253 research outputs found

    On Designing Tattoo Registration and Matching Approaches in the Visible and SWIR Bands

    Get PDF
    Face, iris and fingerprint based biometric systems are well explored areas of research. However, there are law enforcement and military applications where neither of the aforementioned modalities may be available to be exploited for human identification. In such applications, soft biometrics may be the only clue available that can be used for identification or verification purposes. Tattoo is an example of such a soft biometric trait. Unlike face-based biometric systems that used in both same-spectral and cross-spectral matching scenarios, tattoo-based human identification is still a not fully explored area of research. At this point in time there are no pre-processing, feature extraction and matching algorithms using tattoo images captured at multiple bands. This thesis is focused on exploring solutions on two main challenging problems. The first one is cross-spectral tattoo matching. The proposed algorithmic approach is using as an input raw Short-Wave Infrared (SWIR) band tattoo images and matches them successfully against their visible band counterparts. The SWIR tattoo images are captured at 1100 nm, 1200 nm, 1300 nm, 1400 nm and 1500 nm. After an empirical study where multiple photometric normalization techniques were used to pre-process the original multi-band tattoo images, only one was determined to significantly improve cross spectral tattoo matching performance. The second challenging problem was to develop a fully automatic visible-based tattoo image registration system based on SIFT descriptors and the RANSAC algorithm with a homography model. The proposed automated registration approach significantly improves the operational cost of a tattoo image identification system (using large scale tattoo image datasets), where the alignment of a pair of tattoo images by system operators needs to be performed manually. At the same time, tattoo matching accuracy is also improved (before vs. after automated alignment) by 45.87% for the NIST-Tatt-C database and 12.65% for the WVU-Tatt database

    Review of Wearable Devices and Data Collection Considerations for Connected Health

    Get PDF
    Wearable sensor technology has gradually extended its usability into a wide range of well-known applications. Wearable sensors can typically assess and quantify the wearer’s physiology and are commonly employed for human activity detection and quantified self-assessment. Wearable sensors are increasingly utilised to monitor patient health, rapidly assist with disease diagnosis, and help predict and often improve patient outcomes. Clinicians use various self-report questionnaires and well-known tests to report patient symptoms and assess their functional ability. These assessments are time consuming and costly and depend on subjective patient recall. Moreover, measurements may not accurately demonstrate the patient’s functional ability whilst at home. Wearable sensors can be used to detect and quantify specific movements in different applications. The volume of data collected by wearable sensors during long-term assessment of ambulatory movement can become immense in tuple size. This paper discusses current techniques used to track and record various human body movements, as well as techniques used to measure activity and sleep from long-term data collected by wearable technology devices

    TTS: Hilbert Transform-based Generative Adversarial Network for Tattoo and Scene Text Spotting

    Get PDF
    Text spotting in natural scenes is of increasing interest and significance due to its critical role in several applications, such as visual question answering, named entity recognition and event rumor detection on social media. One of the newly emerging challenging problems is Tattoo Text Spotting (TTS) in images for assisting forensic teams and for person identification. Unlike the generally simpler scene text addressed by current state-of-the-art methods, tattoo text is typically characterized by the presence of decorative backgrounds, calligraphic handwriting and several distortions due to the deformable nature of the skin. This paper describes the first approach to address TTS in a real-world application context by designing an end-to-end text spotting method employing a Hilbert transform-based Generative Adversarial Network (GAN). To reduce the complexity of the TTS task, the proposed approach first detects fine details in the image using the Hilbert transform and the Optimum Phase Congruency (OPC). To overcome the challenges of only having a relatively small number of training samples, a GAN is then used for generating suitable text samples and descriptors for text spotting (i.e. both detection and recognition). The superior performance of the proposed TTS approach, for both tattoo and general scene text, over the state-of-the-art methods is demonstrated on a new TTS-specific dataset (publicly available 1) as well as on the existing benchmark natural scene text datasets: Total-Text, CTW1500 and ICDAR 2015

    Classification of breast malignancy using optimised advanced diffusion-weighted imaging : and surgical planning for breast tumour resection using MR-guided focused ultrasound

    Get PDF
    Intravoxel Incoherent Motion Imaging (IVIM) is a non-invasive MR-imaging technique that enables the measurement of cellularity and vascularity using diffusion-weighted (DW)-imaging. IVIM has been applied to various cancer types including breast cancer, and is becoming more popular but lacks standardisation. The quantitative parameters; diffusion, D, perfusion fraction, f, and pseudo micro capillary diffusion, D* are thought to be correlated with tumour physiognomies such as proliferation, angiogenesis and heterogeneity.In Part 1 of this thesis, an optimised clinical b-value protocol is produced using a robust statistical method. This optimised protocol and various fitting methodologies are investigated in healthy volunteers, and then the most precise approach is applied in a clinical trial in patients following diagnosis of breast cancer, before treatment, to correlate IVIM parameters with breast cancer grade, histological type and molecular subtype with statistically significant results supporting IVIM’s potential as a non-invasive biomarker for malignancy. Monte Carlo simulations support this clinical application, where real data mean squared errors due to SNR limitations lie within simulated errors. A computed DW-imaging program is also presented to produce better quality images than acquired high b-value images as an adjunct to the optimised IVIM protocol.In Part 2 of this thesis, MR-guided Focused Ultrasound (MRgFUS) is explored as a means to create a pre-surgical template of thermally induced palpable markers to enable a surgeon to resect occult lesions and potentially reduce positive tumour margin status and local recurrence after breast conserving surgery. A surrogate animal model with pseudo lesion is presented, as well as a clinical tool to plan spot markers around a lesion as seen on MRI

    AN OBJECT-BASED MULTIMEDIA FORENSIC ANALYSIS TOOL

    Get PDF
    With the enormous increase in the use and volume of photographs and videos, multimedia-based digital evidence now plays an increasingly fundamental role in criminal investigations. However, with the increase, it is becoming time-consuming and costly for investigators to analyse content manually. Within the research community, focus on multimedia content has tended to be on highly specialised scenarios such as tattoo identification, number plate recognition, and child exploitation. An investigator’s ability to search multimedia data based on keywords (an approach that already exists within forensic tools for character-based evidence) could provide a simple and effective approach for identifying relevant imagery. This thesis proposes and demonstrates the value of using a multi-algorithmic approach via fusion to achieve the best image annotation performance. The results show that from existing systems, the highest average recall was achieved by Imagga with 53% while the proposed multi-algorithmic system achieved 77% across the select datasets. Subsequently, a novel Object-based Multimedia Forensic Analysis Tool (OM-FAT) architecture was proposed. The OM-FAT automates the identification and extraction of annotation-based evidence from multimedia content. Besides making multimedia data searchable, the OM-FAT system enables investigators to perform various forensic analyses (search using annotations, metadata, object matching, text similarity and geo-tracking) to help investigators understand the relationship between artefacts, thus reducing the time taken to perform an investigation and the investigator’s cognitive load. It will enable investigators to ask higher-level and more abstract questions of the data, then find answers to the essential questions in the investigation: what, who, why, how, when, and where. The research includes a detailed illustration of the architectural requirements, engines, and complete design of the system workflow, which represents a full case management system. To highlight the ease of use and demonstrate the system’s ability to correlate between multimedia, a prototype was developed. The prototype integrates the functionalities of the OM-FAT tool and demonstrates how the system would help digital investigators find pieces of evidence among a large number of images starting from the acquisition stage and ending in the reporting stage with less effort and in less time.The Higher Committee for Education Development in Iraq (HCED

    ELECTRO-MECHANICAL DATA FUSION FOR HEART HEALTH MONITORING

    Get PDF
    Heart disease is a major public health problem and one of the leading causes of death worldwide. Therefore, cardiac monitoring is of great importance for the early detection and prevention of adverse conditions. Recently, there has been extensive research interest in long-term, continuous, and non-invasive cardiac monitoring using wearable technology. Here we introduce a wearable device for monitoring heart health. This prototype consists of three sensors to monitor electrocardiogram (ECG), phonocardiogram (PCG), and seismocardiogram (SCG) signals, integrated with a microcontroller module with Bluetooth wireless connectivity. We also created a custom printed circuit board (PCB) to integrate all the sensors into a compact design. Then, flexible housing for the electronic components was 3D printed using thermoplastic polyurethane (TPU). In addition, we developed peak detection algorithms and filtering programs to analyze the recorded cardiac signals. Our preliminary results show that the device can record all three signals in real-time. Initial results for signal interpretation come from a recurrent neural network (RNN) based machine learning algorithm, Long Short-Term Memory (LSTM), which is used to monitor and identify key features in the ECG data. The next phase of our research will include cross-examination of all three sensor signals, development of machine learning algorithms for PCG and SCG signals, and continuous improvement of the wearable device

    Irish Machine Vision and Image Processing Conference Proceedings 2017

    Get PDF

    What else does your biometric data reveal? A survey on soft biometrics

    Get PDF
    International audienceRecent research has explored the possibility of extracting ancillary information from primary biometric traits, viz., face, fingerprints, hand geometry and iris. This ancillary information includes personal attributes such as gender, age, ethnicity, hair color, height, weight, etc. Such attributes are known as soft biometrics and have applications in surveillance and indexing biometric databases. These attributes can be used in a fusion framework to improve the matching accuracy of a primary biometric system (e.g., fusing face with gender information), or can be used to generate qualitative descriptions of an individual (e.g., "young Asian female with dark eyes and brown hair"). The latter is particularly useful in bridging the semantic gap between human and machine descriptions of biometric data. In this paper, we provide an overview of soft biometrics and discuss some of the techniques that have been proposed to extract them from image and video data. We also introduce a taxonomy for organizing and classifying soft biometric attributes, and enumerate the strengths and limitations of these attributes in the context of an operational biometric system. Finally, we discuss open research problems in this field. This survey is intended for researchers and practitioners in the field of biometrics
    • …
    corecore