RGB-D sensor mounted on the PR2 robot.

Our new approach also supports collision queries for sensor data with uncertain or unknown regions.

In summary, the techniques we propose in this chapter will make collision checking and distance

queries with real sensor data more efficient; will improve the reactive behavior of robots operating

in unstructured environments; and will allow these robots to deal better with uncertain information

about the environment.

186

T1,1 T1,2 Tq T1 + 10 · Tq T1 + 102 · Tq
baseline pipeline 2.283 5.389 0.022 7.89 9.872

our pipeline 0 0 0.048 0.48 4.8
(a) Objects and boxes are in the form of geometric primitives

T1,1 T1,2 Tq T1 + 10 · Tq T1 + 102 · Tq
baseline pipeline 2.697 5.465 0.317 11.3 39.9

our pipeline 0 0 0.075 0.75 7.5
(b) Objects and boxes are in the form of meshes

Table 8.2: Collision query performance comparison between the baseline pipeline in (Rusu et al.,
2009b) and our new pipeline (in ms). In both pipelines, the 300 objects in the environment are in the
form of primitive geometric shapes or meshes. For the baseline pipeline, the boxes generated from
the octree are also represented as primitive boxes or meshes, respectively. When objects are in the
form of primitive geometric shapes, the broad-phase structure computed by the baseline algorithm
improves the total computation only when there are more than Nmin = 2959 collision queries for
one frame of sensor data, and the total time required for Nmin queries is 72.77 ms, which is much
longer than sensor data’s update period (30 ms for data arriving at 30 Hz). When objects are in the
form of meshes, the average query time given by our new pipeline may be even faster the the average
query time provided by the baseline pipeline.

T1,1 T1,2 Tq T1 + Tq
baseline pipeline 2.665 5.381 23.98 32.03

our pipeline 0 0 17.40 17.40
(a) Objects and boxes are in the form of geometric primitives

T1,1 T1,2 Tq T1 + Tq
baseline pipeline 2.871 5.413 68.03 76.31

our pipeline 0 0 61.86 61.86
(b) Objects and boxes are in the form of meshes

Table 8.3: Distance query performance comparison between the baseline pipeline in (Rusu et al.,
2009b) and our new pipeline (in ms). In both pipelines, the 300 objects in the environment are in
the form of primitive geometric shapes or meshes. For the baseline pipeline, the boxes generated
from the octree are also represented as primitive boxes or meshes, respectively. In this experiment,
our new pipeline not only avoids the initialization overhead but also behaves better than the baseline
pipeline on average distance query time. This is because the octree structure may perform distance
culling more efficiently than the hierarchy tree structure.

For future work, we are interested in further improving the collision checking and distance query

implementations. We are also interested in applications of this chapter to motion planning and active

sensing; e.g., we would like to design strategies for gaining more information about uncertain or

unknown parts of the environment.

187

T1 Tq T1 + 10 · Tq T1 + 102 · Tq
baseline pipeline 0.131 0.00127 0.1437 0.258

our pipeline 0 0.00131 0.0131 0.131
(a) PR2 collision

T1 Tq T1 + Tq
baseline pipeline 0.163 0.039 0.202

our pipeline 0 0.048 0.048
(b) PR2 distance

Table 8.4: Collision and distance query performance comparison between the baseline pipeline
in (Rusu et al., 2009b) and our new pipeline on the PR2 robot (in ms). For the collision query, the
broad-phase structure computed by the baseline algorithm improves the total computation only when
there are more than Nmin = 3275 collision queries for one frame of sensor data, and the total time
required for Nmin queries is 4.29 ms. For the distance query, the broad-phase structure computed by
the baseline algorithm improves the total computation only when there are more than Nmin = 18
collision queries for one frame of sensor data, and the total time required for Nmin queries is 0.87
ms.

188

CHAPTER 9: CONCLUSIONS AND FUTURE WORK

In this dissertation, we have addressed a variety of computational challenges related to configura-

tion spaces, including configuration space construction, efficient optimization in configuration space,

and modeling uncertainty in configuration space. As research in configuration space continues, we

expect progress in all these areas and more. While there is always more to do, the work presented in

this dissertation has addressed many of the important issues in this field.

To summarize the main results presented in this dissertation:

Configuration Space Construction using Active Learning We presented a novel approach to the

approximation of configuration spaces. The main idea is to sample the configuration space

and approximate the contact space based on machine learning classifiers, in particular support

vector machines. Furthermore, we use active learning techniques to select the samples during

precomputation. Additionally, we use the precomputed configuration space for efficiently

approximating the global penetration depth between two rigid objects.

Configuration Space Construction using Instance-based Learning We applied instance-based

learning to improve the performance of sample-based motion planners. The basic idea is to

store the prior collision results as an approximate representation of Cfree and Cobs, and to replace

the expensive exact collision detection query by a relatively cheap probabilistic collision query.

We integrated approximate collision routines with various sample-based motion planners and

observe 30− 100% speedup on rigid and articulated robots, by enabling the robots to learn

from their past experience.

Parallel Motion Planning Framework We introduced a whole motion planning algorithm on

GPUs. Our algorithm can exploit all the parallelism within the PRM algorithm, including the

high-level parallelism provided by the PRM framework and the low-level parallelism within

different components of the PRM algorithm, such as collision detection and graph search. This

makes our work the first to perform real-time motion planning and global navigation in general

environments using GPUs.

Parallel Collision Detection We introduced two novel parallel collision query algorithms for real-

time motion planning on GPUs. The first algorithm is based on configuration-packet tracing,

is easy to implement, and can improve parallel performance by performing more coherent

traversals and reducing the memory consumed by traversal stacks. The second algorithm is

based on workload balancing, and decomposes parallel collision queries into fine-grained tasks.

The algorithm uses a light-weight task-balancing strategy to guarantee that all GPU cores are

fully utilized and achieves close to peak performance on GPUs.

Parallel k-Nearest Neighbor We presented an efficient GPU-based parallel Bi-level LSH algorithm

to perform approximate k-nearest neighbor search in high-dimensional spaces. The Bi-level

scheme can provide k-nearest neighbor results with higher quality than previous methods. In

addition, our parallel algorithm provides more than a 40-fold acceleration over using LSH

algorithms on CPUs.

Proximity Computation for Noisy Geometry We presented a novel and robust approach for con-

tact computation between noisy point cloud data using machine learning methods. We re-

formulate collision detection as a two-class classification problem and compute the collision

probability at each point using support vector machines. This algorithm can be accelerated by

using bounding volume hierarchies and performing a stochastic traversal.

Proximity Computation for Noisy Geometry Streams We presented two methods for efficiently

performing collision and distance queries on sensor data. The first method amortizes the

sensor data pre-processing overhead over all the queries, and is suitable for static or simple

environments. The second method shortens the traditional pipeline by directly performing

queries between the robot links and an octree representing the environment. This approach

completely avoids the data pre-processing overhead, and is suitable for dynamic or complex

environments. Additionally, we combine this method with active sensing to improve robot

safeness in uncertain or dynamic environments.

190

9.1 Limitations and Future Work

Our work has some limitations that could be addressed by future work.

Configuration Space Construction using Active Learning The accuracy and running time of our

learning-based configuration space construction algorithm is a function of the combinatorial

complexity of the contact space and the sampling scheme. It is possible that our method may

not generate a sufficient number of samples in small, isolated components of contact space,

or may take a high number of iterations. The overall approach is probabilistic, and all our

error bounds are derived in terms of expected error. For future work, the basic components

of our method, such as SVM learning and collision detection, can be accelerated using GPU

parallelism. We can use other active learning techniques to improve the sampling, as well

as other classifiers or learning techniques to improve the accuracy or convergence of the

approximate contact space. It would be useful to derive tight theoretical error bounds for active

learning algorithms based on exploitation and exploration. It would also be useful to extend

the approach to articulated models, and take into account self-collisions between various links.

In order to handle deformable models, we would like to develop incremental techniques that

can refine the contact space approximation for deformable objects.

Configuration Space Construction using Instance-based Learning First, we need to find meth-

ods to adjust LSH parameters adaptively so that the k-NN query becomes more efficient for

varying dataset sizes. One possible approach is to change L (the number of hash tables),

because a small L may provide sufficient k-NN candidates for a large dataset. Second, for

samples in regions that are well-explored, we should avoid inserting their collision results into

the dataset in order to limit the dataset size. Moreover, since prior collision results are stored

in hash tables, we can efficiently update the data without high overhead. Thus, we can extend

the instance-based learning framework to improve the performance of planning algorithms in

dynamic environments. Lastly, we would like to evaluate performance in dynamic scenes.

Parallel Motion Planning Framework Our current parallel planning work is limited to the PRM

planning algorithm, but it is possible to extend it for accelerating other widely-used planning

algorithms, including RRT or optimization-based planners. In addition, we are interested in

191

extending GPU planning algorithms to high-DOF articulated models. We are also interested in

using exact algorithms for local planning. Moreover, we hope to apply our real-time algorithms

to dynamic scenarios.

Parallel Collision Detection We are interested in using more advanced sampling schemes with

the GPU-based planner, to further improve its performance and deal with narrow passages.

Furthermore, we would like to modify the planner to generate smooth paths that take into

account kinematic and dynamic constraints.

Parallel k-Nearest Neighbor We hope to test our algorithm on more real-world datasets, including

images, videos, and so forth. We also need to design efficient out-of-core algorithms to handle

very large datasets (e.g., > 100GB), as the on-chip memory on a GPU is limited to a few GBs.

We need to further analyze the quality of our bi-Level scheme on large spatial databases.

Proximity Computations on Noisy Sensor Data We need to test the performance of our algorithm

on different robotic systems and evaluate its performance on tasks such as planning and

grasping. It would be useful to extend this approach to continuous collision checking, which

takes into account the motion of the robot between discrete intervals along its path. Similar

probabilistic methods can also be developed for other queries, including separation and

penetration depth computation. Finally, we are interested in improving the algorithm to

handle dynamic environments, where points may change position or can be added or removed

from the environment due to movement, occlusion, or incremental data. The algorithm for

dynamic environments should handle incremental data efficiently and may benefit from various

incremental techniques including incremental SVM (Cauwenberghs and Poggio, 2001) and

BVH refitting techniques (Lauterbach et al., 2010).

Proximity Computation for Streaming Noisy Sensor Data We are interested in further improv-

ing the collision checking and distance query implementations. We are also interested in

applications of this work to motion planning and active sensing. For example, we would like

to design strategies for gaining more information about uncertain or unknown parts of the

environment.

192

BIBLIOGRAPHY

Ackerman, E. (2012). Latest alphadog robot prototypes get less noisy, more brainy. IEEE Spectrum.

Agarwal, P. K., Guibas, L. J., Har-Peled, S., Rabinovitch, A., and Sharir, M. (2000). Computing the
penetration depth of two convex polytopes in 3D. In Proceedings of Scandinavian Workshop on
Algorithm Theory, pages 328–338.

Aila, T. and Laine, S. (2009). Understanding the efficiency of ray traversal on GPUs. In Proceedings
of High Performance Graphics, pages 145–149.

Akinc, M., Bekris, K. E., Chen, B. Y., Ladd, A. M., Plaku, E., and Kavraki, L. E. (2005). Probabilistic
roadmaps of trees for parallel computation of multiple query roadmaps. In Robotics Research,
volume 15 of Springer Tracts in Advanced Robotics, pages 80–89. Springer.

Alcantara, D. A., Sharf, A., Abbasinejad, F., Sengupta, S., Mitzenmacher, M., Owens, J. D., and
Amenta, N. (2009). Real-time parallel hashing on the GPU. ACM Transactions on Graphics,
28:154:1–154:9.

Alexe, B., Deselaers, T., and Ferrari, V. (2010). What is an object? In Proceedings of International
Conference on Computer Vision and Pattern Recognition, pages 73–80.

Amato, N. and Dale, L. (1999). Probabilistic roadmap methods are embarrassingly parallel. In
Proceedings of IEEE International Conference on Robotics and Automation, pages 688–694.

Amato, N. M., Bayazit, O. B., Dale, L. K., Jones, C., and Vallejo, D. (1998). OBPRM: an obstacle-
based prm for 3D workspaces. In Proceedings of Workshop on the Algorithmic Foundations of
Robotics on Robotics, pages 155–168.

Andoni, A. and Indyk, P. (2006). Near-optimal hashing algorithms for approximate nearest neighbor
in high dimensions. In Proceedings of Symposium on Foundations of Computer Science, pages
459–468.

Andoni, A. and Indyk, P. (2008). Near-optimal hashing algorithms for approximate nearest neighbor
in high dimensions. Communications of the ACM, 51(1):117–122.

Andoni, A., Indyk, P., Krauthgamer, R., and Nguyen, H. L. (2009). Approximate line nearest
neighbor in high dimensions. In Proceedings of ACM-SIAM Symposium on Discrete Algorithms,
pages 293–301.

Arnold, V. (1989). Mathematical Methods of Classical Mechanics. Springer.

Astrom, K. J. and Wittenmark, B. (1994). Adaptive Control. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2nd edition.

Bae, K.-H., Belton, D., and Lichti, D. D. (2009). A closed-form expression of the positional
uncertainty for 3D point clouds. Transactions on Pattern Analysis and Machine Intelligence,
31:577–590.

Bandi, S. and Thalmann, D. (1993). An adaptive spatial subdivision of the object space for fast
collision detection of animating rigid bodies. Computer Graphics Forum, 14:259–270.

193

Banerjee, A. and Ghosh, J. (2006). Scalable clustering algorithms with balancing constraints. Data
Mining and Knowledge Discovery, 13(3):365–395.

Barraquand, J. and Latombe, J.-C. (1991). Robot motion planning: A distributed representation
approach. International Journal of Robotics Research, 10(6).

Basri, R., Hassner, T., and Zelnik-Manor, L. (2011). Approximate nearest subspace search. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 33(2):266–278.

Bawa, M., Condie, T., and Ganesan, P. (2005). LSH forest: self-tuning indexes for similarity search.
In Proceedings of International Conference on World Wide Web, pages 651–660.

Berenson, D., Abbeel, P., and Goldberg, K. (2012). A robot path planning framework that learns
from experience. In Proceedings of International Conference on Robotics and Automation,
pages 3671–3678.

Berkson, J. (1950). Are there two regressions? Journal of the American Statistical Association,
45(250):164–180.

Bi, J. and Zhang, T. (2005). Support vector classification with input data uncertainty. In Proceedings
of Advances in Neural Information Processing Systems, pages 161–168.

Bonfe, M., Boriero, F., Dodi, R., Fiorini, P., Morandi, A., Muradore, R., Pasquale, L., Sanna, A., and
Secchi, C. (2012). Towards automated surgical robotics: A requirements engineering approach.
In Proceedings of IEEE RAS EMBS International Conference on Biomedical Robotics and
Biomechatronics, pages 56–61.

Boor, V., Overmars, M., and van der Stappen, A. (1999). The Gaussian sampling strategy for
probabilistic roadmap planners. In Proceedings of IEEE International Conference on Robotics
and Automation, pages 1018–1023.

Branicky, M. S., Knepper, R. A., and Kuffner, J. J. (2008). Path and trajectory diversity: theory and
algorithms. In Proceedings of International Conference on Robotics and Automation, pages
1359–1364.

Burns, B. and Brock, O. (2003). Information theoretic construction of probabilistic roadmaps. In
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
650–655 vol.1.

Burns, B. and Brock, O. (2005a). Sampling-based motion planning using predictive models. In
Proceedings of IEEE International Conference on Robotics and Automation, pages 3120–3125.

Burns, B. and Brock, O. (2005b). Single-query entropy-guided path planning. In Proceedings of
IEEE International Conference on Robotics and Automation, pages 2124–2129.

Burns, B. and Brock, O. (2005c). Toward optimal configuration space sampling. In Proceedings of
Robotics: Science and Systems.

Canny, J. F. (1988). Some algebraic and geometric computations in PSPACE. In Proceedings of
ACM symposium on Theory of Computing, pages 460–467.

Canny, J. F., Reif, J., Donald, B., and Xavier, P. (1988). On the complexity of kinodynamic planning.
In Proceedings of Symposium on Foundations of Computer Science, pages 306–316.

194

Catto, E. (2010). Box2D: A 2d physics engine for games. http://box2d.org.

Cauwenberghs, G. and Poggio, T. (2001). Incremental and decremental support vector machine
learning. In Proceedings of Advances in Neural Information Processing Systems.

Chakrabarti, A. and Regev, O. (2004). An optimal randomized cell probe lower bound for approximate
nearest neighbor searching. In Proceedings of IEEE Symposium on Foundations of Computer
Science, pages 473–482.

Chang, C.-C. and Lin, C.-J. (2001). LIBSVM: a library for support vector machines.

Chazelle, B. (1987). Approximation and decomposition of shapes. In Schwartz, J. T. and Yap, C. K.,
editors, Algorithmic and Geometric Aspects of Robotics, page 145185. Lawrence Erlbaum
Associates, Hillsdale, NJ.

Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J. W., and Skadron, K. (2008). A performance
study of general-purpose applications on graphics processors using CUDA. Journal of Parallel
and Distributed Computing, 68(10):1370–1380.

Cheng, P., Pappas, G., and Kumar, V. (2007). Decidability of motion planning with differential
constraints. In Proceedings of International Conference on Robotics and Automation, pages
1826–1831.

Choi, B. K., Kim, D. H., and Jerard, R. B. (1997). C-space approach to tool-path generation for die
and mould machining. Computer-Aided Design, 9(9):657–669.

Cohn, D., Atlas, L., and Ladner, R. (1994). Improving generalization with active learning. Machine
Learning, 15(2):201–221.

Cohn, D. A., Ghahramani, Z., and Jordan, M. I. (1996). Active learning with statistical models.
Journal of Artificial Intelligence Research, 4:129–145.

Coumans, E. (2010). Bullet physics library. http://bulletphysics.org.

Cousins, S. (2012). Robots for humanity. http://www.willowgarage.com/blog/2011/07/13/robots-
humanity.

Dalibard, S. and Laumond, J.-P. (2011). Linear dimensionality reduction in random motion planning.
International Journal of Robotics Research, 30(12):1461–1476.

Dasgupta, S. and Freund, Y. (2008). Random projection trees and low dimensional manifolds. In
Proceedings of Symposium on Theory of Computing, pages 537–546.

Datar, M., Immorlica, N., Indyk, P., and Mirrokni, V. S. (2004). Locality-sensitive hashing scheme
based on p-stable distributions. In Symposium on Computational Geometry, pages 253–262.

Denny, J. and Amato, N. M. (2011). Toggle PRM: Simultaneous mapping of c-free and c-obstacle -
a study in 2D. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 2632–2639.

Dhesi, A. and Kar, P. (2010). Random projection trees revisted. In Proceedings of Advances in
Neural Information Processing Systems.

195

Diankov, R., Ratliff, N., Ferguson, D., Srinivasa, S., and Kuffner, J. (2008). Bispace planning:
Concurrent multi-space exploration. In Proceedings of Robotics: Science and Systems.

Dong, W., Wang, Z., Josephson, W., Charikar, M., and Li, K. (2008). Modeling LSH for performance
tuning. In Proceedings of Conference on Information and Knowledge Management, pages
669–678.

Doshi, F., Brunskill, E., Shkolnik, A., Kollar, T., and Rohanimanesh, K. (2007). Collision detection
in legged locomotion using supervised learning. In IEEE/RSJ International Conference on
Intelligent Robots and Systems.

Dubuisson, B. and Masson, M. (1993). A statistical decision rule with incomplete knowledge about
classes. Pattern Recognition, 26(1):155–165.

Egecioglu, O. and Kalantari, B. (1989). Approximating the diameter of a set of points in the
Euclidean space. Information Processing Letters, 32:205–211.

Ericson, C. (2004). Real-Time Collision Detection. CRC Press.

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., and Lin, C.-J. (2008). LIBLINEAR: A library
for large linear classification. Journal of Machine Learning Research, 9:1871–1874.

Foskey, M., Garber, M., Lin, M., and Manocha, D. (2001). A Voronoi-based hybrid planner. In
Proceedings of IEEE International Conference on Intelligent Robots and Systems, pages 55 –
60.

Freund, Y., Dasgupta, S., Kabra, M., and Verma, N. (2007). Learning the structure of manifolds using
random projections. In Proceedings of Advances in Neural Information Processing Systems.

Garcia, V., Debreuve, E., and Barlaud, M. (2008). Fast k nearest neighbor search using GPU. In
Proceedings of the CVPR Workshop on Computer Vision on GPU, pages 1–6.

Gionis, A., Indyk, P., and Motwani, R. (1999). Similarity search in high dimensions via hashing. In
Proceedings of International Conference on Very Large Databases, pages 518–529.

Gottschalk, S., Lin, M. C., and Manocha, D. (1996). OBBTree: a hierarchical structure for rapid
interference detection. In Proceedings of SIGGRAPH, pages 171–180.

Govindaraju, N., Lin, M., and Manocha, D. (2006). Fast and reliable collision culling using graphics
hardware. Transactions on Visualization and Computer Graphics, 12(2):143 –154.

Guendelman, E., Bridson, R., and Fedkiw, R. (2003). Nonconvex rigid bodies with stacking. ACM
Transactions on Graphics, 22(3):871–878.

Guibas, L. J., Hsu, D., Kurniawati, H., and Rehman, E. (2009). Bounded uncertainty roadmaps
for path planning. In Algorithmic Foundation of Robotics VIII, volume 57, pages 199–215.
Springer.

Guibas, L. J. and Seidel, R. (1987). Computing convolutions by reciprocal search. Discrete &
Computational Geometry, 2(1):175–193.

Guizzo, E. (2011). Robots enter fukushima reactors, detect high radiation. IEEE Spectrum.

196

Guizzo, E. and Ackerman, E. (2012). How Rethink Robotics built its new Baxter robot worker. IEEE
Spectrum.

Gunther, J., Popov, S., Seidel, H.-P., and Slusallek, P. (2007). Realtime ray tracing on GPU with
BVH-based packet traversal. In Proceedings of IEEE Symposium on Interactive Ray Tracing,
pages 113–118.

Halperin, D. (2002). Robust geometric computing in motion. The International Journal of Robotics
Research, 21(3):219–232.

Hanneke, S. (2013). A statistical theory of active learning. Foundations and Trends in Machine
Learning, pages 1–212.

Harris, M. (2009). Optimizing parallel reduction in CUDA. NVIDIA Developer Technology.

He, B., Govindaraju, N. K., Luo, Q., and Smith, B. (2007). Efficient gather and scatter operations on
graphics processors. In Proceedings of International Conference on Supercomputing.

Heidelberger, B., Teschner, M., Keiser, R., Mller, M., and Gross, M. H. (2004). Consistent penetration
depth estimation for deformable collision response. In International Fall Workshop on vision,
modeling and visualization, pages 339–346.

Hoff, K., Culver, T., Keyser, J., Lin, M., and Manocha, D. (2000). Interactive motion planning using
hardware accelerated computation of generalized Voronoi diagrams. In Proceedings of IEEE
International Conference on Robotics and Automation, pages 2931 – 2937.

Hofmann, T., Schölkopf, B., and Smola, A. J. (2008). Kernel methods in machine learning. The
Annals of Statistics, 36(3):1171–1220.

Horn, D. (2005). Stream reduction operations for GPGPU applications. In GPU Gems 2, pages
573–589. Addison Wesley.

Hsu, D., Kavraki, L. E., Latombe, J.-C., Motwani, R., and Sorkin, S. (1998). On finding narrow
passages with probabilistic roadmap planners. In Proceedings of Workshop on the Algorithmic
Foundations of Robotics on Robotics, pages 141–153.

Hsu, D., Latombe, J.-C., and Kurniawati, H. (2006). On the probabilistic foundations of probabilistic
roadmap planning. International Journal on Robotics Research, 25(7):627–643.

Hsu, D., Sanchez-Ante, G., and Sun, Z. (2005). Hybrid PRM sampling with a cost-sensitive adaptive
strategy. In Proceedings of IEEE International Conference on Robotics and Automation, pages
3874–3880.

Hu, L., Ku, W.-S., Bakiras, S., and Shahabi, C. (2010). Verifying spatial queries using Voronoi
neighbors. In Proceedings of SIGSPATIAL International Conference on Advances in Geographic
Information Systems, pages 350–359.

Huang, S.-J., Jin, R., and Zhou, Z.-H. (2010). Active learning by querying informative and represen-
tive examples. In Proceedings of Advances in Neural Information Processing Systems.

Hubbard, P. M. (1996). Approximating polyhedra with spheres for time-critical collision detection.
Transactions on Graphics, 15:179–210.

197

Ichnowksi, J. and Alterovitz, R. (2010). Configuration space visualization of 2-d robotics manipulator.
Available at http://robotics.cs.unc.edu/interactive/2d-manipulator.

Jaillet, L., Yershova, A., La Valle, S., and Simeon, T. (2005). Adaptive tuning of the sampling
domain for dynamic-domain RRTs. In Proceedings of IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 2851–2856.

Jain, P., Vijayanarasimhan, S., and Grauman, K. (2010). Hashing hyperplane queries to near points
with applications to large-scale active learning. In Neural Information Processing Systems.

JáJá, J. (1992). An Introduction to Parallel Algorithms. Addison Wesley Longman Publishing Co.,
Inc.

Je, C., Tang, M., Lee, Y., Lee, M., and Kim, Y. J. (2012). Polydepth: Real-time penetration
depth computation using iterative contact-space projection. ACM Transactions on Graphics,
31(1):5:1–5:14.

Jégou, H., Amsaleg, L., Schmid, C., and Gros, P. (2008). Query adaptative locality sensitive hashing.
In Proceedings of International Conference on Acoustics, Speech and Signal Processing, pages
825–828.

Jenke, P., Wand, M., Bokeloh, M., Schilling, A., and Straßer, W. (2006). Bayesian point cloud
reconstruction. In Proceedings of Eurographics, pages 379–388.

Jetchev, N. and Toussaint, M. (2010). Trajectory prediction in cluttered voxel environments. In
Proceedings of International Conference on Robotics and Automation, pages 2523–2528.

Jiang, X. and Kallmann, M. (2007). Learning humanoid reaching tasks in dynamic environments. In
Proceedings of International Conference on Intelligent Robots and Systems, pages 1148–1153.

Joly, A. and Buisson, O. (2008). A posteriori multi-probe locality sensitive hashing. In Proceedings
of International Conference on Multimedia, pages 209–218.

Ju, T. (2004). Robust repair of polygonal models. ACM Transactions on Graphics, 23(3):888–895.

Kaelbling, L. and Lozano-Pérez, T. (2011). Hierarchical task and motion planning in the now. In
Robotics and Automation (ICRA), Proceedings of IEEE International Conference on, pages
1470–1477.

Kaelbling, L. and Lozano-Pérez, T. (2012). Unifying perception, estimation and action for mobile
manipulation via belief space planning. In Robotics and Automation, Proceedings of IEEE
International Conference on, pages 2952–2959.

Kajita, S., Kaneko, K., Kaneiro, F., Harada, K., Morisawa, M., Nakaoka, S., Miura, K., Fujiwara,
K., Neo, E., Hara, I., Yokoi, K., and Hirukawa, H. (2011). Cybernetic human hrp-4c: A
humanoid robot with human-like proportions. In Pradalier, C., Siegwart, R., and Hirzinger, G.,
editors, Robotics Research, volume 70 of Springer Tracts in Advanced Robotics, pages 301–314.
Springer Berlin Heidelberg.

Kalakrishnan, M., Chitta, S., Theodorou, E., Pastor, P., and Schaal, S. (2011). STOMP: Stochastic
trajectory optimization for motion planning. In Proceedings of International Conference on
Robotics and Automation.

198

Kaligosi, K., Mehlhorn, K., Munro, J., and Sanders, P. (2005). Towards optimal multiple selection.
In Proceedings of International Colloquium on Automata, Languages and Programming, pages
103–114.

Karaman, S. and Frazzoli, E. (2011). Sampling-based algorithms for optimal motion planning.
International Journal of Robotics Research, 30(7):846–894.

Karasuyama, M. and Takeuchi, I. (2009). Multiple incremental decremental learning of support
vector machines. In Proceedings of Advances in Neural Information Processing Systems.

Kavraki, L., Svestka, P., Latombe, J. C., and Overmars, M. (1996). Probabilistic roadmaps for
path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and
Automation, 12(4):566–580.

Kazerounian, K. and Rastegar, J. (1992). Object norms: A class of coordinate and metric independent
norms for displacement. In ASME Design Technical Conference, pages 271–275.

Khatib, O. (1988). Real-time obstacle avoidance for manipulators and mobile robot. International
Journal of Robotics Research, 5(1):90–98.

Kider, J. J., Henderson, M., Likhachev, M., and Safonova, A. (2010). High-dimensional planning on
the GPU. In Proceedings of IEEE International Conference on Robotics and Automation, pages
2515–2522.

Kim, D., Heo, J.-P., Huh, J., Kim, J., and Yoon, S.-E. (2009). HPCCD: Hybrid parallel continuous
collision detection using CPUs and GPUs. Computer Graphics Forum, 28(7):1791–1800.

Kim, Y. J., Lin, M. C., and Manocha, D. (2002a). DEEP: Dual-space expansion for estimating
penetration depth between convex polytopes. In Proceedings of International Conference on
Robotics and Automation, pages 921–926.

Kim, Y. J., Otaduy, M. A., Lin, M. C., and Manocha, D. (2002b). Fast penetration depth computation
for physically-based animation. In Proceedings of SIGGRAPH/Eurographics Symposium on
Computer Animation, pages 23–31.

Klein, J. and Zachmann, G. (2004). Point cloud collision detection. In Proceedings of Eurographics,
pages 567–576.

Kleinberg, J. M. (1997). Two algorithms for nearest-neighbor search in high dimensions. In
Proceedings of Symposium on Theory of Computing, pages 599–608.

Knepper, R. A. and Mason, M. T. (2012). Real-time informed path sampling for motion planning
search. International Journal of Robotics Research, 31(11):1231–1250.

Knuth, D. E. (1998). The Art of Computer Programming, Volume 3: Sorting and Searching. Addison
Wesley Longman Publishing Co., Inc.

Kolahdouzan, M. and Shahabi, C. (2004). Voronoi-based k nearest neighbor search for spatial
network databases. In Proceedings of International Conference on Very Large Databases, pages
840–851.

Kuffner, J. and LaValle, S. (2000). RRT-connect: An efficient approach to single-query path planning.
In Proceedings of IEEE International Conference on Robotics and Automation, pages 995–1001.

199

Larsen, E., Gottschalk, S., Lin, M. C., and Manocha, D. (2000). Fast distance queries with rectangular
swept sphere volumes. In Proceedings of IEEE International Conference on Robotics and
Automation, pages 3719–3726.

Lauterbach, C., Garland, M., Sengupta, S., Luebke, D., and Manocha, D. (2009). Fast BVH
construction on GPUs. Computer Graphics Forum (In Proceedings of Eurographics), 28(2):375–
384.

Lauterbach, C., Mo, Q., and Manocha, D. (2010). gProximity: Hierarchical GPU-based operations
for collision and distance queries. Computer Graphics Forum, 29(2):419–428.

LaValle, S. M. (2006). Planning Algorithms. Cambridge University Press.

Lee, J.-K. and Kim, Y. J. (2007). Haptic rendering of point set surfaces. In Proceedings of
EuroHaptics, pages 513–518.

Leeper, A., Chan, S., and Salisbury, K. (2012). Point clouds can be represented as implicit surfaces
for constraint-based haptic rendering. In Proceedings of International Conference on Robotics
and Automation, pages 5000–5005.

Lien, J.-M. (2007). Point-based Minkowski sum boundary. In Proceedings of Pacific Graphics,
pages 261–270.

Lien, J.-M. (2008). Covering Minkowski sum boundary using points with applications. Computer
Aided Geometric Design, 25(8):652–666.

Lien, J.-M. (2009). A simple method for computing Minkowski sum boundary in 3D using collision
detection. In Algorithmic Foundation of Robotics VIII, volume 57 of Springer Tracts in Advanced
Robotics, pages 401–415. Springer Berlin / Heidelberg.

Lien, J.-M. and Amato, N. M. (2007). Approximate convex decomposition of polyhedra. In
Proceedings of the ACM symposium on Solid and physical modeling, pages 121–131.

Likhachev, M., Ferguson, D., Gordon, G., Stentz, A., and Thrun, S. (2005). Anytime dynamic
A*: An anytime, replanning algorithm. In Proceedings of the International Conference on
Automated Planning and Scheduling.

Lin, M. and Manocha, D. (2004). Collision and proximity queries. In Handbook of Discrete and
Computational Geometry, pages 787–808. CRC Press, Inc.

Lindholm, E., Nickolls, J., Oberman, S., and Montrym, J. (2008). NVIDIA Tesla: A unified graphics
and computing architecture. IEEE Micro, 28(2):39–55.

Litzenberger, G. (2012). Professional service robots: Continued increase. Technical report, Statistical
Department, International Federation of Robotics.

Lozano-Pérez, T. (1981). Automatic planning of manipulator transfer movements. IEEE Transactions
on Systems, Man and Cybernetics, 11(10):681–698.

Lozano-Pérez, T. (1983). Spatial planning: A configuration space approach. IEEE Transactions on
Computers, C-32(2):108–120.

Lozano-Pérez, T., Jones, J., Mazer, E., and O’Donnell, P. (1989). Task-level planning of pick-and-
place robot motions. Computer, 22(3):21–29.

200

Lozano-Pérez, T. and O’Donnell, P. (1991). Parallel robot motion planning. In Proceedings of IEEE
International Conference on Robotics and Automation, pages 1000–1007.

Lozano-Pérez, T. and Wesley, M. A. (1979). An algorithm for planning collision-free paths among
polyhedral obstacles. Communications of the ACM, 22(10):560–570.

Lv, Q., Josephson, W., Wang, Z., Charikar, M., and Li, K. (2007). Multi-probe LSH: efficient
indexing for high-dimensional similarity search. In Proceedings of International Conference on
Very Large Data Bases, pages 950–961.

Merrill, D. G. and Grimshaw, A. S. (2010). Revisiting sorting for GPGPU stream architectures. In
Proceedings of International Conference on Parallel architectures and compilation techniques,
pages 545–546.

Missiuro, P. E. and Roy, N. (2006). Adapting probabilistic roadmaps to handle uncertain maps. In
Proceedings of International Conference on Robotics and Automation, pages 1261–1267.

Mohri, M., Rostamizadeh, A., and Talwalkar, A. (2012). Foundations of Machine Learning. The
MIT Press.

Montemerlo, M., Becker, J., Bhat, S., Dahlkamp, H., Dolgov, D., Ettinger, S., Haehnel, D., Hilden, T.,
Hoffmann, G., Huhnke, B., Johnston, D., Klumpp, S., Langer, D., Levandowski, A., Levinson,
J., Marcil, J., Orenstein, D., Paefgen, J., Penny, I., Petrovskaya, A., Pflueger, M., Stanek, G.,
Stavens, D., Vogt, A., and Thrun, S. (2008). Junior: The stanford entry in the urban challenge.
Journal of Field Robotics, 25(9):569–597.

Morales, M., Tapia, L., Pearce, R., Rodriguez, S., and Amato, N. M. (2004). A machine learning
approach for feature-sensitive motion planning. In Proceedings of International Workshop on
Algorithmic Foundation of Robotics, pages 361–376.

Morton, G. (1966). A computer oriented geodetic data base and a new technique in file sequencing.
Technical report, IBM Ltd, Ottawa, Canada.

Mount, D. M. (2004). Geometric intersection. In Handbook of Discrete and Computational Geometry,
pages 857–876. CRC Press, Inc.

Muja, M. and Lowe, D. G. (2009). Fast approximate nearest neighbors with automatic algorithm
configuration. In International Conference on Computer Vision Theory and Application, pages
331–340.

Muja, M., Rusu, R. B., Bradski, G., and Lowe, D. G. (2011). REIN - a fast, robust, scalable recogni-
tion infrastructure. In Proceedings of International Conference on Robotics and Automation,
pages 2939–2946.

Murray, R. M., Sastry, S. S., and Zexiang, L. (1994). A Mathematical Introduction to Robotic
Manipulation. CRC Press, Inc., Boca Raton, FL, USA, 1st edition.

Nawratil, G., Pottmann, H., and Ravani, B. (2009). Generalized penetration depth computation based
on kinematical geometry. Computer Aided Geometric Design, 26(4):425–443.

Owens, J. D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A. E., and Purcell, T.
(2007). A survey of general-purpose computation on graphics hardware. Computer Graphics
Forum, 26(1):80–113.

201

Pagh, R. and Rodler, F. F. (2004). Cuckoo hashing. Journal of Algorithms, 51:122–144.

Pan, J., Chitta, S., and Manocha, D. (2011). Probabilistic collision detection between noisy point
clouds using robust classification. In Proceedings of International Symposium on Robotics
Research.

Pan, J., Chitta, S., and Manocha, D. (2012). FCL: A general purpose library for collision and
proximity queries. In Proceedings of International Conference on Robotics and Automation,
pages 3859–3866.

Pan, J., Lauterbach, C., and Manocha, D. (2010). Efficient nearest-neighbor computation for GPU-
based motion planning. In Proceedings of International Conference on Intelligent Robots and
Systems, pages 2243–2248.

Pan, J. and Manocha, D. (2012). Bi-level locality sensitive hashing for k-nearest neighbor computa-
tion. In Proceedings of IEEE International Conference on Data Engineering, pages 378–389.

Pauly, M., Mitra, N. J., and Guibas, L. J. (2004). Uncertainty and variability in point cloud surface
data. In Proceedings of Symposium on Point-Based Graphics, pages 77–84.

Petrovskaya, A. and Khatib, O. (2011). Global localization of objects via touch. Transactions on
Robotics, 27:569–585.

Phillips, M., Cohen, B., Chitta, S., and Likhachev, M. (2012). E-Graphs: Bootstrapping planning
with experience graphs. In Proceedings of Robotics: Science and Systems.

Pisula, C., Hoff, K., Lin, M. C., and Manocha, D. (2000). Randomized path planning for a rigid body
based on hardware accelerated Voronoi sampling. In Proceedings of International Workshop on
Algorithmic Foundation of Robotics, pages 279–292.

Plaku, E., Bekris, K. E., and Kavraki, L. E. (2007). OOPS for motion planning: An online open-
source programming system. In Proceedings of IEEE International Conference on Robotics
and Automation, pages 3711–3716.

Ponamgi, M., Manocha, D., and Lin, M. C. (1995). Incremental algorithms for collision detection
between solid models. In Proceedings of Symposium on Solid Modeling and Applications, pages
293–304.

Rahimi, A. and Recht, B. (2007). Random features for large-scale kernel machines. In Proceedings
of Advances in Neural Information Processing Systems.

Rao, V. N. and Kumar, V. (1988). Concurrent access of priority queues. IEEE Transactions on
Computers, 37:1657–1665.

Ratliff, N., Zucker, M., Bagnell, J. A. D., and Srinivasa, S. (2009). CHOMP: Gradient optimization
techniques for efficient motion planning. In Proceedings of International Conference on
Robotics and Automation, pages 489–494.

Redon, S. and Lin, M. C. (2006). A fast method for local penetration depth computation. Graphical
Tools, 8(1):63–70.

Reif, J. H. (1979). Complexity of the mover’s problem and generalizations. In Proceedings of Annual
Symposium on Foundations of Computer Science, pages 421–427.

202

Rodriguez, S., Tang, X., Lien, J.-M., and Amato, N. (2006). An obstacle-based rapidly-exploring
random tree. In Proceedings of IEEE International Conference on Robotics and Automation,
pages 895–900.

Russell, S. and Norvig, P. (2003). Artificial Intelligence: A Modern Approach. Prentice Hall.

Rusu, R. B., Blodow, N., Marton, Z. C., and Beetz, M. (2009a). Close-range scene segmentation and
reconstruction of 3D point cloud maps for mobile manipulation in domestic environments. In
Proceedings of International Conference on Intelligent Robots and Systems, pages 1–9.

Rusu, R. B., Sucan, I. A., Gerkey, B., Chitta, S., Beetz, M., and Kavraki, L. E. (2009b). Real-time
perception guided motion planning for a personal robot. In In Proceedings of International
Conference on Intelligent Robots and Systems, pages 4245–4252.

Sacks, E. and Bajaj, C. (1997). Sliced configuration spaces for curved planar bodies. International
Journal of Robotics Research, 17:639–651.

Samet, H. (2005). Foundations of Multidimensional and Metric Data Structures. Morgan Kaufmann
Publishers Inc.

Sanchez, G. and Latombe, J. (2001). A single-query bi-directional probabilistic roadmap planner
with lazy collision checking. In Proceedings of International Symposium on Robotics Research,
pages 403–417.

Schölkopf, B., Giesen, J., and Spalinger, S. (2005). Kernel methods for implicit surface modeling.
In Proceedings of Advances in Neural Information Processing Systems, pages 1193–1200.

Scholz, J. and Stilman, M. (2010). Combining motion planning and optimization for flexible robot
manipulation. In Proceedings of IEEE-RAS International Conference on Humanoid Robots,
pages 80–85.

Schulman, J., Ho, J., Lee, A., Awwal, I., Bradlow, H., and Abbeel, P. (2013). Finding locally optimal,
collision-free trajectories with sequential convex optimization. In Proceedings of Robotics:
Science and Systems.

Schwarzer, F., Saha, M., and Latombe, J. (2005). Adaptive dynamic collision checking for single
and multiple articulated robots in complex environments. IEEE Transactions on Robotics,
21(3):338–353.

Sengupta, S., Harris, M., Zhang, Y., and Owens, J. D. (2007). Scan primitives for GPU computing.
In Proceedings of Symposium on Graphics Hardware, pages 97–106.

Sharir, M. (1997). Algorithmic motion planning. In Goodman, J. E. and O’Rourke, J., editors,
Handbook of Discrete and Computational Geometry, chapter 40, pages 209–224. CRC Press
LLC, Boca Raton, FL.

Shivaswamy, P. K., Bhattacharyya, C., and Smola, A. J. (2006). Second order cone programming
approaches for handling missing and uncertain data. Journal of Machine Learning Research,
7:1283–1314.

Shoemake, K. (1992). Graphics gems iii. chapter Uniform random rotations, pages 124–132.

Smith, R. (2000). Open dynamics engine. http://www.ode.org.

203

Steinemann, D., Otaduy, M., and Gross, M. (2007). Efficient bounds for point-based animations. In
Proceedings of Symposium on Point-Based Graphics, pages 57–64.

Steinke, F., Schölkopf, B., and Blanz, V. (2005). Support vector machines for 3D shape processing.
In Proceedings of Eurographics, pages 285–294.

Stengel, R. F. (1994). Optimal Control and Estimation (Dover Books on Advanced Mathematics).
Dover Publications.

Stolle, M. and Atkeson, C. G. (2006). Policies based on trajectory libraries. In Proceedings of
International Conference on Robotics and Automation, pages 3344–3349.

Sucan, I. A., Kalakrishnan, M., and Chitta, S. (2010). Combining planning techniques for manipula-
tion using realtime perception. In Proceedings of International Conference on Robotics and
Automation, pages 2895–2901.

Sud, A., Andersen, E., Curtis, S., Lin, M., and Manocha, D. (2007). Real-time path planning for
virtual agents in dynamic environments. In Proceedings of IEEE Virtual Reality, pages 91–98.

Sun, Z., Hsu, D., Jiang, T., Kurniawati, H., and Reif, J. H. (2005). Narrow passage sampling for
probabilistic roadmap planners. IEEE Transactions on Robotics, 21(6):1105–1115.

Sundell, H. and Tsigas, P. (2005). Fast and lock-free concurrent priority queues for multi-thread
systems. Journal of Parallel and Distributed Computing, 65:609–627.

Tang, M. and Kim, Y. J. (2012). Interactive generalized penetration depth computation for rigid and
articulated models using object form. Technical report, Department of Computer Science, Ewha
Womans University.

Tang, M. and Kim, Y. J. (2013). Interactive generalized penetration depth computation for rigid and
articulated models using object norm. ACM Transactions on Graphics, page to appear.

Tang, M., Lee, M., and Kim, Y. J. (2009). Interactive hausdorff distance computation for general
polygonal models. ACM Transactions on Graphics, 28(3):74:1–74:9.

Tang, M., Manocha, D., Otaduy, M. A., and Tong, R. (2012). Continuous penalty forces. ACM
Transactions on Graphics, 31(4):107:1–107:9.

Tang, M., Manocha, D., and Tong, R. (2010). MCCD: Multi-core collision detection between
deformable models. Graphical Models, 72(2):7–23.

Thrun, S., Burgard, W., and Fox, D. (2005). Probabilistic Robotics. The MIT Press.

Tracy, D. J., Buss, S. R., and Woods, B. M. (2009). Efficient large-scale sweep and prune methods
with aabb insertion and removal. In Proceedings of the IEEE Virtual Reality Conference, pages
191–198.

Tuzel, O., Porikli, F., and Meer, P. (2008). Learning on Lie groups for invariant detection and tracking.
In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages 1–8.

Tzeng, S. and Wei, L.-Y. (2008). Parallel white noise generation on a GPU via cryptographic hash.
In Proceedings of the Symposium on Interactive 3D Graphics and Games, pages 79–87.

204

van den Bergen, G. (2001). Proximity queries and penetration depth computation on 3D game objects.
In Game Developers Conference.

Vapnik, V. N. (1995). The Nature of Statistical Learning Theory. Springer-Verlag New York, Inc.,
New York, NY, USA.

Varadhan, G., Kim, Y. J., Krishnan, S., and Manocha, D. (2006). Topology preserving approximation
of free configuration space. In Proceedings of International Conference on Robotics and
Automation, pages 3041–3048.

Wang, B., Faure, F., and Pai, D. K. (2012a). Adaptive image-based intersection volume. In
Proceedings of SIGGRAPH, pages 97:1–97:9.

Wang, D., Liu, S., Zhang, X., and Xiao, J. (2012b). Configuration-based optimization for six
degree-of-freedom haptic rendering for fine manipulation. IEEE Transactions on Haptics,
5(4):332–343.

Weber, R., Schek, H.-J., and Blott, S. (1998). A quantitative analysis and performance study
for similarity-search methods in high-dimensional spaces. In Proceedings of International
Conference on Very Large Databases, pages 194–205.

Weiss, Y., Torralba, A., and Fergus, R. (2008). Spectral hashing. In Proceedings of Advances in
Neural Information Processing Systems.

Weller, R. and Zachmann, G. (2009). Inner sphere trees for proximity and penetration queries. In
Proceedings of Robotics: Science and Systems, Seattle, USA.

Wurm, K. M., Hornung, A., Bennewitz, M., Stachniss, C., and Burgard, W. (2010). OctoMap: A
probabilistic, flexible, and compact 3D map representation for robotic systems. In Proceedings
of the ICRA 2010 Workshop on Best Practice in 3D Perception and Modeling for Mobile
Manipulation.

Yamazaki, K., Ueda, R., Nozawa, S., Kojima, M., Okada, K., Matsumoto, K., Ishikawa, M.,
Shimoyama, I., and Inaba, M. (2012). Home-assistant robot for an aging society. Proceedings
of the IEEE, 100(8):2429–2441.

Yershova, A., Jaillet, L., Simeon, T., and LaValle, S. (2005). Dynamic-domain RRTs: Efficient explo-
ration by controlling the sampling domain. In Proceedings of IEEE International Conference
on Robotics and Automation, pages 3856–3861.

Zhang, L., Kim, Y., and Manocha, D. (2007a). A hybrid approach for complete motion planning. In
Proceedings of International Conference on Intelligent Robots and Systems, pages 7–14.

Zhang, L., Kim, Y. J., and Manocha, D. (2007b). A fast and practical algorithm for generalized
penetration depth computation. In Robotics: Science and Systems.

Zhang, L., Kim, Y. J., Varadhan, G., and Manocha, D. (2007c). Generalized penetration depth
computation. Computer Aided Design, 39(8):625–638.

Zhang, L. and Manocha, D. (2008a). An efficient retraction-based rrt planner. In Proceedings of
IEEE International Conference on Robotics and Automation, pages 3743–3750.

Zhang, L. and Manocha, D. (2008b). A retraction-based RRT planner. In Proceedings of IEEE
International Conference on Robotics and Automation, pages 3743–3750.

205

Zhou, K., Hou, Q., Wang, R., and Guo, B. (2008). Real-time kd-tree construction on graphics
hardware. In Proceedings of SIGGRAPH Asia, pages 126:1–126:11.

206

