1,551 research outputs found

    A Survey on Routing Protocols for Large-Scale Wireless Sensor Networks

    Get PDF
    With the advances in micro-electronics, wireless sensor devices have been made much smaller and more integrated, and large-scale wireless sensor networks (WSNs) based the cooperation among the significant amount of nodes have become a hot topic. “Large-scale” means mainly large area or high density of a network. Accordingly the routing protocols must scale well to the network scope extension and node density increases. A sensor node is normally energy-limited and cannot be recharged, and thus its energy consumption has a quite significant effect on the scalability of the protocol. To the best of our knowledge, currently the mainstream methods to solve the energy problem in large-scale WSNs are the hierarchical routing protocols. In a hierarchical routing protocol, all the nodes are divided into several groups with different assignment levels. The nodes within the high level are responsible for data aggregation and management work, and the low level nodes for sensing their surroundings and collecting information. The hierarchical routing protocols are proved to be more energy-efficient than flat ones in which all the nodes play the same role, especially in terms of the data aggregation and the flooding of the control packets. With focus on the hierarchical structure, in this paper we provide an insight into routing protocols designed specifically for large-scale WSNs. According to the different objectives, the protocols are generally classified based on different criteria such as control overhead reduction, energy consumption mitigation and energy balance. In order to gain a comprehensive understanding of each protocol, we highlight their innovative ideas, describe the underlying principles in detail and analyze their advantages and disadvantages. Moreover a comparison of each routing protocol is conducted to demonstrate the differences between the protocols in terms of message complexity, memory requirements, localization, data aggregation, clustering manner and other metrics. Finally some open issues in routing protocol design in large-scale wireless sensor networks and conclusions are proposed

    Routing Protocols for Large-Scale Wireless Sensor Networks: A Review

    Get PDF
    With the advances in micro-electronics, wireless sensor gadgets have been made substantially littler and more coordinated, and large-scale wireless sensor networks (WSNs) based the participation among the noteworthy measure of nodes have turned into a hotly debated issue. "Large-scale" implies for the most part large region or high thickness of a system. As needs be the routing protocols must scale well to the system scope augmentation and node thickness increments. A sensor node is regularly energy-constrained and can't be energized, and in this manner its energy utilization has a very critical impact on the adaptability of the protocol. To the best of our insight, at present the standard strategies to tackle the energy issue in large-scale WSNs are the various leveled routing protocols. In a progressive routing protocol, every one of the nodes are separated into a few gatherings with various task levels. The nodes inside the abnormal state are in charge of data aggregation and administration work, and the low level nodes for detecting their environment and gathering data. The progressive routing protocols are ended up being more energy-proficient than level ones in which every one of the nodes assume a similar part, particularly as far as the data aggregation and the flooding of the control bundles. With concentrate on the various leveled structure, in this paper we give an understanding into routing protocols planned particularly for large-scale WSNs. As per the distinctive goals, the protocols are by and large ordered in light of various criteria, for example, control overhead decrease, energy utilization mitigation and energy adjust. Keeping in mind the end goal to pick up a thorough comprehension of every protocol, we feature their imaginative thoughts, portray the basic standards in detail and break down their points of interest and hindrances. Also a correlation of each routing protocol is led to exhibit the contrasts between the protocols as far as message unpredictability, memory necessities, localization, data aggregation, bunching way and different measurements. At last some open issues in routing protocol plan in large-scale wireless sensor networks and conclusions are proposed

    Routing Protocols for Large-Scale Wireless Sensor Networks: A Review

    Get PDF
    With the advances in micro-electronics, wireless sensor gadgets have been made substantially littler and more coordinated, and large-scale wireless sensor networks (WSNs) based the participation among the noteworthy measure of nodes have turned into a hotly debated issue. "Large-scale" implies for the most part large region or high thickness of a system. As needs be the routing protocols must scale well to the system scope augmentation and node thickness increments. A sensor node is regularly energy-constrained and can't be energized, and in this manner its energy utilization has a very critical impact on the adaptability of the protocol. To the best of our insight, at present the standard strategies to tackle the energy issue in large-scale WSNs are the various leveled routing protocols. In a progressive routing protocol, every one of the nodes are separated into a few gatherings with various task levels. The nodes inside the abnormal state are in charge of data aggregation and administration work, and the low level nodes for detecting their environment and gathering data. The progressive routing protocols are ended up being more energy-proficient than level ones in which every one of the nodes assume a similar part, particularly as far as the data aggregation and the flooding of the control bundles. With concentrate on the various leveled structure, in this paper we give an understanding into routing protocols planned particularly for large-scale WSNs. As per the distinctive goals, the protocols are by and large ordered in light of various criteria, for example, control overhead decrease, energy utilization mitigation and energy adjust. Keeping in mind the end goal to pick up a thorough comprehension of every protocol, we feature their imaginative thoughts, portray the basic standards in detail and break down their points of interest and hindrances. Also a correlation of each routing protocol is led to exhibit the contrasts between the protocols as far as message unpredictability, memory necessities, localization, data aggregation, bunching way and different measurements. At last some open issues in routing protocol plan in large-scale wireless sensor networks and conclusions are proposed

    Software Defined Networks based Smart Grid Communication: A Comprehensive Survey

    Get PDF
    The current power grid is no longer a feasible solution due to ever-increasing user demand of electricity, old infrastructure, and reliability issues and thus require transformation to a better grid a.k.a., smart grid (SG). The key features that distinguish SG from the conventional electrical power grid are its capability to perform two-way communication, demand side management, and real time pricing. Despite all these advantages that SG will bring, there are certain issues which are specific to SG communication system. For instance, network management of current SG systems is complex, time consuming, and done manually. Moreover, SG communication (SGC) system is built on different vendor specific devices and protocols. Therefore, the current SG systems are not protocol independent, thus leading to interoperability issue. Software defined network (SDN) has been proposed to monitor and manage the communication networks globally. This article serves as a comprehensive survey on SDN-based SGC. In this article, we first discuss taxonomy of advantages of SDNbased SGC.We then discuss SDN-based SGC architectures, along with case studies. Our article provides an in-depth discussion on routing schemes for SDN-based SGC. We also provide detailed survey of security and privacy schemes applied to SDN-based SGC. We furthermore present challenges, open issues, and future research directions related to SDN-based SGC.Comment: Accepte
    • …
    corecore