910 research outputs found

    Feature Papers of Drones - Volume I

    Get PDF
    [EN] The present book is divided into two volumes (Volume I: articles 1–23, and Volume II: articles 24–54) which compile the articles and communications submitted to the Topical Collection ”Feature Papers of Drones” during the years 2020 to 2022 describing novel or new cutting-edge designs, developments, and/or applications of unmanned vehicles (drones). Articles 1–8 are devoted to the developments of drone design, where new concepts and modeling strategies as well as effective designs that improve drone stability and autonomy are introduced. Articles 9–16 focus on the communication aspects of drones as effective strategies for smooth deployment and efficient functioning are required. Therefore, several developments that aim to optimize performance and security are presented. In this regard, one of the most directly related topics is drone swarms, not only in terms of communication but also human-swarm interaction and their applications for science missions, surveillance, and disaster rescue operations. To conclude with the volume I related to drone improvements, articles 17–23 discusses the advancements associated with autonomous navigation, obstacle avoidance, and enhanced flight plannin

    Parallel and Distributed Computing

    Get PDF
    The 14 chapters presented in this book cover a wide variety of representative works ranging from hardware design to application development. Particularly, the topics that are addressed are programmable and reconfigurable devices and systems, dependability of GPUs (General Purpose Units), network topologies, cache coherence protocols, resource allocation, scheduling algorithms, peertopeer networks, largescale network simulation, and parallel routines and algorithms. In this way, the articles included in this book constitute an excellent reference for engineers and researchers who have particular interests in each of these topics in parallel and distributed computing

    The 7th Conference of PhD Students in Computer Science

    Get PDF

    Simulating the Integration of Urban Air Mobility into Existing Transportation Systems: A Survey

    Full text link
    Urban air mobility (UAM) has the potential to revolutionize transportation in metropolitan areas, providing a new mode of transportation that could alleviate congestion and improve accessibility. However, the integration of UAM into existing transportation systems is a complex task that requires a thorough understanding of its impact on traffic flow and capacity. In this paper, we conduct a survey to investigate the current state of research on UAM in metropolitan-scale traffic using simulation techniques. We identify key challenges and opportunities for the integration of UAM into urban transportation systems, including impacts on existing traffic patterns and congestion; safety analysis and risk assessment; potential economic and environmental benefits; and the development of shared infrastructure and routes for UAM and ground-based transportation. We also discuss the potential benefits of UAM, such as reduced travel times and improved accessibility for underserved areas. Our survey provides a comprehensive overview of the current state of research on UAM in metropolitan-scale traffic using simulation and highlights key areas for future research and development

    Green Parallel Metaheuristics: Design, Implementation, and Evaluation

    Get PDF
    Fecha de lectura de Tesis Doctoral 14 mayo 2020Green parallel metaheuristics (GPM) is a new concept we want to introduce in this thesis. It is an idea inspired by two facts: (i) parallel metaheuristics could help as unique tools to solve optimization problems in energy savings applications and sustainability, and (ii) these algorithms themselves run on multiprocessors, clusters, and grids of computers and then consume energy, so they need an energy analysis study for their different implementations over multiprocessors. The context for this thesis is to make a modern and competitive effort to extend the capability of present intelligent search optimization techniques. Analyzing the different sequential and parallel metaheuristics considering its energy consumption requires a deep investigation of the numerical performance, the execution time for efficient future designing to these algorithms. We present a study of the speed-up of the different parallel implementations over a different number of computing units. Moreover, we analyze and compare the energy consumption and numerical performance of the sequential/parallel algorithms and their components: a jump in the efficiency of the algorithms that would probably have a wide impact on the domains involved.El Instituto Egipcio en Madrid, dependiente del Gobierno de Egipto

    Maximum Independent Set: Self-Training through Dynamic Programming

    Full text link
    This work presents a graph neural network (GNN) framework for solving the maximum independent set (MIS) problem, inspired by dynamic programming (DP). Specifically, given a graph, we propose a DP-like recursive algorithm based on GNNs that firstly constructs two smaller sub-graphs, predicts the one with the larger MIS, and then uses it in the next recursive call. To train our algorithm, we require annotated comparisons of different graphs concerning their MIS size. Annotating the comparisons with the output of our algorithm leads to a self-training process that results in more accurate self-annotation of the comparisons and vice versa. We provide numerical evidence showing the superiority of our method vs prior methods in multiple synthetic and real-world datasets.Comment: Accepted in NeurIPS 202
    • …
    corecore