
Information and Computation171, 350–363 (2001)
doi:10.1006/inco.2001.3045, available online at http://www.idealibrary.com on

Guaranteeing the Diversity of Number Generators

Adi Shamir

Department of Applied Mathematics, The Weizmann Institute of Science, Rehovot 76100, Israel
E-mail: shamir@wisdom.weizmann.ac.il

and

Boaz Tsaban

Department of Mathematics, Bar-Ilan University, Ramat-Gan 52900, Israel
E-mail: tsaban@macs.biu.ac.il

URL: http://www.cs.biu.ac.il/˜tsaban

Received February 22, 2001

A major problem in using iterative number generators of the formxi = f (xi−1) is that they can enter
unexpectedly short cycles. This is hard to analyze when the generator is designed, hard to detect in real
time when the generator is used, and can have devastating cryptanalytic implications. In this paper we
define a measure of security, calledsequence diversity, which generalizes the notion of cycle-length
for noniterative generators. We then introduce the class of counter-assisted generators and show how to
turn any iterative generator (even a bad one designed or seeded by an adversary) into a counter-assisted
generator with a provably high diversity, without reducing the quality of generators which are already
cryptographically strong. C© 2001 Elsevier Science
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1. INTRODUCTION

In this paper we consider the problem of generating long cryptographically secure sequences by iter-
ative number generators which start at some seed valuex0= s and extend it by computingxi = f (xi−1)
where f is some function. Thei th output of the generator is a (typically shorter) valueyi = g(xi ) derived
from the internal state by some output functiong (Fig. 1). If f is a secret keyed function, theng may
be the identity.

A major application of number generators is to encrypt cleartexts byXORing them with the generated
outputs. In this case, the seeds is a secret key which is shared by the communicating parties, but is
unknown to the eavesdropping adversary.

Since the state space is finite, the sequence of internal statesxi will eventually become periodic with
some periodp; i.e., xi = xi+p for all i larger than somei0. Any cycling of the state sequence causes a
cycling of the output sequence with periodat most p. A particularly worrisome problem is the possibility
that i0 and p may be unexpectedly small, and therefore the cycling pointi0+ p is actually achieved.
This can happen even in very complex generators. An interesting example is Knuth’s Super-random
number generator (AlgorithmK) [9, Sect. 3.1], which converges rapidly to a fixed point (that is,i0 is
very small, andp= 1).

If the cycling point i0+ p is achieved, then theXOR of the i th and i + pth ciphertexts is equal
to the XOR of the i th andi + pth cleartexts, for alli ≥ i0. If the cleartexts have a sufficiently high
redundancy, the cryptanalyst can detect the cycling by noticing the nonuniform statistics of suchXOR’s
and then recover the actual cleartexts from their known pairwiseXOR’s. Even if the cleartexts have no
redundancy, knowledge of some cleartexts will make it possible to find other cleartexts encrypted with
the same repeated values.

1.1. Partial Solutions
1.1.1. Online Monitoring

A possible solution to this problem is to monitor each execution in real time. If a particular seed leads
to early cycling, the cryptographic operation is stopped and the seed is replaced. However, this can be
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very disruptive if the exchange of new seeds is time consuming or difficult to arrange. Note further that
real time detection of cycling behavior using hash tables requires a very large memory, whereas other
methods such as Floyd’s two pointer cycle detection algorithm (see, e.g., [9, p. 7]) are not guaranteed
to detect cycles as soon as they are entered.

1.1.2. Experimental Testings

The designer of the generator can test its behavior by applyingf a limited number of times to a
limited number of random seeds (see [2]). However, such testing cannot be exhaustive, and thus even
if no cycling is ever detected in these tests, the next seed or the next step can lead to a cycling.

1.1.3. Pseudorandom Functions

Pseudorandom functions f: X→ X are functions which are chosen from the space of all possible
functionsg : X→ X with a relatively low-entropy distribution, but which are difficult to tell apart from
truly randomfunctions (which are selected from the space of all possible functionsg : X→ X with
uniform distribution). For any adversary with unlimited computational power and access to a polynomial
(in log |X|) number of values of a pseudorandom functionf , the probability that the adversary can tell
that these values came fromf rather than from a truly randomg should be negligible.Pseudorandom
permutationsand pseudorandom sequencesare defined similarly to be low entropy but difficult to
distinguish from truly random permutations and sequences, respectively. For more precise definitions
see [7, 10, 13, Sect. 2.2, 20] and references therein.

It is easy to see (and well known) that sequences generated by iterative number generators with
pseudorandom functionsf are pseudorandom. Thus, the probability that such a generator enters a small
cycle is negligible. However, all known constructions of pseudorandom functions are slow and are based
on unproved conjectures (see [16, Sect. 17.9]). In fact, all practical functions used in cryptography are
ad-hoc constructions which are not proved to be pseudorandom, and nothing is known about the actual
structure of the cycles they generate.1 This is particularly worrisome for the user, since there is no
guarantee that the generators that he or she uses do not contain a trapdoor leading to short cycles.2

1.1.4. Mathematically Structured Generators

The need to avoid short cycles is the major motivation behind the development of several families
of generators based on mathematical structures. These families include linear congruential generators,
linear feedback shift registers (LFSR’s), clock-controlled LFSR’s, additive generators, feedback with
carry shift registers, 1/p generators (see [16 Sects. 16–17] and references therein), and TSR’s [18].
Under certain conditions, these families can be proved to have large cycles.

The drawback of this approach is that their mathematical structure can be often used to cryptanalyze
them (see [16, Sects. 16–17] for references to cryptanalysis of various implementations of the mentioned
generators).

1 A notable exception appears in [8] and [5], where the cycle structure of nonlinear feedback shift registers is studied. However,
the obtained results cover only degenerate cases. Moreover, in [8] it is proved that the studied generatorsmust haveshort cycles.

2 Knuth’s example could be viewed as such a trapdoor generator.
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1.1.5. Re-keying

Chambers [3] suggested a technique to reduce the risk of short cycles by restarting the generator’s
internal state every fixed number of iterations, with a new key seed taken from a re-keying generator
which has a provably large cycle (e.g., one of the generators mentioned in Section 1.1.4).

Given an iterative generator, letpk, k= 1,2, . . . , be the probability that the cycling point of the
generator occurs after at leastk iterations. Assume that we use the generator to get an output sequence
of sizem. The probability that we do not reach the cycling point in the usual iterative mode ispm. Now,
if we re-key the generator everyk iterations, then the probability that we do not reach the cycling point
even once ispm/k

k . As nothing is known on the cycle structure of the generator, there is no guarantee
that pm/k

k is greater thanpm. It may thus be the case that the re-keying mode is worse than the standard
iterative mode.

Moreover, if the re-keying generator is cryptographically weak, then it could be cryptanalyzed from
the outputs which come immediately after the re-keying phases.

One should note further that, as Schneier points out in [16, Sect. 17.11], algorithms that have a long
key setup routine are not suitable for this mode.

1.1.6. Similarity Transformations and Counter-mode

Another possible solution is to take some simple permutationu which is guaranteed to have long
cycles (e.g.,u(x)= x+ 1 (modn), or any of the examples from Section 1.1.4.) and then to usef u f−1

(instead off ) as the iteration function. This similarity transformation has the same cycle structure asu.
Such a construction is, though, rather degenerate. Let〈 f, g〉 stand for a generator whose iteration

function is f and whose output function isg. Consider a generator of the form〈 f u f−1, g〉. Defineg̃ = g◦
f . Then for all seedss, settings̃= f −1(s) implies that thei th output isg(( f u f−1)i (s))= g( f ui f −1(s))=
(g ◦ f )(ui (s̃))= g̃(ui (s̃)); that is, the generator is equivalent to the generator〈u, g̃〉. This means that the
modified generator is equivalent to another generator with a cryptographically weak iteration function.

Foru(x)= x+ 1 (modn) we conclude that for somẽg, thei th output of the generator equalsg̃(s̃+ i ).
Generators of the formyi = g(s+ i ) are calledcounter-modegenerators and are a standard mode
of operation [16, Sect. 9.9]. However, such generators have the following unpleasant property: The
difference of any two input valuess+ i ands+ j to g is simply i − j . If i is close toj , theni − j has
a small Hamming weight. This fact could be used in differential or correlation cryptanalysis ofg. This
is also the case for other choices ofu, e.g., ifu is an LFSR, thenui (s) andu j (s) are equal in all except
for i − j bits.

2. THE DIVERSITY OF SEQUENCE GENERATORS

In this section we propose a new notion of security for sequence generators, which generalizes the
cryptographically desirable concept of long cycles.

We first define the notion of diversity for a single infinite sequence.

DEFINITION 2.1. Thediversity of a sequencex= (x0, x1, x2, . . . ) is the functionDx(k) for k=
1,2,3, . . . defined as the minimum number of distinct values occurring in any contiguous subsequence
xi , xi + 1, . . . , xi + k−1 of lengthk in x.

All of the sequences considered in this paper have a finite sample space of|X| =n possible values.
For any sequencex in X,

1≤Dx(k)≤Dx(k+ 1)≤Dx(k)+ 1≤ n.

In other words, the diversity grows monotonically and at most linearly withk and cannot exceedn.
We now generalize the concept from sequences to generators. We first define the types of generators

considered in this paper:

DEFINITION 2.2. An iterative generatoris a structureG=〈X,Y, f : X→ X, g : X→Y〉, where for
all x ∈ X, f (x) andg(x) can be computed in polynomial time fromx. X is the state space, andY is the
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output space. We may writeG=〈 f, g〉 for short orG : xi = f (xi−1) if the output function is not relevant.
For a generatorG : xi = f (xi−1) and seeds ∈ X, we denote thestate sequence(x0= s, x1, . . . ) of the
generated internal states byG(s).

We wish to bound from below the diversity of the sequences of internal states generated from possible
seeds.

DEFINITION 2.3. Thediversity of an iterative generatorG : xi = f (xi−1) is the function

DG(k)= min{DG(s)(k) : s ∈ X}

defined fork= 1,2,3, . . . . Thetotal diversityof G is the limit limk→∞DG(k).3

Iterative generators on finite spaces have simple diversity functions.

LEMMA 2.1. Assume thatG : xi = f (xi−1) is an iterative generator.

1. Letx be a sequence(of internal states)created byG. ThenDx(k)= min{k, p} where p is the
length of the cycle thatx enters into.

2. DG(k)= min{k, p} where p is the length of the shortest cycle in f .

Proof. x has distinct values before it enters the cycle and while it completes the first traversal of the
cycle. This implies (1) and (2) follows from (1).

The diversity of an iterative generator is thus directly related to the size of its smallest cycle. It is
intended to capture one aspect of the worst case behavior of a generator in the sense that generators
with provably high diversity cannot repeat a small number of internal states a large number of times as
a result of an unlucky or adversarial choice of seed.

The diversity measure can be applied to noniterative generators, in which the computation ofxi may
depend on its indexi as well.

DEFINITION 2.4. Acounter-dependentgenerator is a structureG=〈X,Y, F : X×N→ X, g : X→Y〉,
where for allx ∈ X and i ∈ N, F(x, i ) andg(x) can be computed in polynomial time fromx. X is
the state space, andY is the output space. In this type of generators, the next state is calculated by
xi = F(xi−1, i ). Here too, we denote thestate sequence(x0= s, x1, . . . ) of generated internal states by
G(s).

Note that iterative as well as counter-mode generators are particular cases of counter-dependent
generators. A straightforward generalization of Definition 2 for counter-dependent generators is:

DEFINITION 2.5.

1. The diversity of a counter-dependent generatorG : xi = F(xi−1, i ) is the functionDG(k)=
min{DG(s)(k) : s ∈ X}defined fork= 1,2,3, . . . . Thetotal diversityDtotal

G ofG is the limit limk→∞DG(k).

2. A counter-dependent generatorG : xi = F(xi−1, i ) is g(k)-diverseif DG(k)≥g(k) for all k=
1,2, . . . .

The diversity of a general counter-dependent generator can grow and freeze in an irregular way when
k increases, since these generators are not forced into a cycle when they accidentally repeat the same
xi value. The diversity function is thus a natural generalization of the notion of cycle size.

3. MODIFYING GENERATORS

In this section we consider several ways in which we can modify a given iterative generator in order
to increase its diversity. The main intuitive conditions we impose on this process are:

3 Andersonet al. [2] suggested a statistically oriented notion of diversity for random number generators, based on experimental
testings of the generator. These testings give estimations for theaverage casebehavior, whereas our notion bounds theworst case
behavior of the generator. Moreover, the combinatorial nature of our notion will make it possible to use mathematical theory in
order to apply it to cases where experimental testings are not suitable (e.g., when the state space is huge). See also Section 1.1.2.
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Condition 3.1. We do not want to design the new generator from scratch. We usually prefer to use
known and well-studied primitives such as DES, RC5, or nonlinear feedback shift registers, for which
highly optimized code can be easily obtained or reused from other parts of the application. We thus
want the modified design to use the same cryptographic ingredients as the original design.

Condition 3.2. The computational complexity of the modified next-state function must not be
significantly greater than that of the original one.

Condition 3.3. The modification technique should be uniformly applicable to all iterative generators,
treating them as black boxes. We do not want the modification to be based on the mathematical or
statistical properties of the given iteration functionf . In particular, we cannot assume that we know the
structure of its cycles.

Condition 3.4. We are more interested in increasing the diversity of the interval valuesxi than in
increasing the diversity of the output valuesyi = g(xi ): If the given generator uses an output functiong
with a small range (e.g., a single bit) applying diversity measures to the output values is meaningless.

The modification should be a win–win situation: If the given generator has a low diversity, the problem
should be rectified, but if the given generator is already strong, we do not want the modification to weaken
it. The problem is that we do not have a general quantitative definition of the goodness of generators,
except when they are perfect. We thus concentrate in this paper on the following formal interpretation.

Condition 3.5.

1. For any given iteration function, the modified generator should beg(k)-diverse for someg(k)
which is exponential in logn.

2. If the iteration functionf is pseudorandom, then the state sequences generated from random
seeds by the modified generator should be pseudorandom.

As in counter-mode (see Section 1.1.6), our black box modification technique is based on turning
the iterative generator into a counter-dependent generator, allowingxi to depend oni in addition to
xi−1. To sharpen our intuition, let us consider somebadconstructions. (In the following examples and
throughout the paper, the state spaceX is identified with the set{0,1, . . . ,n− 1}, and addition in the
state space is carried modulon.)

EXAMPLE 3.1. xi = i . This function has maximal diversity, but poor cryptographic quality.

EXAMPLE 3.2. xi = f (i ). This is the standard counter-mode. Perfect generators remain perfect, but
for a constantf the diversity is 1.

EXAMPLE 3.3. xi = f (i )+ i . This is a simple combination of the previous two examples. Perfect
generators remain perfect, but forf (x)= −x, all the generatedxi are 0, and thus the diversity is 1.

EXAMPLE 3.4. xi = f (xi−1+ i ). This is an attempt to force the next state to depend both on the
previous state and on the index. Perfect generators remain perfect, but the generated sequence has
diversity 1 whenf is a constant function.

EXAMPLE 3.5. xi = f (xi−1+ i )+ i . This is the “kitchen sink” approach, trying to combine all the
ingredients in all possible ways. However, when the functionf is f (x)= −x, the sequence generated
from any initial seedx0= s is s,−s, s,−s, s,−s, . . . which contains at most two values.

Considering these counter-examples, the reader may suspect that all black box modifications are bad
(for some f ). In the next section we show that this is not the case.

4. A PROVABLY GOOD MODIFICATION TECHNIQUE

Given an iterative generator〈 f, g〉, we apply the following black box modification.

DEFINITION 4.1. A counter-assisted generator〈 f, g〉 is a generator in whichx0= s, and for all
i ≥ 1, xi = f (xi−1)+ i (mod n), wheren is the size of the state space, and thei th output isg(xi )
(see Fig. 2).
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Since it is easy to maintain or obtain a counter for the number of values produced so far (in many
applications, one can use either the loop counter or the running block-number as a counter for the
counter-assisted mode), and no change is made in the functionf or g, the modification technique
is completely trivial and can be applied to any iterative generator without increasing its comple-
xity.

Formally, for all generators〈X,Y, f, g〉, the counter-assisted modified generator is in fact the iterative
generator〈X × {0, . . . ,n− 1},Y, F,G〉, where

F(x, i ) = ( f (x)+ i (mod n), i + 1 (modn))
(1)

G(x, i ) = g(x).

However, note that:

1. The only secret part is located in thex coordinate,

2. incrementingi has no cryptographical significance, and

3. the output calculationG(x, i ) is independent of thei -coordinate.

Thus applying diversity measures on the whole state spaceX × {0, . . . ,n− 1}—that is, measuring the
diversity of the sequences of pairs (xi , i ), i = 1,2, . . .—is misleading (and, in fact, not informative).
This is why the diversity measure is focused on the actual state sequencesG(s)= (x0= s, x1, . . . ) rather
than on the sequence of pairs (xi , i ).

LEMMA 4.1. Let x= (x0, x1, x2, . . . ) be a state sequence of a counter-assisted generator. Then for
all i 6= j (mod n), if xi = xj then xi+1 6= xj+1 and xi−1 6= xj−1.

Proof. We argue modulon. By definition,xi + 1= f (xi )+ (i + 1) andxj + 1= f (xj )+ ( j + 1). If
xi = xj but i 6= j , then necessarilyxi+1 6= xj+1. Now, for the very same reason,xi−1= xj−1 would
imply xi 6= xj , which is not the case.j

In other words, the sequencex has the interesting property that equality at any pair of locations implies
inequality at the pair of their immediate successors and the pair of their immediate predecessors. We call
this the isolated equality property. This is the intuitive reason why counter-assisted generators cannot
enter short cycles: If they accidentally generate the same value at several locations, all the subsequent
computations are guaranteed to diverge rather than converge.

THEOREM 4.1.

1. The black box modification technique modifyingG : xi = f (xi−1) to G ′ : xi = f (xi−1)+ i
(mod n) is max{g(k),h(k)}-diverse,where

g(k)=
{√

k− 1 k ≤ n√
n n< k

, and h(k)=
{

k/| Im( f )| k ≤ n

n/| Im( f )| n < k
.
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2. If the iteration function f is pseudorandom,then the state sequences generated from random
seeds by the modified generator are pseudorandom.

Proof. (1) We first show thatg(k) ≤ DG ′ (k) for all k= 1,2, . . . . Consider any sequence ofk
consecutive valuesxi , xi + 1, . . . , xi + k−1 (k ≤ n+ 1) and assume that it contains exactlyν distinct
values. There areν2 possible ordered pairs of these values (a, b), and by Lemma 4.1 each one of them
can occur at most once in a consecutive pair of locations (xj , xj + 1) along the sequence. Since there are
k− 1 such locations,ν2 ≥ k− 1, which yields the desired lower bound onν.

Next, we need to show thath(k) ≤ DG ′ (k) for all k= 1,2, . . . . In a sequence ofk consecutive values
xi , xi + 1, . . . , xi + k−1 (k ≤ n+ 1), eachxj is of the formcj + j , wherecj ∈ Im( f ). Since we addk
distinct values to at most| Im( f )| values, we get at leastk/| Im( f )| distinct values.

(2) We now sketch the proof of the pseudorandomness part. Consider the following sequence of
oracles, which accept a numberk (which is polynomial in logn) and output a sequencex1, . . . , xk ∈ X.
(By randomwe mean statistically independent and uniformly distributed.)

Oracle 1: Returns a random sequencexi ∈ X (i = 1,2, . . . ,k).

Oracle 2: Chooses a random seedx0= s, and defines anf : X→ X on the fly, as follows:

1. A flagBirthday is initially set to 0.

2. For eachi = 1,2, . . . ,k:

— If f (xi−1) is undefined, then choose a randomy ∈ X and definef (xi−1)= y.
— Otherwise, setBirthday= 1.

3. Setxi = f (xi−1)+ i .

The remaining values off are chosen randomly.

Oracle 3: Chooses a particular functionf with uniform probability from the set of all func-
tions from X to X, chooses a random seedx0= s, and returns the sequencexi with xi = f (xi−1)+ i ,
i = 1,2, . . . ,k.

Oracle 4: Same as Oracle 3, but withf pseudorandominstead of truly random.

We say that two oracles aredistinguishableif there exists a (not necessarily polynomial time) algorithm
(calleddistinguisher) which, for some constantc > 0, given a sequence of length polynomial in logn,
can tell with probability greater than 1/ log(n)c which oracle has generated this sequence. Otherwise,
the oracles areindistinguishable. It is clear that Oracles 2 and 3 are indistinguishable. That Oracles 3
and 4 are indistinguishable follows from the fact that any distinguisher of these oracles can be used to
construct a distinguisher of pseudorandom functions from random ones.

It remains to show that Oracles 1 and 2 are indistinguishable. The only possible constraint on the
output of Oracle 2 happens whenf is applied twice to the same argument, that is,Birthday is set to 1.
It is well known that fork¿ n, the probability that no birthday occurs is close tok2/(2n) [17], which
is negligible ifk is polynomial in logn. j

Remark. The upper boundk2/(2n) on the distinguishing probability is tight: In probability close to
k2/(2n), a birthdayxi = xj occurs and the distinguisher can check thatxi+1− (i + 1)= xj+1− ( j + 1).
Provided this, the probability that the output came from Oracle 1 is 1/n.

5. ASYMPTOTIC TIGHTNESS OF THE PROVABLE DIVERSITY

The square root lower bound on the diversity may seem to be an artifact of the proof technique. We
first consider the purely combinatorial version of the problem: What is the longest sequence one can
construct fromν distinct symbols which has the isolated equality property?

LEMMA 5.1. For any positive integerν, there exists a sequence of lengthν2+ 1 consisting ofν
symbols and having the isolated equality property.

Proof. Let C be a complete directed graph withν vertices andν2 directed edges (including self
loops). As the graph is connected and the indegree and outdegree of each vertex inC is the same (=ν),
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the graph is Eulerian. Letv0e0v1e1 · · · vν2−1eν2−1v0 be an Eulerian tour, which includes each directed
edge exactly once. Assume that for some distincti and j ,vi = v j . If vi+1= v j+1, then necessarilyei = ej ,
which is disallowed in Eulerian tours. Similarly,vi−1= v j−1 would imply ei−1= ej−1. Consequently,
the sequence has the isolated equality property.j

This combinatorial result does not rule out the possibility that sequences created by counter-assisted
generators must satisfy additional constraints, and as a result the lower bound in Theorem 4.1 can be
improved significantly. We will show that this is not the case: We prove the asymptotic tightness of
our lower bound by constructing for eachn a specific counter-assisted generator such that the total
diversities of these counter-assisted generators areO(

√
n).

THEOREM 5.1. There exist functions fn, n= 1,2, . . . such that the total diversitiesDtotal
Gn

of the
counter-assisted generatorsGn : xi = fn(xi−1)+ i (mod n) are O(

√
n).

Proof. Fix a natural numbern. We will write for short f andG instead offn andGn, respectively.
The state sequence ofG will be based on two sequences:a0,a1, . . . ,aα−1 andb0, b1, . . . ,bβ−1 (the

values ofα andβ will be determined later). The sequences are meshed as follows:

1. Locations with even indices contain only theai values, and locations with odd indices contain
only thebj values.

2. Theai values occur in block order: The firstβ occurrences area0, the nextβ occurrences are
a1, and so on.

3. Thebj values occur in cyclic order: The firstβ occurrences areb0, . . . , bβ−1 in this order, the
nextβ occurrences are againb0, . . . ,bβ−1 in this order, and so on.

Putting these blocks in consecutive rows, we get a matrixC= (ci j ) of sizeα × 2β, whereci,2 j =ai

andci,2 j+1= bj :

C=


a0 b0 a0 b1 · · · a0 bβ−1

a1 b0 a1 b1 · · · a1 bβ−1
...

...
...

...
...

...
aα−1 b0 aα−1 b1 · · · aα−1 bβ−1

 .

We define a functionf for which the counter-assisted generatorG : xi = f (xi−1)+ i , seeded by
x0=a0, has state sequence equal to our meshed sequence.

We begin with a few simple restrictions on our parameters. For cyclicity the counter must return to
0 after 2αβ steps; that is, 2αβ = 0 (modn). We will considerα’s andβ ’s such that 2αβ = n to make
the sequence shorter. The isolated equality property implies that all of theai andbj values are distinct.
Thus, the total diversity will beα+β.

Under these restrictions, we can see via elementary calculus that the choiceα=β =√n/2 yields the
minimum possible total diversity ofα+β =√2n values.

We thus begin withn’s for whichn/2 is a square and chooseα=β =√n/2.
We now consider the specific values of the elements in our meshed sequence. The conditions are:

ci, j+1= f (ci j )+ 2βi + ( j + 1), ci + 1,0= f (ci,2β−1)+ 2β(i + 1)− 1, andc00= f (cα−1,2β−1)+ 2αβ. In
terms of theai andbj this is:

bj = f (ai )+ 2βi + (2 j + 1)

ai = f (bj )+ 2βi + (2 j + 2) ( j = 0, . . . , β − 2)

ai = f (bβ−1)+ 2βi .

Settingx= f (a0), the first equation yieldsbj = x+ (2 j + 1) for i = 0. Putting this back in the equa-
tion we get thatf (ai )= x− 2βi for all i . Similarly, the second equation implies (settingy= f (b0))
ai = y+ 2βi + 2 andf (bj )= y−2 j for all j < β−1. The third equation withi = 0 givesf (bβ−1)=a0=
y+ 2.
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We therefore have, for any choice ofx, y, the following requirements:

ai = y+ 2+ 2βi
f7→ x− 2βi

bj = x+ 1+ 2 j
f7→ y− 2 j ( j <β − 1)

bβ−1 = x − 1+ 2β
f7→ y+ 2.

It is easy to check that any such definition yields the desired sequence of states, as long as the resultant
ai andbj ’s are disjoint. As we assume thatn is even, choosing anyx andy having the same parity (e.g.,
x= y= 0) will do.

The values off on X \{ai , bj } can be arbitrary. It remains to check that the sequence is repeated
after everyα · 2β steps. Indeed, the counter will be 2αβ = 0 (modn), and thusx2αβ= f (x2αβ−1)+ 0=
f (bβ−1)=a0, so we are right where we begun.

We now treat the cases wheren/2 is not a square. Setα=β =b√n/2 c, and defineai , bj , and f
as above. Now modifyf (x) to f (x mod 2αβ). The above argument shows that if we project the state-
sequencex modulo 2αβ, we get diversity at mostα+β =O(

√
n). Therefore, the actual diversity can

be no more thanO(
√

n) · dn/(2αβ) e=O(
√

n) · 2=O(
√

n). j

Remark. In most practical cases,n/2 is not a square and thus we cannot achieve the exact
√

2n
upper bound using our meshing construction. However, in many casesn is an even power of 2 (e.g., 224,
232, 264, 2128, etc.), so we can chooseα=√n andβ =√n/2 (note that 2αβ = n) to get total diversity
α+β = 3

√
n/2, which is close to the

√
2n upper bound achieved in the case wheren/2 was a square.

Our construction showed that the bound
√

n for the total diversity is asymptotically tight. However,
we do not have a construction whereDG(k) is O(

√
k) for all k simultaneously.

Open problem 5.2. Does there exist a constantc such that for all sufficiently largen, there exists a
counter-assisted generatorG (with state space of sizen) such thatDG(k) ≤ c

√
k for all k?

6. CASCADE COUNTER-ASSISTED GENERATORS

In this section we generalize the notion of counter-assisted generators.
A Latin square is a binary function which is uniquely invertible given its output and any one of

the inputs. For example, the operationsx+ y (mod n), x− y (mod n) and x ⊕ y are Latin square
operations. Moreover, every group operation is a Latin square operation, and ifx ? y is a Latin square
operation andP, Q, Z are permutations, thenZ(P(x) ? Q(y)) is a Latin square operation. Let? be a
Latin square operation.

It is easy to see that the proof of Theorem 4.1 applies when the+ i modification is replaced by
any Latin square operation?i (unique invertibility with respect to thei input guarantees the isolated
equality property, and unique invertibility with respect to thexi input guarantees the pseudorandomness
of the states). We can thus extend the concept of counter-assisted generators to include these cases as
well.

Remark. Whenn is a power of 2, we can use essentially the same construction as in the proof of
Theorem 5.1 to show the optimality of theÄ(

√
n) lower bound when the+ i (mod n) modification is

replaced by a⊕i modification.
The next lemma shows that counter-mode generators are a degenerated case of counter-assisted

generators.

LEMMA 6.1. Every counter-mode generator is a counter-assisted generator.

Proof. A counter-mode generator withi th output g(s ? i ) is equivalent to the counter-assisted
generatorG=〈 f, g〉, where f ≡ s, and the Latin square operation is?, since in this case,xi = f (xi−1)?
i = s ? i . j

We can extend the notion of counter-assisted generators further. Assume thatG=〈 f, g, X,Y〉
is an iterative generator, and letc=〈c0, c1, . . .〉 be any sequence of elements inX. Define the
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sequence-assisted generatorG ? c to be the generator whosei th state isxi = f (xi−1) ? ci (and whose
i th output isg(xi )).

THEOREM 6.1. LetG=〈 f, g〉 ? c be a sequence-assisted generator. Then:

1. DG(k) ≥ √Dc(k)− 1 for all k= 1,2, . . . .

2. If the the sequencec is pseudorandom,then the state sequence ofG is pseudorandom.

3. If f is pseudorandom,then the state sequence ofG is pseudorandom.

Proof. (1) As in Lemma 4, we can show thatci 6= cj implies (xi−1, xi ) 6= (xj−1, xj ). The rest of the
proof is similar to the proof of Theorem 4.1 (1).

(2) If the state sequence ofG is not pseudorandom, then the sequencec can be distinguished from
pseudorandom noise by considering〈 f, g〉 ? c and looking at the state sequence ofG.

(3) This is proved as in Theorem 4.1 (2); the only difference is in the definition of Oracle 3.j

Thus, any sequencec with large diversity can be used instead of a counter. In particular, we can use
the output of any of the generators mentioned in Section 1.1.4 as the assisting sequence. In general,
assume thatC is any generator with output inX. DefineG ? C=G ? c, wherec=〈c0, c1, . . .〉 is the output
sequence ofC (note that the sequencec depends of the initialization ofC). The following definition is
inductive.

DEFINITION 6.1. G is acascadecounter-assisted generator if:

1. G is a (standard) counter-assisted generator, or

2. G=F ? C, whereF is an iterative generator,? is a Latin square operation, andC is a cascade
counter-assisted generator.

In particular, we have:

LEMMA 6.2. Every iterative generator is a cascade counter-assisted generator.

Proof. If G is an iterative generator, andC is a generator with output function 0, thenG+ C=G is
a cascade counter-assisted generator.j

Thus the notion of cascade counter-assisted generators extends those of iterative, counter-mode, and
counter-assisted generators.

Ideally, all internal states of the cascaded generators (including the starting position of the counteri )
should be initialized by random, independent seeds. If this is not feasible, one can, e.g., initialize the
“driving” generator or the counter with a random seed and then clock the cascade a few times to make
all internal states depend on the seed. In this case, however, caution must be taken to make sure that
particular choice of output functions does not make the influence of the seed “vanish” while going down
the cascade.

EXAMPLE 6.1. Assume that the generatorsA, B, andC have state spaces of sizen= 2256 (256 bits).
Assume further that the generatorC is counter-based with an invertible output functiongC and that
the output functiongB of B is invertible as well. Consider the total diversity of the cascade generator
A+ (B ⊕ C) (see Fig. 3): AsC is counter-based, we haveDC(n)= n. Thus by Theorem 6.1 (and
discreteness),DB⊕C(n)≥d√n− 1e=2128 andDA+ (B⊕C)(n)≥d√DB⊕C(n)− 1e≥264. Moreover, if
the output function ofC, or any of the iteration functions ofB, A is pseudorandom, then the state
sequence ofA is pseudorandom as well. (We can also use, e.g., a maximal length LFSR instead of the
counter-based generatorC to get the same results.)

Remark. In this section we have seen that every iterative generator can be viewed as a cascade
counter-assisted generator (in a degenerate manner). On the other hand, as mentioned in Section 4,
every counter-assisted generator can be viewed as an iterative generator (with a larger state space). The
advantage of our approach is that we focus on the cryptographical part of the generator, from which the
output is calculated, rather than on the state of the whole system.
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7. GENERATING SEQUENCES WITH MAXIMAL DIVERSITY

If we allow the design of a new output functiong, then we can modify any generator to have the
maximal possible diversityDG(k)= k for all k= 1,2, . . . ,n.

DEFINITION 7.1. LetG be any iterative generator. Modify its next-state function as follows:

x2i+1 = f (x2i )

x2i+2 = f (x2i+1)+ i .

That is, the counter is incremented and added to the state value only once every two iterations of the
generator. The pair of generated values (x2i , x2i + 1) is used as the argument of a new output function
g′ : X× X→Y×Y. We call this mode of operationthe two-step counter-assisted mode. More generally,
thet-step counter-assisted modeis defined by incrementing and adding the counter once everyt iterations
and using eacht-tuple as the input of a new output functionĝ : Xt→Yt . Formally, thet-step generator
G=〈 f, g, X,Y〉 with Latin square operation?i is the counter-assisted generatorG t =〈 f̂ , ĝ, Xt ,Yt 〉
with the (injective) operation̂?i , where

• f̂ (x0, . . . , xt−1)= ( f (xt−1), f 2(xt−1), . . . , f t (xt−1)),

• (x0, . . . , xt−1)?̂i = (x0, . . . , xt−1 ? i ), and

• i is a cyclic counter in the range 0,1, . . . ,n− 1.

Note thatt-step counter-assisted generators require a state buffer of sizet .
For all t ≥ 2, anyt-step counter-assisted generator has maximal possible diversity:

THEOREM 7.1. For any generatorG=〈 f, g〉, and for all t≥ 2,we have the following:

1. If f is pseudorandom,then the state sequences ofGt are pseudorandom.

2. DGt (k)= k for all k = 1, . . . ,n.

x2

x1

f

x1

2

x’

g’

+3

+1

i

4

FIG. 4. A two-step counter-assisted generator.
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Proof. The proof of the pseudorandomness part is similar to that in Theorem 4.1.
To prove the diversity part, assume that for somei 6= j (mod n) we have equality between thet-tuples

(xit , . . . , xit+t−1) and (xjt , . . . , xjt+t−1). In particular,xit+t−2= xjt+t−2. But this impliesxit+t−1=
f (xit+t−2)+ i 6= f (xjt+t−2)+ j = xit+t−1 (mod n), a contradiction. j

7.1. Black-Box Modifications of the Output Functiong

If the computational complexity of evaluating the new output functiong′ in the two-step mode is at
most double that of evaluatingg, then on average, the computational complexity of obtaining the next
output does not change: We clock the generator twice, but we get two outputs at once. If the output
spaceY is equal toX then we can get very close to this without designing a new output function.

We will use the terminology of [13]. For a functiong : X→ X, define theFeistel permutation Dg : X×
X→ X×X by Dg(L , R)

def= (R, L⊕g(R)). (Here too, any Latin square operation? can be used instead
of ⊕.)

If the output functiong is key dependent, then we can use a Luby–Rackoff construction. Denote the
key space byK , and assume that the size of the key space is exponential in logn.

THEOREM 7.2. Assume that the mappingκ 7→ gκ is pseudorandom and thatκ1, κ2, and κ3 are
pseudorandom elements of K . Then for all functions f: X→ X and seeds x0∈ X, the two-step generator
〈 f̂ , Dgκ1

◦ Dgκ2
◦ Dgκ3

〉 has pseudorandom output.

Proof. By Theorem 7.1, for all iteration functionsf and seedsx0 ∈ X, the inputs toDgκ1
◦Dgκ2

◦Dgκ3
are all distinct. By a result of Luby and Rackoff [11], this implies pseudorandomness of the output.j

This construction makes the output calculation slower by a factor of 3 : 2. The computational com-
plexity of the following alternative is closer to the desired optimum and is a more straightforward
modification.

THEOREM 7.3. Assume that g: X→ X is pseudorandom, and assume that h: X→ X is pseudo-
randomly chosen from a family H of functions such that for all distinct x, y ∈ X and for all z∈ X,
the probability that h(x)⊕ h(y)= z (h ∈ H ) is negligible. Then for all functions f: X→ X and seeds
x0 ∈ X, the two-step counter-assisted generator〈 f̂ , Dg ◦ Dg ◦ Dh〉 has pseudorandom output.

Proof. By a result of Lucks [12] (see also [13]),Dg ◦ Dg ◦ Dh is pseudorandom. The rest of the
proof is like in Theorem 7.2. j

There exist very efficient familiesH with the property mentioned in Theorem 7.1 (see [13] for
examples and references). Thus, the computational overhead of applyingh is small, and the resulting
generator is almost as efficient as the original one. Note that, unlike the results in earlier sections, we
get here a black box modification of an iterative generator〈 f, g〉 which has maximal output diversity,
and if either one of the functionsf or g is pseudorandom, then the output sequence is pseudorandom.

EXAMPLE 7.1. Let f = DES [14], g= RC5 [15], andhκ : {0,1}64→{0, 1}64 be a function from
Vazirani’sshift family(the i th bit of hκ (x) is

∑n
i=1 xi κ j+i−1 mod 2; see [13] and [19]). The two-step

counter-assisted generator〈D̂ES,DRC5◦ DRC5◦ Dhκ〉 has maximal (state and output) diversityk for all
k= 1,2, . . . ,264. On average, the calculation of any output 64 bit block requires a single invocation
of DES and a single invocation of RC5. The execution time overhead of the rest of the operations is
negligible. Furthermore, ifeither one of the twofunctions DES and RC5 is difficult to distinguish from
random, then the output sequence will be difficult to distinguish from random as well.

OPENPROBLEM 7.4. Assume that both f and g are(truly) random,and consider an output sequence
of length m generated from a random seed by the two-step counter-assisted generatorG2=〈 f̂ , Dg◦Dg〉.
What is the highest distinguishing probability between such a sequence and a random sequence?

Remark. Using the results from [13], we get that for allt , the output function of thet-step counter-
assisted mode can be modified in a black-box manner with a small computational overhead to get the
same diversity and pseudorandomness results. See [13] for details.

Remark. In certain cases, whent is large (e.g.,t ≥ 4) it is desirable that the inputs to thet-step
output function are distinct in as many entries as possible (for example, this guarantees many active
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S-boxes in differential cryptanalysis of the output function). We can achieve this goal via letting the
next state be the same as when clocking the (standard) counter-assisted generatort times (that is, the
counter is incremented and added to thexi value every clock). By the isolated equality property, this
guarantees that any twot-tuples are distinct in at leastbt/2c entries. In this mode of operation, the
diversity remains maximal as long ask< n/t .

7.2. Safe Transition to New Generations of Cryptographic Functions

A common practice in the design of new generations of cryptographic functions is to double the input
and output length. Nowadays, we experience the evolution from 64 bit functions (such as DES, RC5,
etc.) to 128 bit functions (such as the AES candidates [1]). The advantage of old generation functions is
that they have gone through years of extensive academic research and are thus well understood. It will
take a long time to gain similar confidence in the new generation functions.

Our two-step counter-assisted mode suggests a natural and straightforward way to combine new and
old generation functions in a way that ifeither oneof them is pseudorandom, then the resulting generator
is pseudorandom: Assume thatf is an old generation function andg is a new generation function with
double input size. Then we simply use the two-step counter-assisted generator〈 f̂ , g〉.

EXAMPLE 7.2. In Example 7.1, we can use RC6 instead ofDRC5 ◦ DRC5 ◦ Dhκ as the output func-
tion. This results in a faster and more elegant generator. Here too, the diversity is maximal for all
k= 1, . . . ,264, and the generator is difficult to distinguish from random if either DES or RC6 is.

7.3. Cascaded Multiple-Step Counter-Assisted Generators

If we have enough state-space (this is usually the case with software encryption), we can cascade
multiple-step counter-assisted generators without decreasing the diversity. Consider for example gen-
eratorsG0,G1, . . . ,Gm−1 having the same state-space and output-space. For any sequence of positive
integerst0< t1< · · ·< tm−1, and Latin-square operations?t0, . . . , ?tm−2 (on spaces of sizet0, t1, . . . , tm−2

blocks, respectively), the (t0, t1, . . . , tm−1)-step cascadeis defined to be

G cascade=G tm−1
m−1?̂tm−2 · · · ?̂t1G t1

1 ?̂t0 G t0
0

in the sense of Definition 6.1. Here, (x0, . . . , xt j+1−1) ?̂t j (y0, . . . , yt j−1) is defined as the concatenation
of (x0, . . . , xt j+1−t j−1) and (xt j+1−t j , . . . , xt j+1−1) ?t j (y0, . . . , yt j−1).

Using this notation, we have the following:

THEOREM 7.5. For all generatorsG0,G1, . . . ,Gm−1 having the same state-space and output-space,

and for any Latin-square operations?t0, . . . , ?tm−2 (on spaces of size t0< t1< · · ·< tm−2 blocks,respecti-
vely),the(t0, t1, . . . , tm−1)-step cascadeGcascade=G tm−1

m−1?̂tm−2 . . . ?̂t1G t1
1 ?̂t0G t0

0 has the following properties:

1. DGcascade(k)= k for all k= 1,2, . . .n.

2. If either the iteration or the output function of any of the cascaded generators is pseudorandom,

then the output ofGcascadeis pseudorandom as well.

Proof. (1) follows from Theorem 7.1, by induction onm. (2) follows readily from Theorem 6.1.
j

8. CONCLUDING REMARKS AND FURTHER RESEARCH

We have presented a new mode of operation which makes the diversity of every state sequence
provably large with a negligible computational cost. Unlike other solutions, this mode does not introduce
new (trivial) risks. The well-known threat of “no available theory” on the cycle structure of complicated
iterative generators (see, e.g., [4, p. 525], [3, p. 22], [16, Sect. 17.6], and [6, p. 347]) is eliminated. It is
important to stress, however, that the diversity measures only one aspect of security and is clearly not
sufficient for evaluating the cryptographical strength of the generator.
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Our new mode has various possible implementations via multiple-stepping and/or cascading which
allow the user a wide range of choices to fit the implementation to his or her constraints and needs. All
of the suggested modes require a counter, but in most of the applications a counter either already exists
or is easy to maintain. The cascaded mode reduces the provable diversity with respect to the simple
counter-assisted mode, but it suggests an interesting new way to combine the cryptographic strength
of several generators. The multiple-stepping mode requires a larger state buffer (and thus may be more
suitable in software applications), but ensures perfect diversity.

The cryptographical impact of our modification technique when the functionsf or g are not pseudo-
random remains open. It is easy to find pathological examples of output functions where the modification
makes things worse, but we believe that such pathological cases will be easy to inspect. However, if the
user wants complete confidence, then he or she may wish to replace the output functiong by one that
he or she trusts. In this case, it may be worthwhile to use the generator in the two-step mode and gain
the maximal possible diversity as in Section 7.

As we have proved, in the multiple-stepping modes it is enough that either the iterationor the output
function is pseudorandom to obtain pseudorandom output. This suggests combining two functions from
“orthogonal” sources, such as in Example 7.1, and combining strength of well-studied primitives with
with new, promising ones, as in Example 7.2.

The counter-assisted mode suggests many open problems. Some of these problems are mentioned in
the paper. To these we can add practical problems such as the challenge of finding a seeds for which the
counter-assisted generator with DES as the iteration function hasDDES(s)(k) ≈ √k for some largek and
theoretical problems such as statistical analysis of the behavior of the state sequence of counter-assisted
generators.
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