8,611 research outputs found

    BeWith: A Between-Within Method to Discover Relationships between Cancer Modules via Integrated Analysis of Mutual Exclusivity, Co-occurrence and Functional Interactions

    Full text link
    The analysis of the mutational landscape of cancer, including mutual exclusivity and co-occurrence of mutations, has been instrumental in studying the disease. We hypothesized that exploring the interplay between co-occurrence, mutual exclusivity, and functional interactions between genes will further improve our understanding of the disease and help to uncover new relations between cancer driving genes and pathways. To this end, we designed a general framework, BeWith, for identifying modules with different combinations of mutation and interaction patterns. We focused on three different settings of the BeWith schema: (i) BeME-WithFun in which the relations between modules are enriched with mutual exclusivity while genes within each module are functionally related; (ii) BeME-WithCo which combines mutual exclusivity between modules with co-occurrence within modules; and (iii) BeCo-WithMEFun which ensures co-occurrence between modules while the within module relations combine mutual exclusivity and functional interactions. We formulated the BeWith framework using Integer Linear Programming (ILP), enabling us to find optimally scoring sets of modules. Our results demonstrate the utility of BeWith in providing novel information about mutational patterns, driver genes, and pathways. In particular, BeME-WithFun helped identify functionally coherent modules that might be relevant for cancer progression. In addition to finding previously well-known drivers, the identified modules pointed to the importance of the interaction between NCOR and NCOA3 in breast cancer. Additionally, an application of the BeME-WithCo setting revealed that gene groups differ with respect to their vulnerability to different mutagenic processes, and helped us to uncover pairs of genes with potentially synergetic effects, including a potential synergy between mutations in TP53 and metastasis related DCC gene

    Efficient algorithms to discover alterations with complementary functional association in cancer

    Full text link
    Recent large cancer studies have measured somatic alterations in an unprecedented number of tumours. These large datasets allow the identification of cancer-related sets of genetic alterations by identifying relevant combinatorial patterns. Among such patterns, mutual exclusivity has been employed by several recent methods that have shown its effectivenes in characterizing gene sets associated to cancer. Mutual exclusivity arises because of the complementarity, at the functional level, of alterations in genes which are part of a group (e.g., a pathway) performing a given function. The availability of quantitative target profiles, from genetic perturbations or from clinical phenotypes, provides additional information that can be leveraged to improve the identification of cancer related gene sets by discovering groups with complementary functional associations with such targets. In this work we study the problem of finding groups of mutually exclusive alterations associated with a quantitative (functional) target. We propose a combinatorial formulation for the problem, and prove that the associated computation problem is computationally hard. We design two algorithms to solve the problem and implement them in our tool UNCOVER. We provide analytic evidence of the effectiveness of UNCOVER in finding high-quality solutions and show experimentally that UNCOVER finds sets of alterations significantly associated with functional targets in a variety of scenarios. In addition, our algorithms are much faster than the state-of-the-art, allowing the analysis of large datasets of thousands of target profiles from cancer cell lines. We show that on one such dataset from project Achilles our methods identify several significant gene sets with complementary functional associations with targets.Comment: Accepted at RECOMB 201

    Finding Mutated Subnetworks Associated with Survival in Cancer

    Full text link
    Next-generation sequencing technologies allow the measurement of somatic mutations in a large number of patients from the same cancer type. One of the main goals in analyzing these mutations is the identification of mutations associated with clinical parameters, such as survival time. This goal is hindered by the genetic heterogeneity of mutations in cancer, due to the fact that genes and mutations act in the context of pathways. To identify mutations associated with survival time it is therefore crucial to study mutations in the context of interaction networks. In this work we study the problem of identifying subnetworks of a large gene-gene interaction network that have mutations associated with survival. We formally define the associated computational problem by using a score for subnetworks based on the test statistic of the log-rank test, a widely used statistical test for comparing the survival of two populations. We show that the computational problem is NP-hard and we propose a novel algorithm, called Network of Mutations Associated with Survival (NoMAS), to solve it. NoMAS is based on the color-coding technique, that has been previously used in other applications to find the highest scoring subnetwork with high probability when the subnetwork score is additive. In our case the score is not additive; nonetheless, we prove that under a reasonable model for mutations in cancer NoMAS does identify the optimal solution with high probability. We test NoMAS on simulated and cancer data, comparing it to approaches based on single gene tests and to various greedy approaches. We show that our method does indeed find the optimal solution and performs better than the other approaches. Moreover, on two cancer datasets our method identifies subnetworks with significant association to survival when none of the genes has significant association with survival when considered in isolation.Comment: This paper was selected for oral presentation at RECOMB 2016 and an abstract is published in the conference proceeding

    QuaDMutEx: quadratic driver mutation explorer

    Get PDF
    Background Somatic mutations accumulate in human cells throughout life. Some may have no adverse consequences, but some of them may lead to cancer. A cancer genome is typically unstable, and thus more mutations can accumulate in the DNA of cancer cells. An ongoing problem is to figure out which mutations are drivers - play a role in oncogenesis, and which are passengers - do not play a role. One way of addressing this question is through inspection of somatic mutations in DNA of cancer samples from a cohort of patients and detection of patterns that differentiate driver from passenger mutations. Results We propose QuaDMutEx, a method that incorporates three novel elements: a new gene set penalty that includes non-linear penalization of multiple mutations in putative sets of driver genes, an ability to adjust the method to handle slow- and fast-evolving tumors, and a computationally efficient method for finding gene sets that minimize the penalty, through a combination of heuristic Monte Carlo optimization and exact binary quadratic programming. Compared to existing methods, the proposed algorithm finds sets of putative driver genes that show higher coverage and lower excess coverage in eight sets of cancer samples coming from brain, ovarian, lung, and breast tumors. Conclusions Superior ability to improve on both coverage and excess coverage on different types of cancer shows that QuaDMutEx is a tool that should be part of a state-of-the-art toolbox in the driver gene discovery pipeline. It can detect genes harboring rare driver mutations that may be missed by existing methods. QuaDMutEx is available for download from https://github.com/bokhariy/QuaDMutEx under the GNU GPLv3 license
    • …
    corecore