5,995 research outputs found

    Efficient linear feedback shift registers with maximal period

    Get PDF
    We introduce and analyze an efficient family of linear feedback shift registers (LFSR's) with maximal period. This family is word-oriented and is suitable for implementation in software, thus provides a solution to a recent challenge posed in FSE '94. The classical theory of LFSR's is extended to provide efficient algorithms for generation of irreducible and primitive LFSR's of this new type

    Guaranteeing the diversity of number generators

    Get PDF
    A major problem in using iterative number generators of the form x_i=f(x_{i-1}) is that they can enter unexpectedly short cycles. This is hard to analyze when the generator is designed, hard to detect in real time when the generator is used, and can have devastating cryptanalytic implications. In this paper we define a measure of security, called_sequence_diversity_, which generalizes the notion of cycle-length for non-iterative generators. We then introduce the class of counter assisted generators, and show how to turn any iterative generator (even a bad one designed or seeded by an adversary) into a counter assisted generator with a provably high diversity, without reducing the quality of generators which are already cryptographically strong.Comment: Small update

    Enumeration of Linear Transformation Shift Registers

    Full text link
    We consider the problem of counting the number of linear transformation shift registers (TSRs) of a given order over a finite field. We derive explicit formulae for the number of irreducible TSRs of order two. An interesting connection between TSRs and self-reciprocal polynomials is outlined. We use this connection and our results on TSRs to deduce a theorem of Carlitz on the number of self-reciprocal irreducible monic polynomials of a given degree over a finite field.Comment: 16 page

    Using classifiers to predict linear feedback shift registers

    Get PDF
    Proceeding of: IEEE 35th International Carnahan Conference on Security Technology. October 16-19, 2001, LondonPreviously (J.C. Hernandez et al., 2000), some new ideas that justify the use of artificial intelligence techniques in cryptanalysis are presented. The main objective of that paper was to show that the theoretical next bit prediction problem can be transformed into a classification problem, and this classification problem could be solved with the aid of some AI algorithms. In particular, they showed how a well-known classifier called c4.5 could predict the next bit generated by a linear feedback shift register (LFSR, a widely used model of pseudorandom number generator) very efficiently and, most importantly, without any previous knowledge over the model used. The authors look for other classifiers, apart from c4.5, that could be useful in the prediction of LFSRs. We conclude that the selection of c4.5 by Hernandez et al. was adequate, because it shows the best accuracy of all the classifiers tested. However, we have found other classifiers that produce interesting results, and we suggest that these algorithms must be taken into account in the future when trying to predict more complex LFSR-based models. Finally, we show some other properties that make the c4.5 algorithm the best choice for this particular cryptanalytic problem.Publicad

    Revisiting LFSMs

    Full text link
    Linear Finite State Machines (LFSMs) are particular primitives widely used in information theory, coding theory and cryptography. Among those linear automata, a particular case of study is Linear Feedback Shift Registers (LFSRs) used in many cryptographic applications such as design of stream ciphers or pseudo-random generation. LFSRs could be seen as particular LFSMs without inputs. In this paper, we first recall the description of LFSMs using traditional matrices representation. Then, we introduce a new matrices representation with polynomial fractional coefficients. This new representation leads to sparse representations and implementations. As direct applications, we focus our work on the Windmill LFSRs case, used for example in the E0 stream cipher and on other general applications that use this new representation. In a second part, a new design criterion called diffusion delay for LFSRs is introduced and well compared with existing related notions. This criterion represents the diffusion capacity of an LFSR. Thus, using the matrices representation, we present a new algorithm to randomly pick LFSRs with good properties (including the new one) and sparse descriptions dedicated to hardware and software designs. We present some examples of LFSRs generated using our algorithm to show the relevance of our approach.Comment: Submitted to IEEE-I
    corecore