132 research outputs found

    Performance Enhancement of Ultra Wideband WPAN using Narrowband Interference Mitigation Techniques

    Get PDF
    A new promising technique adopted by 4G community is ultra-wideband technology, which offers a solution for high bandwidth, high data rate, low cost, low power consumption, position location capability etc. A conventional type of UWB communication is impulse radio, where very short transient pulses are transmitted rather than a modulated carrier. Consequently, the spectrum is spread over several GHz, complying with the definition of UWB. Currently, the Rake receiver used for spread spectrum is considered a very promising candidate for UWB reception, due to its capability of collecting multipath components. Since UWB signals occupy such a large bandwidth, they operate as an overlay system with other existing narrowband (NB) radio systems overlapping with their bands. In order to ensure a robust communication link, the issue of coexistence and interference of UWB systems with current indoor wireless systems must be considered. Ultra Wideband technology with its application, advantages and disadvantages are discussed in detail. Design of UWB short pulse and a detail study IEEE 802.15.3a UWB channel models statistical characteristics have been analyzed through simulation. Simulation studies are performed and improved techniques are suggested for interference reduction in both Impulse Radio based UWB and Transmitted Reference type of UWB system. Modified TR-UWB receiver with UWB pulse design at transmitter end and notch filtering at receiver’s front end proved to be more efficient in single NBI, multiple NBI and WBI suppression. Extensive simulation studies to support the efficacy of the proposed schemes are carried out in the MATLAB. Bit error rate (BER) performance study for different data rates over different UWB channel models are also analyzed using proposed receiver models. Performance improvement of TR-UWB system is noticed using the proposed techniques

    Transceiver design and system optimization for ultra-wideband communications

    Get PDF
    This dissertation investigates the potential promises and proposes possible solutions to the challenges of designing transceivers and optimizing system parameters in ultra-wideband (UWB) systems. The goal is to provide guidelines for UWB transceiver implementations under constraints by regulation, existing interference, and channel estimation. New UWB pulse shapes are invented that satisfy the Federal Communications Commission spectral mask. Parameters are designed to possibly implement the proposed pulses. A link budget is quantified based on an accurate frequency-dependent path loss calculation to account for variations across the ultra-wide bandwidth of the signal. Achievable information rates are quantified as a function of transmission distance over additive white Gaussian noise and multipath channels under specific UWB constraints: limited power spectral density, specific modulation formats, and a highly dispersive channel. The effect of self-interference (SI) and inter-symbol interference (ISI) on channel capacity is determined, and modulation formats that mitigate against this effect is identified. Spreading gains of familiar UWB signaling formats are evaluated, and UWB signals are proved to be spread spectrum. Conditions are formulated for trading coding gain with spreading gain with only a small impact on performance. Numerical results are examined to demonstrate that over a frequency-selective channel, the spreading gain may be beneficial in reducing the SI and ISI resulting in higher information rates. A reduced-rank adaptive filtering technique is applied to the problem of interference suppression and optimum combining in UWB communications. The reduced-rank combining method, in particular the eigencanceler, is proposed and compared with a minimum mean square error Rake receiver. Simulation results are evaluated to show that the performance of the proposed method is superior to the minimum mean square error when the correlation matrix is estimated from limited data. Impact of channel estimation on UWB system performance is investigated when path delays and path amplitudes are jointly estimated. Cramér-Rao bound (CRB) expressions for the variance of path delay and amplitude estimates are formulated using maximum likelihood estimation. Using the errors obtained from the CRB, the effective signal-to-noise ratio for UWB Rake receivers employing maximum ratio combining (MRC) is devised in the presence of channel path delay and amplitude errors. An exact expression of the bit error rate (BER) for UWB Rake receivers with MRC is derived with imperfect estimates of channel path delays and amplitudes. Further, this analysis is applied to design optimal transceiver parameters. The BER is used as part of a binary symmetric channel and the achievable information rates are evaluated. The optimum power allocation and number of symbols allocated to the pilot are developed with respect to maximizing the information rate. The optimal signal bandwidth to be used for UWB communications is determined in the presence of imperfect channel state information. The number of multipath components to be collected by Rake receivers is designed to optimize performance with non-ideal channel estimation

    Interference mitigation and awareness for improved reliability

    Get PDF
    Wireless systems are commonly affected by interference from various sources. For example, a number of users that operate in the same wireless network can result in multiple-access interference (MAI). In addition, for ultrawideband (UWB) systems, which operate at very low power spectral densities, strong narrowband interference (NBI) can have significant effects on the communications reliability. Therefore, interference mitigation and awareness are crucial in order to realize reliable communications systems. In this chapter, pulse-based UWB systems are considered, and the mitigation of MAI is investigated first. Then, NBI avoidance and cancelation are studied for UWB systems. Finally, interference awareness is discussed for short-rate communications, next-generation wireless networks, and cognitive radios.Mitigation of multiple-access interference (MAI)In an impulse radio ultrawideband (IR-UWB) communications system, pulses with very short durations, commonly less than one nanosecond, are transmitted with a low-duty cycle, and information is carried by the positions or the polarities of pulses [1-5]. Each pulse resides in an interval called frame, and the positions of pulses within frames are determined according to time-hopping (TH) sequences specific to each user. The low-duty cycle structure together with TH sequences provide a multiple-access capability for IR-UWB systems [6].Although IR-UWB systems can theoretically accommodate a large number of users in a multiple-access environment [2, 4], advanced signal processing techniques are necessary in practice in order to mitigate the effects of interfering users on the detection of information symbols efficiently [6]. © Cambridge University Press 2011

    Analysis of Ultra Wide Band (UWB) Technology for an Indoor Geolocation and Physiological Monitoring System

    Get PDF
    The goal of this research is to analyze the utility of UWB for indoor geolocation and to evaluate a prototype system, which will send information detailing a person’s position and physiological status to a command center. In a real world environment, geolocation and physiological status information needs to be sent to a command and control center that may be located several miles away from the operational environment. This research analyzes and characterizes the UWB signal in the various operational environments associated with indoor geolocation. Additionally, typical usage scenarios for the interaction between UWB and other devices are also tested and evaluated

    Iterative ('Turbo') Multiuser Detectors For Impulse Radio Systems

    Get PDF
    In recent years, there has been a growing interest in multiple access communication systems that spread their transmitted energy over very large bandwidths. These systems, which are referred to as ultra wide-band (UWB) systems, have various advantages over narrow-band and conventional wide-band systems. The importance of multiuser detection for achieving high data or low bit error rates in these systems has already been established in several studies. This paper presents iterative ('turbo') multiuser detection for impulse radio (IR) UWB systems over multipath channels. While this approach is demonstrated for UWB signals, it can also be used in other systems that use similar types of signaling. When applied to the type of signals used by UWB systems, the complexity of the proposed detector can be quite low. Also, two very low complexity implementations of the iterative multiuser detection scheme are proposed based on Gaussian approximation and soft interference cancellation. The performance of these detectors is assessed using simulations that demonstrate their favorable properties.Comment: To appear in IEEE Transactions on Wireless Communication

    Adaptive RAKE receiver structures for ultra wide-band systems

    Get PDF
    Ultra wide band (UWB) is an emerging technology that recently has gained regulatory approval. It is a suitable solution for high speed indoor wireless communications due to its promising ability to provide high data rate at low cost and low power consumption. Another benefit of UWB is its ability to resolve individual multi-path components. This feature motivates the use of RAKE multi-path combining techniques to provide diversity and to capture as much energy as possible from the received signal. Potential future and rule limitation of UWB, lead to two important characteristics of the technology: high bit rate and low emitting power. Based on the power emission limit of UWB, the only choice for implementation is the low level modulation technology. To obtain such a high bit rate using low level modulation techniques, significant inter-symbol interference (ISI) is unavoidable. Three N (N means the numbers of fingers) fingers RAKE receiver structures are proposed: the N-selective maximal ratio combiner (MRC), the N-selective MRC receiver with least-mean-square (LMS) adaptive equalizer and the N-selective MRC receiver with LMS adaptive combiner. These three receiver structures were all simulated for N=8, 16 and 32. Simulation results indicate that ISI is effectively suppressed. The 16-selective MRC RAKE receiver with LMS adaptive combiner demonstrates a good balance between performance, computation complexity and required length of the training sequence. Due to the simplicity of the algorithm and a reasonable sampling rate, this structure is feasible for practical VLSI implementations

    Ultra-wideband technology for short-range wireless communication

    Get PDF
    The ultra-wideband (UWB) radio core idea is to open large amounts of spectrum to a variety of users with little mutual interference between them. While ultra-wideband is being championed by several commercial companies, this technology has not followed the conventional path where commercial interest is preceded by years of academic research. This work attempts to fill in some of the gap by studying fundamental properties of communications with impulse-based radio UWB signals. We study jam resistance and capacity of UWB. Jam resistance is analyzed for binary pulse position modulation (PPM) with the interference being modeled as correlated Gaussian. Closed-form expressions are provided for the jam resistance of a PPM UWB system utilizing rectangular pulses. Simple approximations are obtained for special cases (narrowband interference). Such analysis is extended to other practical UWB waveforms such as Gaussian and Rayleigh monocycles. It is shown that under some conditions, the UWB jam resistance is superior to that of direct sequence spread spectrum (DS-SS). In the second part of this work, we study the capacity of the single-user UWB communication systems utilizing M-ary PPM and bi-phase as well as on-off keying modulation scheme over additive white Gaussian noise (AWGN) and multipath channels. Starting from the known capacity of M-ary modulated signals, the computation of UWB capacity over the AWGN channel takes into account UWB specific constraints. The constraints are the power spectrum density limitation under Federal Communications Commission (FCC) Part 15 rules and the spreading ratio required to achieve a specified jam resistance level. UWB capacity over AWGN channel is expressed as a function of spreading ratio and communication range. Trade-offs between capacity and range of communications and between capacity and spreading ratio are explored. We extend the study of capacity of UWB communications to the multipath channel using the modified S-V model proposed by the IEEE 802.15.3a task group. The complementary cumulative distribution function (CCDF) of the capacities, subject to the FCC power spectral density (PSD) limitation, are obtained for the all Rake (ARake) and selective Rake (SRake) receivers. In both of the cases, maximum ratio combining is employed. Finally, the capacity of multiple-access UWB communications is studied over the AWGN channel. Under certain assumptions, the multiple-access noise component at the receiver is modeled as Gaussian. An expression for the UWB capacity of the multiple-access channel is developed as a function of number of users

    Design of low power CMOS UWB transceiver ICs

    Get PDF
    Master'sMASTER OF ENGINEERIN
    corecore