4 research outputs found

    Joint dimensioning of server and network infrastructure for resilient optical grids/clouds

    Get PDF
    We address the dimensioning of infrastructure, comprising both network and server resources, for large-scale decentralized distributed systems such as grids or clouds. We design the resulting grid/cloud to be resilient against network link or server failures. To this end, we exploit relocation: Under failure conditions, a grid job or cloud virtual machine may be served at an alternate destination (i.e., different from the one under failure-free conditions). We thus consider grid/cloud requests to have a known origin, but assume a degree of freedom as to where they end up being served, which is the case for grid applications of the bag-of-tasks (BoT) type or hosted virtual machines in the cloud case. We present a generic methodology based on integer linear programming (ILP) that: 1) chooses a given number of sites in a given network topology where to install server infrastructure; and 2) determines the amount of both network and server capacity to cater for both the failure-free scenario and failures of links or nodes. For the latter, we consider either failure-independent (FID) or failure-dependent (FD) recovery. Case studies on European-scale networks show that relocation allows considerable reduction of the total amount of network and server resources, especially in sparse topologies and for higher numbers of server sites. Adopting a failure-dependent backup routing strategy does lead to lower resource dimensions, but only when we adopt relocation (especially for a high number of server sites): Without exploiting relocation, potential savings of FD versus FID are not meaningful

    On Integrating Failure Localization with Survivable Design

    Get PDF
    In this thesis, I proposed a novel framework of all-optical failure restoration which jointly determines network monitoring plane and spare capacity allocation in the presence of either static or dynamic traffic. The proposed framework aims to enable a general shared protection scheme to achieve near optimal capacity efficiency as in Failure Dependent Protection(FDP) while subject to an ultra-fast, all-optical, and deterministic failure restoration process. Simply put, Local Unambiguous Failure Localization(L-UFL) and FDP are the two building blocks for the proposed restoration framework. Under L-UFL, by properly allocating a set of Monitoring Trails (m-trails), a set of nodes can unambiguously identify every possible Shared Risk Link Group (SRLG) failure merely based on its locally collected Loss of Light(LOL) signals. Two heuristics are proposed to solve L-UFL, one of which exclusively deploys Supervisory Lightpaths (S-LPs) while the other jointly considers S-LPs and Working Lightpaths (W-LPs) for suppressing monitoring resource consumption. Thanks to the ``Enhanced Min Wavelength Max Information principle'', an entropy based utility function, m-trail global-sharing and other techniques, the proposed heuristics exhibit satisfactory performance in minimizing the number of m-trails, Wavelength Channel(WL) consumption and the running time of the algorithm. Based on the heuristics for L-UFL, two algorithms, namely MPJD and DJH, are proposed for the novel signaling-free restoration framework to deal with static and dynamic traffic respectively. MPJD is developed to determine the Protection Lightpaths (P-LPs) and m-trails given the pre-computed W-LPs while DJH jointly implements a generic dynamic survivable routing scheme based on FDP with an m-trail deployment scheme. For both algorithms, m-trail deployment is guided by the Necessary Monitoring Requirement (NMR) defined at each node for achieving signaling-free restoration. Extensive simulation is conducted to verify the performance of the proposed heuristics in terms of WL consumption, number of m-trails, monitoring requirement, blocking probability and running time. In conclusion, the proposed restoration framework can achieve all-optical and signaling-free restoration with the help of L-UFL, while maintaining high capacity efficiency as in FDP based survivable routing. The proposed heuristics achieve satisfactory performance as verified by the simulation results

    Failure Localization Aware Protection in All-Optical Networks

    Get PDF
    The recent development of optical signal processing and switching makes the all-optical networks a potential candidate for the underlying transmission system in the near future. However, despite its higher transmission data rate and efficiency, the lack of optical-electro-optical (OEO) conversions makes fault management a challenge. A single fiber cut can interrupt several connections, disrupting many services which results in a massive loss of data. With the ever-growing demand for time-sensitive applications, the ability to maintain service continuity in communication networks has only been growing in importance. In order to guarantee network survivability, fast fault localization and fault recovery are essential. Conventional monitoring-trail (m-trail) based schemes can unambiguously localize link failures. However, the deployment of m-trail requires extra transceivers and wavelengths dedicated to monitoring the link state. Non-negligible overhead makes m-trail schemes neither scalable nor practicable. In this thesis, we propose two Failure Localization Aware (FLA) routing schemes to aid failure localization. When a link fails, all traversing lightpaths become dark, and the transceiver at the end node of each interrupted ligthpath issues an alarm signal to report the path failure. By correlating the information of all affected and unaffected paths, it is possible to narrow down the number of possible fault locations to just a few possible locations. However, without the assistance of dedicated supervisory lightpaths, and based solely on the alarm generated by the interrupted lightpaths, ambiguity in failure localization may be unavoidable. Hence, we design a Failure Localization Aware Routing and Wavelength Assignment (FLA-RWA) scheme, the Least Ambiguous Path (LAP) routing scheme, to dynamically allocate connection requests with minimum ambiguity in the localization of a link failure. The performance of the proposed heuristic is evaluated and compared with traditional RWA algorithms via network simulations. The results show that the proposed LAP algorithm achieves the lowest ambiguity among all examined schemes, at the cost of slightly higher wavelength consumption than the alternate shortest path scheme. We also propose a Failure Localization Aware Protection (FLA-P) scheme that is based on the idea of also monitoring the protection paths in a system with path protection for failure localization. The Least Ambiguous Protection Path (LAPP) routing algorithm arranges the protection path routes with the objective of minimizing the ambiguity in failure localization. We evaluate and compare the ambiguity in fault localization when monitoring only the working paths and when monitoring both working and protection paths. We also compare the performance of protection paths with different schemes in regards to fault localization

    Resilience mechanisms for carrier-grade networks

    Get PDF
    In recent years, the advent of new Future Internet (FI) applications is creating ever-demanding requirements. These requirements are pushing network carriers for high transport capacity, energy efficiency, as well as high-availability services with low latency. A widespread practice to provide FI services is the adoption of a multi-layer network model consisting in the use of IP/MPLS and optical technologies such as Wavelength Division Multiplexing (WDM). Indeed, optical transport technologies are the foundation supporting the current telecommunication network backbones, because of the high transmission bandwidth achieved in fiber optical networks. Traditional optical networks consist of a fixed 50 GHz grid, resulting in a low Optical Spectrum (OS) utilization, specifically with transmission rates above 100 Gbps. Recently, optical networks have been undergoing significant changes with the purpose of providing a flexible grid that can fully exploit the potential of optical networks. This has led to a new network paradigm termed as Elastic Optical Network (EON). In recent years, the advent of new Future Internet (FI) applications is creating ever-demanding requirements. A widespread practice to provide FI services is the adoption of a multi-layer network model consisting in the use of IP/MPLS and optical technologies such as Wavelength Division Multiplexing (WDM). Traditional optical networks consist of a fixed 50 GHz grid, resulting in a low Optical Spectrum (OS) utilization. Recently, optical networks have been undergoing significant changes with the purpose of providing a flexible grid that can fully exploit the potential of optical networks. This has led to a new network paradigm termed as Elastic Optical Network (EON). Recently, a new protection scheme referred to as Network Coding Protection (NCP) has emerged as an innovative solution to proactively enable protection in an agile and efficient manner by means of throughput improvement techniques such as Network Coding. It is an intuitive reasoning that the throughput advantages of NCP might be magnified by means of the flexible-grid provided by EONs. The goal of this thesis is three-fold. The first, is to study the advantages of NCP schemes in planning scenarios. For this purpose, this thesis focuses on the performance of NCP assuming both a fixed as well as a flexible spectrum grid. However, conversely to planning scenarios, in dynamic scenarios the accuracy of Network State Information (NSI) is crucial since inaccurate NSI might substantially affect the performance of an NCP scheme. The second contribution of this thesis is to study the performance of protection schemes in dynamic scenarios considering inaccurate NSI. For this purpose, this thesis explores prediction techniques in order to mitigate the negative effects of inaccurate NSI. On the other hand, Internet users are continuously demanding new requirements that cannot be supported by the current host-oriented communication model.This communication model is not suitable for future Internet architectures such as the so-called Internet of Things (IoT). Fortunately, there is a new trend in network research referred to as ID/Locator Split Architectures (ILSAs) which is a non-disruptive technique to mitigate the issues related to host-oriented communications. Moreover, a new routing architecture referred to as Path Computation Element (PCE) has emerged with the aim of overcoming the well-known issues of the current routing schemes. Undoubtedly, routing and protection schemes need to be enhanced to fully exploit the advantages provided by new network architectures.In light of this, the third goal of this thesis introduces a novel PCE-like architecture termed as Context-Aware PCE. In a context-aware PCE scenario, the driver of a path computation is not a host/location, as in conventional PCE architectures, rather it is an interest for a service defined within a context.En los 煤ltimos a帽os la llegada de nuevas aplicaciones del llamado Internet del Futuro (FI) est谩 creando requerimientos sumamente exigentes. Estos requerimientos est谩n empujando a los proveedores de redes a incrementar sus capacidades de transporte, eficiencia energ茅tica, y sus prestaciones de servicios de alta disponibilidad con baja latencia. Es una pr谩ctica sumamente extendida para proveer servicios (FI) la adopci贸n de un modelo multi-capa el cual consiste en el uso de tecnolog铆as IP/MPLS as铆 como tambi茅n 贸pticas como por ejemplo Wavelength Division Multiplexing (WDM). De hecho, las tecnolog铆as de transporte son el sustento del backbone de las redes de telecomunicaciones actuales debido al gran ancho de banda que proveen las redes de fibra 贸ptica. Las redes 贸pticas tradicionales consisten en el uso de un espectro fijo de 50 GHz. Esto resulta en una baja utilizaci贸n del espectro 脫ptico, espec铆ficamente con tasas de transmisiones superiores a 100 Gbps. Recientemente, las redes 贸pticas est谩n experimentado cambios significativos con el prop贸sito de proveer un espectro flexible que pueda explotar el potencial de las redes 贸pticas. Esto ha llevado a un nuevo paradigma denominado Redes 脫pticas El谩sticas (EON). Por otro lado, un nuevo esquema de protecci贸n llamado Network Coding Protection (NCP) ha emergido como una soluci贸n innovadora para habilitar de manera proactiva protecci贸n eficiente y 谩gil usando t茅cnicas de mejora de throughput como es Network Coding (NC). Es un razonamiento l贸gico pensar que las ventajas relacionadas con throughput de NCP pueden ser magnificadas mediante el espectro flexible prove铆do por las redes EONs. El objetivo de esta tesis es triple. El primero es estudiar las ventajas de esquemas NCP en un escenario de planificaci贸n. Para este prop贸sito, esta tesis se enfoca en el rendimiento de NCP asumiendo un espectro fijo y un espectro flexible. Sin embargo, contrario a escenarios de planificaci贸n, en escenarios din谩micos la precisi贸n relacionada de la Informaci贸n de Estado de Red (NSI) es crucial, ya que la imprecisi贸n de NSI puede afectar sustancialmente el rendimiento de un esquema NCP. La segunda contribuci贸n de esta tesis es el estudio del rendimiento de esquemas de protecci贸n en escenarios din谩micos considerando NSI no precisa. Para este prop贸sito, esta tesis explora t茅cnicas predictivas con el prop贸sito de mitigar los efectos negativos de NSI impreciso. Por otro lado, los usuarios de Internet est谩n demandando continuamente nuevos requerimientos los cuales no pueden ser soportados por el modelo de comunicaci贸n orientado a hosts. Este modelo de comunicaciones no es factible para arquitecturas FI como es el Internet de las cosas (IoT). Afortunadamente, existe un nueva l铆nea investigativa llamada ID/Locator Split Architectures (ILSAs) la cual es una t茅cnica no disruptiva para mitigar los problemas relacionadas con el modelo de comunicaci贸n orientado a hosts. Adem谩s, un nuevo esquema de enrutamiento llamado as Path Computation Element (PCE) ha emergido con el prop贸sito de superar los problemas bien conocidos de los esquemas de enrutamiento tradicionales. Indudablemente, los esquemas de enrutamiento y protecci贸n deben ser mejorados para que estos puedan explotar las ventajas introducidas por las nuevas arquitecturas de redes. A luz de esto, el tercer objetivo de esta tesis es introducir una nueva arquitectura PCE denominada Context-Aware PCE. En un escenario context-aware PCE, el objetivo de una acci贸n de computaci贸n de camino no es un host o localidad, como es el caso en lo esquemas PCE tradicionales. M谩s bien, es un inter茅s por un servicio definido dentro de una informaci贸n de contexto
    corecore