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Abstract

Background: Somatic mutations accumulate in human cells throughout life. Some may have no adverse
consequences, but some of themmay lead to cancer. A cancer genome is typically unstable, and thus more
mutations can accumulate in the DNA of cancer cells. An ongoing problem is to figure out which mutations are
drivers - play a role in oncogenesis, and which are passengers - do not play a role. One way of addressing this question
is through inspection of somatic mutations in DNA of cancer samples from a cohort of patients and detection of
patterns that differentiate driver from passenger mutations.

Results: We propose QuaDMutEx, a method that incorporates three novel elements: a new gene set penalty that
includes non-linear penalization of multiple mutations in putative sets of driver genes, an ability to adjust the method
to handle slow- and fast-evolving tumors, and a computationally efficient method for finding gene sets that minimize
the penalty, through a combination of heuristic Monte Carlo optimization and exact binary quadratic programming.
Compared to existing methods, the proposed algorithm finds sets of putative driver genes that show higher coverage
and lower excess coverage in eight sets of cancer samples coming from brain, ovarian, lung, and breast tumors.

Conclusions: Superior ability to improve on both coverage and excess coverage on different types of cancer shows
that QuaDMutEx is a tool that should be part of a state-of-the-art toolbox in the driver gene discovery pipeline. It can
detect genes harboring rare driver mutations that may be missed by existing methods. QuaDMutEx is available for
download from https://github.com/bokhariy/QuaDMutEx under the GNU GPLv3 license.

Keywords: Somatic mutations, Cancer pathways, Driver mutations

Background
Cancer is a complex and heterogeneous disease that starts
at cellular level as a consequence of a hereditary or, most
prevalently, environmentally induced mutations [1, 2].
Mutations such as amino acid substitutions or copy num-
ber alterations may lead to abnormal cells that can divide
indefinitely and have the ability to invade other tissues
[3]. A sequence of between two and eight mutations that
target genes involved in specific cell functions is needed
for most human cancers to develop [4]. Such mutations,
which confer growth advantage to cells and are causally
implicated in oncogenesis, are referred to as driver muta-
tions [5]. Known somaticmutations linked to cancer, often
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with additional information such as known therapies that
target the mutation, are being gather in databases [6–8]
that can be used in selecting patient treatment. Newly
identified driver genes can also be screened using drugga-
bility indices [9], and for being targets for drug reposition-
ing [10], leading the way to new therapeutic modalities.
Thus, discovering and cataloging genes whose mutations
do contribute to oncogenesis, that is, driver genes, is a
major goal for experimental and computational cancer
research. The wide spectrum of approaches for finding
driver genes can be seen in recent review papers [11–13].
The ability to discover driver mutations has beenmoved

forward in recent years owing to the availability of large
datasets generated using second-generation sequencing
techniques [14]. Projects such as the Cancer Genome
Atlas (TCGA) [15] perform sequencing of matched tumor
and normal samples from hundreds of patients with a
given tumor type, allowing for detection of somatic muta-
tions present in tumor tissue. However, even with the
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increasing availability of data, the problem of identifying
driver mutations and driver genes that harbor them is far
from being solved.
The main challenge is that majority of somatic muta-

tions acquired in human cells throughout life are not
causally linked to cancer. It is estimated that a typical
human cell, with a genome consisting of approximately
3 × 109 base pairs, gains on the order of 10−10 muta-
tions per base pair per cell division [16, 17], although the
rate can vary substantially depending on factors such as
local chromatin organization of the genome [18]. Human
organism consists of on the order of 1013 cells [19], many
of which are in fast dividing tissues; for example around
1011 epithelial cells are being lost and need replacement
every day [20]. It is thus evident that most mutations do
not lead to carcinogenesis - these are often referred to as
passenger mutations. Indeed, it has been observed that
in tissues that self-renew through cell division, such as
skin or gastrointestinal epithelium, the number of muta-
tions seen in cancer samples from patients 85 years old
is twice the number of mutations in patients that are 25
years old. It has been estimated that half or more of all
mutations observed in patients’ cancer tissues originate
prior to the onset of cancer [17]. In addition to thesemuta-
tions, cancer cells exhibit a mutator phenotype, that is, an
increased mutation rate [21], with mutation rates that can
differ by an order of magnitude among subclones within
the tumor [22]. This further contributes to the dominance
of passenger mutations over driver mutations in observed
cancer tissue samples. Altogether, while the number of
driver mutations in a tumor is typically small – a recent
analysis of TCGA data shows it to be between 2 and 6 in
most tumors [23] – the total number of somatic muta-
tions present in a single patient tumor tissue sample can
range between 10 to above 100, depending on tissue type
and patient age. Most mutations in a cancer tissue sample
are thus passenger mutations that do not contribute posi-
tively to cancer growth. In fact, weakly deleterious effects
of multiple passenger mutations can accumulate and can
have negative impact on the tumor [24].
To discover driver mutations in the abundance of pas-

senger mutations, many approaches take the route of
calculating the background mutations rate that would
be exhibited by passenger mutations, and consider those
mutations that are observed more frequently as drivers.
These approaches employ a statistical model of somatic
mutations, typically considering them a result of a Pois-
son process, which allows for quantifying the statisti-
cal significance of any deviations from the background
mutation rate. For example, MutSig [25] uses a constant
mutation rate across all genes, and can also use meth-
ods for functional predictions of mutation significance,
such as SIFT [26], CHASM [27], Polyphen-2 [28] and
MutationAssessor [29]. MutSigCV [30] uses factors such

as chromatin state and transcription activity to estimate
gene-specific background mutation rates. PathScan [31]
utlizes a Poissonian mutation model that involves gene
lengths, and for a gene set given by the user calculates
the probability of observing that many mutations or more
under a null hypothesis that the mutations are passengers.
If the probability is low across many samples, the genes
are considered driver genes. MuSiC [32] extends PathScan
by adding knowledge about correlation between mutation
rates and factors including clinical variables such as age,
molecular variables such as the Pfam family to which the
genes belong, and sequence correlates such as base com-
position of the site and proximity among mutation sites.
DrGaP tool [33] considers 11 different types of mutation
types, with factors including G/C content near the muta-
tion site and methylation status of the site, in estimating
the background mutation rate. DOTS-Finder [34] inte-
grates functional predictions and background mutation
rate to identify driver genes.
Gene-centric methods for finding driver mutations

from cancer sequencing data are hampered by the fact that
a single driver gene is rarely mutated across many patients
with a given tumor. Only few genes, such as TP53 or
BRCA1, are mutated in large fraction of cases. Most driver
mutations are relatively rare in tumor patients: most of
individual genes are mutated in less than 5% of patients
[35]. Thus, a statistically significant detection of deviation
from background mutation rate requires large number of
samples for rare drivers.
Observations from cancer samples show the disease-

linked mutations are not confined to a specific set of loci
but, instead, they differ substantially in individual cases.
Only when seen from the level of pathways, that is, genes
related to a specific cellular process, a clearer picture
emerges. A study of pancreatic cancer has identified a core
of altered pathways common to all cases, and additional
variant pathways [36] altered in some of the patients. This
evidence has given rise to network-oriented driver detec-
tionmethods, such as HotNet [37, 38], which incorporates
protein-protein networks and uses a heat diffusion pro-
cess, in addition to gene mutation frequency, to detect a
driver subnetwork. Some methods move beyond utilizing
mutation data. For example, MEMo [39] uses gene expres-
sion to filter out genes with copy number alterations that
do not show altered expression. A more refined way of
incorporating gene expression data is used by Driver-
Net [40], which analyzes if a mutation in a gene affects
expression of genes it regulates.
In many types of tumors, only one mutation per path-

way, or functionally related group of genes, is needed
to drive oncogenesis [41–43]. Thus, the minimal set of
mutated genes required for cancer to develop would con-
sists of several sets of genes, each corresponding to a cru-
cial pathway such as angiogenesis. Within each gene set,
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in each patient exactly one gene would be mutated. That
is, all patients would be covered by a mutation in a gene
from the set, and there would be no excess coverage, that
is, no patient will have more mutations than one in the
genes from the set. This pattern has been often referred to
as mutual exclusivity within a gene set, and several meth-
ods, including Dendrix [44] andMulti-Dendrix [45], RME
[46], CoMEt [47], TiMEx [48] and MEMo [39] detect set
of driver genes by quantifying mutual exclusivity. Further
methods extend these by helping deal with observation
errors in the data [49], and with computational efficiency
of the search for driver genes [50].
Mutual exclusivity describes the combinatorial pattern

of a minimal set of genes required for oncogenesis. In
actual patient data, additional mutations in driver genes
may occur, especially for slow growing tumors. Also, some
of the mutations may be missed due to observation errors.
Thus, instead of detecting the presence or absence of
mutual exclusivity in a set of genes, driver detection algo-
rithms involve a score that penalizes for deviations from
a driver pattern. That is, a penalty is incurred for zero
mutations in a patient, or for more than one mutation.
Then, a heuristic search procedure is utilized to find a set
of genes closest to the mutual exclusivity pattern, since
finding such a set has been shown to be an NP-hard
problem [44].
Here, we propose a tool, QuaDMutEx, which brings

three novel aspects to the mutual-exclusivity-based driver
detection. First, instead of linear penalty for excess cov-
erage used in tools like Dendrix, QuaDMutEx uses a
quadratic penalty that provides a more realistic penalty
for sets with excessive number of mutations. Second,
the method allows for user-specified trade-off between
increasing coverage and decreasing excess coverage,
allowing for tailoring the method to fast- or slow-evolving
tumors. Third, QuaDMutEx uses a combination of opti-
mal search that results in globally optimal solutions to
subproblems with a stochastic search through a series of
subproblems, allowing for more effective search through
the space of possible driver gene sets. We evaluated
our method on data obtained literature and from the
Cancer Genome Atlas. Our method shows higher cover-
age and higher mutual exclusivity than four state-of-the-
art tools: Dendrix, TiMEx, RME and CoMEt. Compared
to DriverNet, a non-exclusivity based tool, it returns com-
plementary sets of putative cancer driver genes of compa-
rable quality when evaluated against the COSMIC cancer
database.

Methods
The proposed algorithm for detecting driver mutations in
cancer operates at the gene level. That is, on input, we are
given an n by p mutation matrix G, where n is the num-
ber of cancer patients with sequenced cancer cell DNA,

and p is the total number of genes explored. The matrix
is binary, that is, Gij = 1 if patient i has a non-silent
mutation in gene j; otherwise, Gij = 0. A row vector Gi
represents a row of the matrix corresponding to patient i.
The solution we seek is a sparse binary vector x of length
p, with xj = 1 indicating that mutations of gene j are can-
cer driver mutations. We will often refer to the nonzero
elements of x as the mutations present in x.
In designing the algorithm for choosing the solution

vector x, we assumed that any possible vector is penalized
with a penalty score based on observed patterns of driver
mutations in human cancers. We expect that each patient
has at least one mutation in the set of genes selected in the
solution; however, in some cases, the mutation may not be
detected. Also, while several distinct pathways need to be
mutated to result in a growing tumor, typically one muta-
tion in each of those pathways suffices. The chances of
accumulating additional mutations in the already mutated
pathway are low, and decrease with each additional muta-
tion. We capture this decreasing odds through a quadratic
penalty associated with x given the observed mutationsGi
in patient i

L(Gi, x) = 1 + k
2

(Gix − 1)
(
Gix − 2

1 + k

)
. (1)

The term Gix captures the number of mutations from
solution x present in patient i. The penalty is parameter-
ized by a non-negative real number k to be chosen by the
user. It captures the ratio of penalty for exactly two muta-
tions in genes from set x present in patient i to penalty for
no mutation from set x present in patient i. We incur no
penalty if the number of mutated genes from x in a given
patient is one. The effect of k on the penalty can be seen in
Fig. 1. For example, for a tumor with strong mutator phe-
notype where more mutations are present one can set k to
a low value, lowering the penalty for multiple mutations in
genes from set x present in a patient.
In addition, we expect that the number of genes harbor-

ing driver mutations in a given pathway is small. Hence,
we introduce a penalty on the number of genes selected in
the solution, in a form of L0 pseudo-norm, L0(x) = ||x||0.
The effect of introducing the penalty can be seen in Fig. 2.
The total penalty for a possible solution vector x is a sum

of per-patient penalties and the solution-size penalty:

L(G, x) =
n∑

i=1
L(Gi, x) + CL0(x)

=
n∑

i=1

1 + k
2

(Gix − 1)
(
Gix − 2

1 + k

)
+ C||x||0.

(2)
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Fig. 1 Effect of different values of parameter k on penalty L(Gi , x), in a
function of Gix, i.e., the number of mutations from solution x present
in patient i

The parameter C controls the trade-off between min-
imization of L(Gi, x) terms and of the L0 pseudo-norm.
It can alternatively be seen as the penalty incurred by
increasing the number of genes in the solution x by one.
Minimization of L(G, x) can be viewed as an uncon-

strained binary quadratic problem (BQP) with the solu-
tion space involving binary vectors x of length p:

minimize
x

xTQx − f Tx (3)

subject to 0 ≤ x ≤ 1
x ∈ Z

where Q = k + 1
2

GTG

f = k + 3
2

GT1n − C1p

where 1n represents a unit vector of length n.

Fig. 2 Illustration of the role of the penalty for the solution size on the
driver selection problem with six genes and four patients. Without the
L0 term, either violet or blue genes are equally good optimal solutions.
Inclusion of L0 pseudo-norm makes the blue solution a preferred one

BQPs are known to be NP-hard in general [51]. How-
ever, the optimal solution can be obtained quickly for
problems of small size. Our approach in solving this prob-
lem involves a meta-heuristic based on Markov-Chain-
Monte-Carlo search combined with optimal local search
for small subproblems. The algorithm is presented below.
The main QuaDMutEx algorithm goes through T itera-

tions, and in each considers a solution x containing up to
ν genes. In each iteration, a new candidate solution is gen-
erated by randomly modifying the current solution vector.
The new candidate solution is then modified by dropping
some genes, based on exact binary quadratic optimization
(Eq. 3) involving ν genes present in the candidate solu-
tion. If the optimized solution is better than the solution
from previous iteration, it is accepted. If not, it is accepted
with probability depending on the difference in quality of
the previous and the current solution. Throughout itera-
tions, the solution x∗ with the lowest value of the objective
function (Eq. 2) is kept.

Algorithm QuaDMutEx
1: procedure QUADMUTEX(G,C, k, ν,T ,�, σ )
2: x0 = 0
3: L∗ = L0 = ∞
4: for t ← 1, ...,T do
5: x=RANDOMGENERATENEWSOLUTION(xt−1, ν,�)
6: x, L=LOCALOPTIMIZESOLUTION(G, x,C, k)
7: if L < L∗ then
8: L∗ = L
9: x∗ = x

10: end if
11: P=exp(− L−Lt−1

σ
)

12: r=RANDOMUNIFORM[0,1]
13: if r < P then
14: Lt = L
15: xt = x
16: else
17: Lt = Lt−1

18: xt = xt−1

19: end if
20: end for
21: return x∗
22: end procedure

The random process generating a new candidate solu-
tion based on current solution always returns a solution
with exactly ν genes. If the current solution already has ν

genes, one of them will be randomly replaced with a gene
not in the solution. The gene to be removed is chosen at
random with uniform probability of 1/ν. The gene to be
added is chosen by random sampling from a distribution
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�∼x, which is defined through a user-supplied distribu-
tion � over all genes, modified to have 0 probability for
the genes currently in solution x. If the current solution
contains less than ν genes, the solution is expanded to
include ν genes, and the ν − ||x||0 genes to be added are
sampled without replacement according to �∼x. In our
experiments, we used � proportional to the logarithm
of the frequency of a mutation in a given gene among
patients in the dataset.

Algorithm QuaDMutEx: RandomGenerateNewSolution
1: procedure RANDOMGENERATENEWSOLU-

TION(x, ν,�)
2: if ||x||0 = ν then
3: x=RANDOMREPLACEONE(x,�∼x)
4: else
5: x=x + RANDOMSAMPLE(ν − ||x||0,�∼x)
6: end if
7: return x
8: end procedure

The local search for an improved new solution returns
an optimized solution x and its penalty score, L. It operates
by limiting the problem to the ν genes present in the new
candidate solution. That is, we create a n by ν submatrix
Gx by choosing from G columns for which x = 1. Thus,
we have an NP-hard binary QP problem with number of
variables small enough that that problem can be quickly
solved to the optimum using standard techniques. In our
experiments, for datasets with below 1000 patients, values
of ν up to 50 lead to BQP problems where global opti-
mum could be reached in less than a second on a desktop
workstation.

Algorithm QuaDMutEx: LocalOptimizeSolution
1: procedure LOCALOPTIMIZESOLUTION(G, x,C, k)
2: Gx = SUBMATRIX(G, x)
3: x, L = BINARYQP(Gx,C, k)
4: return x, L
5: end procedure

In the proposed approach, the solution vector x from
a single run of QuaDMutEx will capture a set of driver
genes that are functionally related and thus exhibit mutual
exclusivity pattern, for example genes that are all part of
a pathway that needs to be mutated in oncogenesis. To
uncover a comprehensive set of driver genes for a specific
cancer type, spanningmultiple functional subsystems vital
to oncogenesis, the algorithm should be applied multiple
times, each time removing the genes found in prior runs
from consideration.

Results and discussion
Evaluation on real cancer datasets
We evaluated the proposed algorithm using four somatic
mutation datasets (see Table 1), one from the Cancer
Genome Atlas (TCGA) database and three from litera-
ture. Two datasets were originally used by the authors
of Dendrix: somatic mutations in lung cancer (LUNG),
and a dataset relating to Glioblastoma Multiforme (GBM)
that includes not only somatic mutations but also copy
number alternations. The ovarian cancer dataset (OV)
was originally used by the authors of TiMEx tool [48]. A
larger dataset of mutations in samples from Breast Inva-
sive Carcinoma (BRCA) was downloaded from TCGA.
Following standard practice, in the BRCA dataset we
removed known hypermutated genes that have no role in
cancer [30], including olfactory receptors, mucins, and a
few other genes such as titin. For each dataset, each gene
in each patient was marked with one if it harbored one or
more mutation, and with zero otherwise, resulting in the
input matrix G for QuaDMutEx.

Quantitative evaluation of QuaDMutEx results
We ran QuaDMutEx on the four datasets: GBM, OV,
LUNG, and BRCA. In the tests, we set the maximum
size of the gene set to be ν = 30. We set k = 1,
indicating neutral stance with respect to the trade-off
between coverage and excess coverage. The value of C,
the weight of the gene solution size penalty, was set to
0.5 for GBM, the dataset with the smallest number of
genes measured, to 1 for the LUNG and OV datasets
which have twice the number of genes compared to GBM,
and to 1.5 for BRCA, the dataset with much larger num-
ber of genes. We ran QuaDMutEx for 10,000 iterations,
which corresponds to running times below 10 minutes
for each dataset. For GBM and BRCA, we also ran addi-
tional experiments with the default parameter values:
k = C = 1.
To assess statistical significance of the results returned

by QuaDMutEx, we used the method proposed in [44]. In
short, we randomly permuted the contents of each col-
umn of the input patient-gene matrix, which results in
randomized dataset in which, for each gene, the number
of patients harboring a mutation in the gene is preserved,
but any pattern of mutation within a row, that is, within

Table 1 Summary of mutation-only datasets used in
experimental validation of QuaDMutEx

Dataset Samples (n) Genes (p) Mutations

GBM 84 178 809

OV 316 312 3004

LUNG 163 356 979

BRCA 771 13,582 33,385
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each single patient, is lost. We created 1000 randomized
datasets and ran QuaDMutEx on each dataset. The value
of the objective function observed on the original dataset
was then compared with the distribution of objective
function values on the randomized datasets to obtain
a p-value estimate. The results of the tests, presented
in Table 2, show that for all four datasets, QuaDMu-
tEx returns gene sets that are statistically significant
at 0.05.
The quadratic penalty provides a single-metric mea-

sure for what is essentially a two-criterion optimization
problem involving simultaneous maximization of cov-
erage and mutual exclusivity. To capture each of these
independently, we used two metrics, coverage and excess
coverage:

• coverage =
number of patients covered by at least one gene from the set

total number of patients• excess coverage=
number of patients covered by more than one gene from the set
number of patients covered by at least one gene from the set

These metrics together capture how well a gene set con-
forms to the pattern expected of driver genes. Both of
the metrics range from 0 to 1. A perfect pattern would
have coverage of 1 and excess coverage of 0, indicating full
mutual exclusivity.

Comparison with other mutual-exclusivity-basedmethods
For comparison, we used RME [46], TiMEx [48], CoMEt
[47] and Dendrix [44] as they are all from the de novo
discovery family of methods [11] for driver detection,
and all utilize only genetic data, same as QuaDMutEx.
We ran the four tools on the same four datasets: GBM,
OV, LUNG, and BRCA. For TiMEx, , which does not
require the user to specify the number of genes in the
solution, we ran the tool with default parameters. Den-
drix, RME and CoMEt require the user to provide the
desired solution size. For Dendrix, we performed 29 runs
for each dataset, with the solution size parameter rang-
ing from 2 genes to 30 genes, and picked the solution

Table 2 Quantitative characteristics of QuaDMutEx results. For all
four datasets, the solutions are statistically significant at p < 0.05

Dataset Parameters Genes Quadratic Estimated
penalty p-value

GBM k = 1, C = 0.5 12 18 0.023

GBM k = C = 1 (default) 7 20.5 0.001

OV k = C = 1 (default) 3 17 0.010

LUNG k = C = 1 (default) 15 59 0.036

BRCA k = 1, C = 1.5 20 393 0.002

BRCA k = C = 1 (default) 26 399 0.002

size with the best Dendrix score. Each run involved 107
iterations. For CoMEt the running time increases steeply
with the requested solution size, thus we used sizes for
which a single run finishes in less than 48 h; in result,
we tested solution sizes 2, 3, 4 ,5 for GBM and OV,
between 2 and 6 for LUNG, and between 2 and 10 for
BRCA. For RME, we used solution sizes between 2 and
5 genes, as recommended by the authors of the tool. For
BRCA dataset, RME invoked with default parameters does
not return any valid solution; to circumvent this prob-
lem, we executed RME for BRCA with the minimum gene
frequency parameter lowered to 0.02 from the default
value of 0.1. For the other three datasets, we used the
default value.

Table 3 Comparison between QuaDMutEx and other methods.
For QuaDMutEx, we used default parameter values k = 1 and
C = 1 unless specified otherwise

Method Genes Coverage Excess Dendrix
coverage score

GBM: Glioblastoma multiforme

TiMEx 3 0.7857 0.0606 62

RME 3 0.7857 0.0606 62

CoMEt 5 0.8452 0.0845 65

Dendrix 9 0.8571 0.0556 68

QuaDMutEx (C=0.5) 12 0.9286 0.0769 72

QuaDMutEx 7 0.8690 0.0822 67

OV: Ovarian Cancer

TiMEx 2 0.9525 0 301

RME 5 0.9494 0.1 62

CoMEt 2 0.9525 0 301

Dendrix 3 0.9557 0 302

QuaDMutEx 3 0.9557 0 302

LUNG: Lung Adenocarcinoma

TiMEx 2 0.5521 0 90

RME 3 0.6748 0.1273 96

CoMEt 6 0.6196 0 101

Dendrix 12 0.6809 0.0270 108

QuaDMutEx 15 0.8160 0.1053 119

BRCA: Breast Invasive Carcinoma

TiMEx 3 0.4202 0.1006 289

RME 3 0.3865 0.0268 290

CoMEt 3 0.2620 0 202

Dendrix 29 0.5811 0.09598 402

QuaDMutEx (C=1.5) 20 0.6109 0.1338 408

QuaDMutEx 26 0.6342 0.1595 411

Highest result for each dataset indicated in italics
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We used the objective function maximized by Dendrix,
which can be expressed using the notation introduced in
theMethods section asDendrix score = n−∑n

i=1 |Gix−1|,
as the metric for evaluating the tool. Essentially, the
Dendrix score equals to total coverage minus coverage
overlap, where total coverage is the number of patients
covered by at least one gene from the given gene set,
and coverage overlap is total count of all mutations in
genes from the set that are in excess of one muta-
tion per patient. High-quality solutions should have high
Dendrix score.
The results of the tests, presented in Table 3, show

that QuaDMutEx consistently returns higher quality solu-
tions than all other methods. Only on the OV dataset,
Dendrix discovers the same set of genes as QuaDMutEx.
Remarkably, the quality of solutions from QuaDMutEx
is higher even though the score used as the metric, the
Dendrix score, is not function optimized by QuaDMu-
tEx, but is the objective function of Dendrix. These results
show that the proposed optimization scheme that com-
bines stochastic heuristic approach with exact solution to
a series of tractable subproblems is more efficient than
the heuristic approach employed in Dendrix. The puta-
tive cancer driver gene sets discovered by QuaDMutEx
are mostly different than sets returned by other tools
(see Fig. 3).

We also checked how QuaDMutEx performs with
respect to coverage and excess coverage, and compared
the results with those of Dendrix, RME, TiMEx, and
CoMEt. One of the features of QuaDMutEx is the flex-
ibility in choosing the parameter k, which controls the
trade-off between high coverage but higher excess cover-
age solutions and low excess coverage but lower coverage
solutions. Thus, we ran QuaDMutEx with a range of
values of parameter k = 0.25, 0.5, 1, 1.5, 2, 2.5, 4. As pre-
viously, the value of C was set to 0.5 for GBM, to 1 for
the LUNG and OV, and to 1.5 for BRCA. The number
of iterations was again set to 10,000. For each parame-
ter setting, we ran QuaDMutEx 5 times. We also gathered
results from 5 runs of Dendrix for the best-performing
solution size. For RME, TiMEx, and CoMEt the results
do not vary from run to run, so we instead picked top
five solution from a single run. Then, we quantified cov-
erage and excess coverage. The results in Fig. 4 show
that QuaDMutEx solutions are on the Pareto-optimality
frontier of all (RME, TiMEx, CoMEt, Dendrix and QuaD-
MutEx) solutions. For each Dendrix, TiMEx and CoMEt
solution, there is a QuaDMutEx solution that is better: has
higher coverage and lower excess coverage. These results
further confirm results from Table 3 showing that the
proposed tool improves upon the state-of-the-art. Data
for OV are not shown graphically, as there is very little

Fig. 3 Comparison of putative cancer driver gene sets returned by QuaDMutEx and the other tools. Genes found by a tool are in dark blue
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a

b

c

Fig. 4 Comparison of results from QuaDMutEx using different values
of parameter k with results from other tools, in terms of coverage and
excess coverage: a) GBM; b) LUNG; c) BRCA. In all three datasets,
QuaDMutEx results are on the Pareto frontier

variability in solutions returned by the methods and the
plot only confirms what is presented in Table 3.

Effects of parameters on QuaDMutEx
The proposed methods allows for adjusting the penalty
for expanding the solution size, through a parameter C
that corresponds to the additional penalty for increas-
ing the number of genes in the solution by one. It also
allows for tweaking the trade-off between coverage and
mutual exclusivity, through a parameter k that captures
the ratio of penalty for one excess mutation in a patient

to penalty for the patient not being covered by any muta-
tion. We have analyzed how these two parameters affect
the solution by running QuaDMutEx for 10,000 itera-
tions for parameters C = 0.25, 0.5, 1, 1.5, 2, 2.5, 4 and k =
0.25, 0.5, 1, 1.5, 2, 2.5, 4.
Figure 5 shows that the parameter C achieves its design

goal, that is, solutions with higher C include fewer genes.
The figures also show that as the penalty for the size of
the solution set is lowered, by specifying lower value of
C, the coverage of patients by genes in the solution tends
to increase for the three small datasets, where high val-
ues of C reduce the solution size to only a few genes and
thus necessarily lower coverage. This effect is not present
in the large dataset, BRCA, where C does not impact cov-
erage. Changing C does not show any impact on excess
coverage.
Changes in parameter k result in changes in coverage

and excess coverage, but has no substantial impact on the
number of genes in the solution. The results show that, as
intended, lower values of k lead to higher coverage, at the
cost of higher excess coverage, than high values of k. Thus,
for slow growing tumors, tumors with elevated mutator
phenotypes, or tumors in old patients, where many muta-
tions may occur by chance and higher excess coverage is
expected, low values of k is preferred over high k values.

Qualitative assessment of QuaDMutEx results
To validate the ability of QuaDMutEx to take only muta-
tion data and discover rare putative cancer driver genes,
which are the most hard to find using traditional methods
that rely on mutation frequency in patient population, in
each of the four datasets we focused on the genes in the
solution with the fewest number of mutations. See Table 4
for a complete list of all genes in the solution, and for
the number of mutations for each gene in each dataset.
In addition to literature review, we also used DriverDBv2
[7], a database of previously discovered cancer driver
genes, to further validate the quality of QuaDMutEx
solutions.
In the brain tumor dataset, eight identified genes are

each mutated in only 1 out of 84 patients. Out of these,
ITGB3 has known role in multiple cancers [52, 53],
TRIM2 has tumor suppressing function in ovarian cancer
[54] and plays a role in brain, the source of the ana-
lyzed tissue [55], WEE1 is already a target for cancer
therapy [56], and CHD5 is a known tumor suppressor [57].
Changes in expression of MARK4 have been observed
in glioblastomas [58]. While no cancer role has been so
far identified for carboxylesterase 3 (CES3), it is known
to be expressed in the source tissue of our samples, the
brain [59]. SHH gene has been linked to glioma growth
[60], as well as to other cancers [61]. Finally, IQGAP1
is believed to play a role in cell proliferation and cancer
transformation [62].
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Fig. 5 Effects of parameters C and k on QuaDMutEx results, i.e., coverage (a,d,g,j), excess coverage (b,e,h,k), and genes in solution (c,f,i,l), for GBM
dataset (a,b,c), OV dataset (d,e,f), LUNG dataset (g,h,i), and BRCA dataset (j,k,l)

In the ovarian cancer dataset, KRAS, a known proto-
oncogene, was found mutated in two patient. Eosinophil
cationic protein (RNase 3) was found in only one patient.
The protein, while not present in DriverDBv2 and not
directly related to oncogenesis, has cytotoxic activity and
was recently shown to inversely affect viability of cancer
cell lines [63] and thus its mutations may affect human
tumor growth.
In the QuaDMutEx solution for the lung datasets, six

putative cancer driver genes are each mutated in only two

of the 356 patients, and additional four are mutated in
single patients. Among these, role of ABL1 in cancer is
well established. PAK6 has been shown to be involved in
prostate cancer [64], and presence of MAST1 mutations
has been detected in lung samples [65]. The expression
of CYSLTR2 gene is a prognostic marker in colon can-
cer [66]. RPS6KA2 gene is a putative tumor suppressor
gene in ovarian cancer [67], and FES is a known proto-
oncogene [68]. BAX is an oncoprotein with known role in
cancers [69], including lung cancer [70]. Mutations in the
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Table 4 Putative driver gene sets discovered by QuaDMutEx

Putative driver genes Estimated
discovered by QuaDMutEx p-value

GBM: Glioblastoma multiforme

CDKN2B (43) TSFM (16) RB1 (10) ERBB2 (7)
ITGB3 TRIM2 WEE1 CHD5 MARK4 CES3 SHH
IQGAP1 (1)

0.023

OV: Ovarian cancer

TP53 (299) KRAS (2) RNASE3 (1)
0.010

LUNG: Lung Adenocarcinoma

KRAS (60) STK11 (34) EGFR (30) EPHB1 (4)
MAP3K3 (3) ABL1 PAK6MAST1 CYSLTR2
RPS6KA6 FES (2) BAX PIK3C2B RANBP9 RPSA (1)

0.036

BRCA: Breast Invasive Carcinoma

TP53 (194) PIK3CA (138) GATA3 (80) NBPF1 (27)
CTCF (18) ATM (16) FOXA1 (15) TMEM132C (6)
CABIN1 SRGAP2 KIAA1310 (5) CASP8AP2
TSNARE1 (4)ADCY1PITX2PSG11 (3)ANKRD34B
KRT14MSI1 TWISTNB (2)

0.002

For each gene, in parentheses, we provide the number of patients in the dataset
that harbored a mutation in that gene. Genes in bold are present int the DriverDBv2
[7] database of previously discovered cancer drivers

PIK3C2B gene were previously observed in lung and other
tumors [71, 72]. There is emerging evidence of a role of
RANBP9 gene in lung cancer [73]. The 67-kDA laminin
receptor gene RPSA, while not present in DriverDBv2, is
known to play a role in tumor growth [74, 75].
Among the putative driver genes discovered by QuaD-

MutEx in the BRCA samples, nine weremutated in four or
fewer of the 771 patients. Two among the genes that were
mutated inmore than four patients were not present in the
DriverDBv2 database: NBPF1 and KIAA1310. However,
NBPF1 has recently been identified as tumor suppressor
gene [76]. KIAA1310 (KANSL3) is a member of KANSL
family which plays a role in cell cycle and reduction of
its function is associated with cancer [77]. Of the rarely
mutated genes, only TSNARE1 gene is likely to be a false
positive. CASP8AP2 gene has been previously linked to
cancer [78, 79]. No direct role in oncogenesis for ADCY1
gene has been reported, however it has been found down-
regulated in osteosarcomas [80]. PITX2 is a recurrence
marker in breast cancer [81]. PSG11 gene has been shown
to be correlated with survival in ovarian cancer [82].
Ankyrin repeat proteins, though not ANKRD34B specifi-
cally, have been previously reported as promoting cancer
development [83]. KRT14 gene dysregulation was recently
linked with breast cancer metastases [84]. MSI1 is puta-
tive therapeutic target in colon cancer [85]. TWISTNB is
a component of the RNA polymerase I complex, and while
TWISTNB gene has not been previously linked to cancer,
mutations in polymerase subunits, cofactors, and media-
tors are known factors in malignancy [86]. Together, these

results confirm that QuaDMutEx is effective in identify-
ing cancer driver mutations even if they are rare in the
analyzed patient group.

Comparison with gene expression-based driver discovery
In addition to methods that use only genomic muta-
tion data, we also compared QuaDMutEx to Driver-
Net, a method that uses a biological network and gene
expression data in addition to mutation data. We used
four genomic-transcriptomic datasets that are provided
with the DriverNet tool: triple negative breast cancer
(eTNB), glioblastoma multiforme (eGBM), high-grade
serous ovarian cancer (eHGS), and METABRIC breast
cancer (eMTB) datasets. The summaries of the datasets
are provided in Table 5.
DriverNet was executed using default parameters on

the full information contained in the dataset, that is, the
genomic, transcriptomic, and biological network infor-
mation. The solution gene sets include all genes found
by DriverNet to be statistically significant at the 0.05
p-value threshold. QuaDMutEx was executed using only
the genomic data describing presence or absence of a
mutation in a given gene in a given patient. We used the
default value of k = 1, and set the value of C to 1.5, with
the exception of the smallest dataset, eTNB, for which
we used C = 1. We compared the putative cancer driver
gene sets discovered by the two tools using coverage,
excess coverage, and the Dendrix score, as described
above.
For the eGBM dataset, QuaDMutEx shows much higher

coverage and much lower excess coverage (see Table 6).
For the other three datasets, QuaDMutEx shows much
lower excess coverage than DriverNet, at the cost of a
moderate decrease in coverage. These results reflect the
fact that DriverNet is not designed to take mutual exclu-
sivity of genes into consideration. On the other hand,
DriverNet return many more genes than QuaDMutEx. A
single run of QuaDMutEx is designed to return a single set
of genes with low excess coverage, and does not include all
putative driver genes - these can be detected with another
run of QuaDMutEx.
To provide a comparison that does not involve mutual

exclusivity, we used the COSMIC database of muta-
tions in cancer, and we introduced iterated QuaDMutEx,

Table 5 Summary of genomic-transcriptomic datasets used in
comparison with DriverNet

Dataset Samples (n) Genes (p) Mutations

eTNB 94 4594 6007

eGBM 120 3747 8141

eHGS 316 13278 22897

eMTB 696 13076 51255
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Table 6 Comparison between QuaDMutEx and DriverNet

Method Genes Coverage Excess Dendrix
coverage score

eTNB: Triple negative breast cancer

DriverNet 64 0.6809 0.4688 18

QuaDMutEx (C=1) 16 0.8315 0.0270 72

eGBM: Glioblastoma multiforme

DriverNet 19 0.9412 0.8839 -183

QuaDMutEx (C=1.5) 6 0.8067 0.0938 87

eHGS: high-grade serous ovarian cancer

DriverNet 77 0.9430 0.6946 -110

QuaDMutEx (C=1.5) 14 0.8734 0 276

eMTB: METABRIC breast cancer

DriverNet 92 0.4670 0.7785 -1151

QuaDMutEx (C=1.5) 18 0.4071 0.0876 250

Highest result for each dataset indicated in italics

which increases the number of genes found by QuaDMu-
tEx to the numbers similar to DriverNet. We performed
four executions of QuaDMutEx, after each run remov-
ing the genes discovered so far from the dataset, so that
they do not prevent discovery of additional genes that
are not mutually exclusive with previously discovered
ones. We then pooled the four high-exclusivity gene sets
into a single high-coverage set. Since mutual exclusiv-
ity can be expected only for a set of functionally-related

genes, for example genes from a single cancer-related
pathway, a single call to QuaDMutEx corresponds to
a single-pathway query, and calling QuaDMutEx itera-
tively corresponds to a multi-pathway query, facilitat-
ing comparison with DriverNet which does not have a
single-pathway focus.
To measure the quality of solutions returned by Driver-

Net and iterated QuaDMutEx in a way independent of
any mutual exclusivity of gene mutations, we compared
the numbers of COSMIC occurrences of mutations in
genes returned by DriverNet with occurrence numbers
for QuaDMutEx gene sets. Specifically, for each gene in
a discovered gene set, we queried COSMIC for the num-
ber of observed mutations in that gene. We then plotted a
complementary cumulative distribution function (CCDF)
over the numbers over the whole gene set. For exam-
ple, for the eHGS dataset, for both QuaDMutEx and
DriverNet, the CCDF value at 1000 is approximately 0.14,
indicating that for both methods, 14% of the genes in
the solution set have more than 1000 mutation each in
COSMIC, while for 86% of genes in the solution set a
COSMIC query for the gene results in at most 1000
mutations. The results in Fig. 6 indicate that iterated
QuaDMutEx and DriverNet perform similarly on eTNB
and eGBM datasets, and on eHGS and eMTB both per-
form similarly for majority of the mutation counts range,
with DriverNet having an edge at the numbers below that
threshold.
Genes returned by QuaDMutEx are to large extent

different than those returned by DriverNet (see Fig. 7),

a b

c d

Fig. 6 Complementary cumulative distribution function plots for QuaDMutEx, iterated QuaDMutEx, and DriverNet, for eTNB (a), eGBM (b), eHGS (c),
and eMTB (d) datasets
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Fig. 7 Comparison of putative cancer driver gene sets returned by QuaDMutEx, iterated QuaDMutEx, and DriverNet. Genes found by a tool are in
dark blue

showing that the expression-based approach used in
DriverNet and the mutation-only approach used in
QuaDMutEx are complementary. We validated the genes
discovered by QuaDMutEx (Table 7) in DriverDB2, a
database of genes previously discovered as cancer drivers.
For eTNB and eGBM datasets, all the genes discov-
ered by QuaDMutEx are present in DriverDB2 database.
In eHGS dataset, only ANKRD36B was not found in
DriverDB2. However, ANKRD36B gene was identified in
rare germline copy number variations in renal clear cell
carcinoma [87], and also correlates with cellular sensi-
tivity to chemotherapeutic agents [88]. In eMTB dataset,
TRA@ gene is not present in DriverDB2, but it has
been previously found to be linked to breast cancer [89].
TRA@ os also one of the genes that were discovered
both by DriverNet and by QuaDMutEx. TBC1D3P2 is
recurrently mutated in meningioma cell lines [90] and
is a pseudogene for TBC1D3, a known oncogene [91].
There is no information available about AC116655.7-12
and AC116165.7-3, and at this point we classify both as
false positives.

Conclusions
Superior ability to improve on both coverage and excess
coverage of the detected driver gen sets on datasets from
different types of cancer shows that QuaDMutEx is a tool

Table 7 Putative driver gene sets discovered by QuaDMutEx

Putative driver genes Estimated
discovered by QuaDMutEx p-value

eTNB: Triple negative breast cancer

TP53 (35) PARK2 (6) ROBO2 DUSP22 (4)
SAGE1 ANKRD11 NR3C1 (3) BAP1 BRAF ATG7 (2)
ZNF257 IDH3B ZNF826 RP11-119B16.1 PSG5
MSR1 (2)

0.001

eGBM: Glioblastoma multiforme

CDKN2B (52) TP53 (38) NUP107 (9) HLA-E SAC
SPRED3

0.001

eHGS: high-grade serous ovarian cancer

TP53 (249) GLI1 (3) ABHD6 CHMP4A EP400
EPS8L3 FRMD1 (2) GPATCH8MCM4 GFRA1
LPPR4 PTK2WRN ANKRD36B (2)

0.001

eMTB: METABRIC breast cancer

C17orf37(MIEN1) (82) BAG4 (52) CLNS1A (37)
PSG1 (24) C20orf133(MACROD2) (19) BCAS1 (17)
PTEN(16) RTF1 ALOXE3 (7) TRA@ AC116165.7-3 (6)
TBC1D3P2 (5) CTSK AC116655.7-12 LANCL2 (4)
ITSN2 (3) DEFB126 (3) SLC35F3 (2)

0.001

For each gene, in parentheses, we provide the number of patients in the dataset
that harbored a mutation in that gene. Genes in bold are present in the DriverDBv2
[7] database of previously discovered cancer drivers
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that should be part of a state-of-the-art toolbox in the
driver gene discovery pipeline. It can help detect low-
frequency driver genes that can be missed by existing
methods.
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