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Abstract 

An Object-based Multimedia Forensic Analysis Tool  

Shahlaa Mashhadani 

With the enormous increase in the use and volume of photographs and videos, 

multimedia-based digital evidence now plays an increasingly fundamental role in 

criminal investigations. However, with the increase, it is becoming time-

consuming and costly for investigators to analyse content manually. Within the 

research community, focus on multimedia content has tended to be on highly 

specialised scenarios such as tattoo identification, number plate recognition, and 

child exploitation. An investigator’s ability to search multimedia data based on 

keywords (an approach that already exists within forensic tools for character-

based evidence) could provide a simple and effective approach for identifying 

relevant imagery.  

This thesis proposes and demonstrates the value of using a multi-algorithmic 

approach via fusion to achieve the best image annotation performance. The 

results show that from existing systems, the highest average recall was achieved 

by Imagga with 53% while the proposed multi-algorithmic system achieved 77% 

across the select datasets.  

Subsequently, a novel Object-based Multimedia Forensic Analysis Tool (OM-

FAT) architecture was proposed. The OM-FAT automates the identification and 

extraction of annotation-based evidence from multimedia content. Besides 

making multimedia data searchable, the OM-FAT system enables investigators 

to perform various forensic analyses (search using annotations, metadata, object 
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matching, text similarity and geo-tracking) to help investigators understand the 

relationship between artefacts, thus reducing the time taken to perform an 

investigation and the investigator’s cognitive load. It will enable investigators to 

ask higher-level and more abstract questions of the data, then find answers to the 

essential questions in the investigation: what, who, why, how, when, and where. 

The research includes a detailed illustration of the architectural requirements, 

engines, and complete design of the system workflow, which represents a full 

case management system. 

To highlight the ease of use and demonstrate the system’s ability to correlate 

between multimedia, a prototype was developed. The prototype integrates the 

functionalities of the OM-FAT tool and demonstrates how the system would help 

digital investigators find pieces of evidence among a large number of images 

starting from the acquisition stage and ending in the reporting stage with less 

effort and in less time. 

  



 

V 

 

Table of Contents 

Acknowledgements .......................................................................................................... I 

Author’s Declaration ..................................................................................................... II 

Abstract ......................................................................................................................... III 

1 Introduction .............................................................................................................. 1 

1.1 Introduction ........................................................................................................ 1 

1.2 Research Aim and Objectives ............................................................................ 4 

1.3 Thesis Structure .................................................................................................. 5 

2 Digital Forensics and Image Analysis .................................................................... 7 

2.1 Introduction ........................................................................................................ 7 

2.2 Digital Forensics ................................................................................................. 8 

2.3 Digital Evidence and Forensic Tools ............................................................... 10 

2.4 Forensics Investigation Methods of Multimedia Data ..................................... 11 

2.5 Forensic Image Analysis .................................................................................. 14 

2.6 Challenges of Image Analysis in Digital Forensics ......................................... 19 

2.7 The Current State of Art ................................................................................... 29 

2.8 Review Methodology ....................................................................................... 31 

2.8.1 Image Analysis in Digital Forensics ......................................................... 33 

2.8.2 Object-Based Image Retrieval .................................................................. 47 

2.8.2.1 Single Object-Based Image Retrieval ................................................ 48 

2.8.2.2 Multiple Objects-Based Image Retrieval ........................................... 48 

2.8.3 Automatic Image Annotation .................................................................... 49 

2.9 Discussion ........................................................................................................ 80 

2.10 Conclusion ........................................................................................................ 92 

3 Evaluation of a Multi-Algorithmic Approach Performance.............................. 93 

3.1 Introduction ...................................................................................................... 93 

3.2 Research Hypothesis ........................................................................................ 94 

3.3 Understand and Evaluate the Performance of Commercial Systems ............... 95 

3.3.1 Experimental Methodology ....................................................................... 97 

3.3.2 Results ..................................................................................................... 102 



 

VI 

 

3.4 Determining whether a multi-algorithmic approach of the aforementioned 

commercial systems would improve the performance .............................................. 106 

3.4.1 Experimental Methodology..................................................................... 107 

3.4.2 Results ..................................................................................................... 112 

3.5 Re-evaluate the performance of Commercial Systems and the Multi-

algorithmic Approach Based on More Robust Dataset ............................................. 117 

3.5.1 Experimental Methodology..................................................................... 118 

3.5.2 Results ..................................................................................................... 119 

3.6 Discussion ...................................................................................................... 121 

3.7 Conclusion ...................................................................................................... 124 

4 A Novel Framework for Object-based Multimedia Forensic Analysis Tool .. 126 

4.1 Introduction .................................................................................................... 126 

4.2 System Requirements ..................................................................................... 127 

4.2.1 High-Level Requirements ....................................................................... 127 

4.2.2 Low-Level Requirement ......................................................................... 128 

4.3 Object-based Multimedia Forensic Analysis Tool Architecture .................... 130 

4.3.1 Case Management Engine ....................................................................... 133 

4.3.2 Data Acquisition Engine ......................................................................... 140 

4.3.3 Automatic Image Annotation Engine ..................................................... 145 

4.3.4 Correlation Engine .................................................................................. 148 

4.3.5 Visualization Engine ............................................................................... 159 

4.3.6 Reporting ................................................................................................. 161 

4.4 Workflow System Design Based on OM-FAT Architecture ......................... 162 

4.5 Conclusion ...................................................................................................... 167 

5 OM-FAT Prototype Implementation ................................................................. 168 

5.1 Introduction .................................................................................................... 168 

5.2 Development Environment............................................................................. 168 

5.3 OM-FAT Prototype Implementation .............................................................. 171 

5.4 Login .............................................................................................................. 171 

5.5 Dashboard ....................................................................................................... 172 

5.5.1 Add New Case ........................................................................................ 173 

5.5.2 Editing Case Information ........................................................................ 177 

5.5.3 Open Case ............................................................................................... 178 



 

VII 

 

5.5.3.1 Search Tab ....................................................................................... 179 

5.5.3.2 Data Filtering Tab ............................................................................ 183 

5.5.3.3 Text Similarity Tab .......................................................................... 185 

5.5.3.4 Geo Tracking Tab ............................................................................ 187 

5.5.3.5 Bookmark Tab ................................................................................. 190 

5.5.3.6 Reporting Tab .................................................................................. 192 

5.5.3.7 Log Tab ............................................................................................ 194 

5.5.3.8 Object Matching Tab ....................................................................... 195 

5.5.4 Case History ............................................................................................ 197 

5.5.5 Account Management ............................................................................. 199 

5.5.6 Global Settings ........................................................................................ 201 

5.6 Conclusion ...................................................................................................... 203 

6 The Evaluation ..................................................................................................... 204 

6.1 Introduction .................................................................................................... 204 

6.2 Evaluation Methodology ................................................................................ 205 

6.2.1 Preparation Phase .................................................................................... 205 

6.2.2 Participants Selection .............................................................................. 208 

6.2.3 Interviewees ............................................................................................ 209 

6.3 The Feedback ................................................................................................. 209 

6.4 Discussion ...................................................................................................... 212 

6.5 Conclusion ...................................................................................................... 213 

7 Conclusion and Future Work ............................................................................. 215 

7.1 Achievements of the Research ....................................................................... 215 

7.2 Limitations of Research .................................................................................. 217 

7.3 Future Work ................................................................................................... 219 

7.3.1 Evaluation of the Image Quality Criteria and Enhancement .................. 219 

7.3.2 Privacy..................................................................................................... 220 

7.3.3 Improving the Geo-Tracking System ...................................................... 220 

7.3.4 Improving Image-Matching Based on Image Content ............................ 221 

References .................................................................................................................... 222 

Appendices ................................................................................................................... 233 

Appendix A: Centric and Non-Centric Single Object-Based Image Retrieval ..... 234 



 

VIII 

 

Appendix B: Multiple Objects-Based Image Retrieval ........................................... 256 

Appendix C: Approval Forms and Ethical Approval Notifications ....................... 268 

 

  



 

IX 

 

List of Figures 

Figure 1.1: Comparison of Image Volume ........................................................... 2 

Figure 2.1: Relationship between Identified Fields of Research ....................... 11 

Figure 2.2: Examples of Impression Evidence Images ..................................... 15 

Figure 2.3: Examples of Image Content ............................................................ 16 

Figure 2.4: Examples of Image Tampering ....................................................... 17 

Figure 2.5: Examples of Image Enhancement .................................................. 18 

Figure 2.6: An Example of a Photogrammetric Analysis ................................... 19 

Figure 2.7: The Masked Robbers Who Targeted a Bank in Hull ....................... 23 

Figure 2.8: The Suspect Different CCTV Images .............................................. 24 

Figure 2.9: CCTV Footage Shows the Two Men Pointing What Appears To Be a 

Handgun at Bank Staff ...................................................................................... 25 

Figure 2.10: The Two Men Wore Black Clothing and Scarves over Their Faces

 .......................................................................................................................... 26 

Figure 2.11: Change in Volume of Car Theft Claims, 2014 to 2018 .................. 27 

Figure 2.12: The Murderer of 55 Women .......................................................... 28 

Figure 2.13: An Example of Image Color Histogram ......................................... 35 

Figure 2.14: Examples of Forensic Images ....................................................... 39 

Figure 2.15: Different Types of Combinations ................................................... 43 

Figure 2.16: Screen Shot of the Image Set ....................................................... 43 

Figure 2.17: Object Detection in Video with Different Angle .............................. 45 

Figure 2.18: Low Quality of Video Can Significantly Affect the Detection 

Performance ..................................................................................................... 45 

Figure 2.19: Example of GCI and Vandalism Scenes in CCTV Videos ............. 46 

Figure 2.20: Example of Object-Based Image Retrieval System....................... 48 

Figure 2.21: System Framework ....................................................................... 50 

Figure 2.22: A Framework of the Proposed System .......................................... 51 

Figure 2.23: Automatic Annotations Compared With The Original Manual 

Annotations. (a) Shows the Image in Core 5K and (b) Shows the Image in MIR 

Flickr ................................................................................................................. 55 

Figure 2.24: Block Diagram of the SIRBOT System .......................................... 56 

Figure 2.25: The Proposed Method Diagram (IAGA) ........................................ 57 



 

X 

 

Figure 2.26: Architecture of the Proposed System ............................................ 63 

Figure 2.27: Feature Extraction and Labelling Model ........................................ 65 

Figure 2.28: Block Diagram of the Proposed Annotation System ..................... 69 

Figure 2.29: Semantic Retrieval Results on Corel5k Data Set .......................... 74 

Figure 2.30: Automatic Annotation Stages Proposed ....................................... 75 

Figure 2.31: Annotation Based Image Retrieval Methodology .......................... 76 

Figure 2.32: Comparison of Image Annotation .................................................. 78 

Figure 2.33: System Flowchart of Proposed Method ........................................ 79 

Figure 2.34: (A) Simple Image and (B and C) Images with Multiple Objects and 

Complicated Background .................................................................................. 82 

Figure 3.1: Examples of Corel, Caltech256 and Flickr Datasets ....................... 98 

Figure 3.2: Block Diagram of the Multi-Algorithmic Approach ......................... 107 

Figure 3.3: Normalisation of the Clarifai Annotation Result: (a) As Gained from 

Clarifai (b) After Normalisation ........................................................................ 109 

Figure 3.4: Example of Fusion Result ............................................................. 110 

Figure 3.5: Precision of 100 Images Based On Fusion (All) and Fusion 

(Threshold) Results ........................................................................................ 117 

Figure 3.6: Average Precision of the Six Systems with Two Different Annotation 

Datasets .......................................................................................................... 120 

Figure 3.7: Average Recall of the Six Systems with Two Different Annotation 

Datasets .......................................................................................................... 121 

Figure 3.8: F-Measure of the Six Systems with Two Different Annotation 

Datasets .......................................................................................................... 121 

Figure 4.1: Overall OM-FAT System Architecture ........................................... 131 

Figure 4.2: Case Management Engine ........................................................... 134 

Figure 4.3: Data Acquisition Engine ................................................................ 140 

Figure 4.4: AIA Engine .................................................................................... 146 

Figure 4.5: Correlation Engine ........................................................................ 149 

Figure 4.6: Search Phase (Text Query and Filters) ......................................... 151 

Figure 4.7: Object Recognition Approach ....................................................... 156 

Figure 4.8: Text Recognition Approach ........................................................... 157 

Figure 4.9: Examples of Visualization Styles .................................................. 161 

Figure 4.10: OM-FAT Workflow ...................................................................... 163 

Figure 4.11: System Database Schema Diagram ........................................... 166 



 

XI 

 

Figure 5.1: OM-FAT Development Environment ............................................. 170 

Figure 5.2: OM-FAT Login Page ..................................................................... 172 

Figure 5.3: Dashboard Page ........................................................................... 173 

Figure 5.4: Adding New Case ......................................................................... 174 

Figure 5.5: Adding New Data Source .............................................................. 175 

Figure 5.6: Filter CCTV/Database Data .......................................................... 176 

Figure 5.7: Edit Case Details .......................................................................... 177 

Figure 5.8: Case Resources ........................................................................... 178 

Figure 5.9: Search Tab ................................................................................... 180 

Figure 5.10: Browsing the Retrieved Images .................................................. 183 

Figure 5.11: Data Filtering Tab ....................................................................... 185 

Figure 5.12: Text Similarity Tab ...................................................................... 186 

Figure 5.13: Geo Tracking Tab (Route) .......................................................... 189 

Figure 5.14: Geo Tracking Tab (Show photos) ............................................... 190 

Figure 5.15: Bookmark Tab ............................................................................. 191 

Figure 5.16: Reporting Tab ............................................................................. 193 

Figure 5.17: Log Tab ....................................................................................... 195 

Figure 5.18: Object Matching Tab ................................................................... 196 

Figure 5.19: Case History ............................................................................... 198 

Figure 5.20: Account Management ................................................................. 199 

Figure 5.21: Adding New User Information ..................................................... 200 

Figure 5.22: Set Privileges .............................................................................. 201 

Figure 5.23: Global Settings............................................................................ 202 

Figure 6.1: Phases of Evaluation .................................................................... 205 

 

Figure A.1: Processing Flow of Extraction the Main Object Region ................ 235 

Figure A.2: ANMRR and ANMTKRR of the Descriptors .................................. 236 

Figure A.3: Segmentation of Regional Object: (a) flower; (b) horse; (c) elephant; 

(d)  dinosaur .................................................................................................... 237 

Figure A.4: Performance Comparison between Segmentation and No 

Segmentation Methods ................................................................................... 239 

Figure A.5: Performance Comparison between Correlation Coefficient and No 

Correlation Coefficient Techniques ................................................................. 239 



 

XII 

 

Figure A.6: Ten Samples of Columbia Object Image Library Dataset ............. 242 

Figure A.7: Examples of Experiment Images .................................................. 244 

Figure A.8: Circular Image Decomposition Method ......................................... 245 

Figure A.9: Accuracy Comparison of Retrieval Methods ................................. 247 

Figure A.10: Block Distribution to BG-Blocks and OB-Blocks ......................... 248 

Figure A.11: Setting of Blocks ......................................................................... 248 

Figure A.12: Examples of Block Allocations .................................................... 249 

Figure A.13: Query Image and Correct Answer for Query Image .................... 249 

Figure A.14: Example of Retrieval Results by the Proposed Method .............. 250 

Figure A.15: Image Representation through Semantic Modelling ................... 251 

Figure A.16: Feature Extraction Process Data Flow ....................................... 252 

Figure A.17: Object Identification and Recognition Process Data Flows ........ 253 

 

Figure B.1: The Proposed MRIA Framework for Hierarchical Image 

Representation ............................................................................................... 259 

Figure B.2: Matching Two Hierarchical Region Trees ..................................... 260 

Figure B.3: An Example of User’s Requirements, (a) Example of Images (b) 

Graphical Query Representation and (c) Ideal Retrieved Image ..................... 262 

Figure B.4: The Proposed Approach ............................................................... 264 

Figure B.5: Block Diagram of the Video Indexing Module ............................... 266 

Figure B.6: Results Comparison on Foreground Extraction by Using: (a) the 

Original and (b) the Proposed Mog In HSV Color Space ................................ 267 

  



 

XIII 

 

List of Tables  

Table 2.1: Number of Returned References ..................................................... 33 

Table 2.2: Comparison between Corel Database and Forensic Database under 

Different Features and Similarity Measures ...................................................... 40 

Table 2.3: Criminal Event Classes Considered ................................................. 46 

Table 2.4: Examples for Image Annotation ....................................................... 61 

Table 2.5: Predicted Keywords versus Human Annotations for the Images from 

IAPR TC 12. Keywords Are Predicted Using Our Proposed Algorithm. The 

Differences Are Marked In Bold Font ................................................................ 66 

Table 2.6: Comparison between Keywords Query and Natural Query .............. 66 

Table 2.7: Examples of Automatic Annotation of Proposed System Matching 

With Ground Truth for All Three Datasets. Each Row Corresponds To a 

Different Dataset, First Row: Corel-5k, Second Row: ESP-Game, Third Row: 

IAPRTC-12........................................................................................................ 72 

Table 2.8: Summary of Forensic Image Analyses studies ................................ 80 

Table 2.9: Summary upon a Single Object Based Image Retrieval Approaches

 .......................................................................................................................... 83 

Table 2.10: Summary upon Multiple Objects-Based Image Retrieval 

Approaches ....................................................................................................... 87 

Table 2.11: Summary upon Automatic Image Annotation Approaches ............. 88 

Table 3.1: Comparison between the Most Popular Cloud APIs Features.......... 96 

Table 3.2: Example images with IAPR-TC 12 and ESP-Game Annotations ..... 99 

Table 3.3: Comparison between Four Commercial Systems’ Annotation Output 

Forms .............................................................................................................. 101 

Table 3.4: The Comparison of Annotation Performance for Microsoft, Google 

Cloud, Imagga, and Clarifai on the IAPR-TC 12 Dataset ................................ 103 

Table 3.5: The Comparison of Annotation Performance for Microsoft, Google 

Cloud, Imagga, and Clarifai on ESP-Game Dataset ....................................... 104 

Table 3.6: Difference between Vocabulary Sizes of Systems from IAPR-TC 12 

and ESP-Game Datasets ................................................................................ 105 

Table 3.7: Example of Word Repetition by Different Systems ......................... 110 

Table 3.8: Results of Comparison of the Multi-Algorithmic Approach with the 

Commercial Systems in the IAPR-TC 12 Dataset ........................................... 112 



 

XIV 

 

Table 3.9: The Results of Comparison of the Multi-Algorithmic Approach with 

Commercial Systems in the ESP-Game dataset ............................................. 113 

Table 3.10: The Retrieval Performance Based on One-Word Queries (Those in 

red refer to the superiority of the proposed approach) .................................... 115 

Table 3.11: Examples of Fusion Annotation Matching with Ground Truth 

Annotation for Two Datasets (APR-TC 12 and ESP-Game) ........................... 116 

Table 3.12: Examples of Missing Annotations ................................................ 118 

Table 3.13: Examples of Image Re-annotation ............................................... 119 

Table 4.1: Investigator Information.................................................................. 135 

Table 4.2: Roles .............................................................................................. 135 

Table 4.3: List of Permissions ......................................................................... 136 

Table 4.4: Role Permissions ........................................................................... 136 

Table 4.5: Case Information ............................................................................ 137 

Table 4.6: Case Investigator ........................................................................... 137 

Table 4.7: Case Archive .................................................................................. 138 

Table 4.8: Actions ........................................................................................... 139 

Table 4.9: Case Sources ................................................................................ 144 

Table 4.10: Source Information ....................................................................... 144 

Table 4.11: Image Information ........................................................................ 145 

Table 4.12: JPEG Metadata ............................................................................ 145 

Table 4.13: Image Annotations ....................................................................... 147 

Table 4.14: Words ........................................................................................... 147 

Table 4.15: Search Information ....................................................................... 151 

Table 4.16: Search Filters ............................................................................... 152 

Table 4.17: Search Results ............................................................................. 152 

Table 4.18: Bookmarks ................................................................................... 153 

Table 4.19: Bookmark Images ........................................................................ 153 

Table 4.20: Forensic Analyses Information ..................................................... 159 

Table 4.21: Forensic Analyses Results ........................................................... 159 

 

Table A.1: Overall Accuracy for Different Grid Size ........................................ 252 

 

Table B.1: Average precision of different methods ......................................... 257 



1 

 

1 Introduction 

1.1 Introduction 

Digital forensics is the science concerned with identifying, collecting, examining, 

and analysing digital evidence found on digital devices (Palmer, 2001). Various 

types of digital evidence, such as computer documents, text and instant 

messages, emails, images, and browsing histories can be collected from 

electronic devices and used effectively to solve investigations (NFSTC, 2007; 

NIST, 2018). Images represent efficient and simple communication media for 

people compared to text because of their immediacy and how easy it is for a 

human to understand their content. A video recorded by CCTV cameras could be 

used as crucial evidence showing exactly what happened at a crime scene, such 

as a bank robbery or undercover sting operation. Therefore, images and videos 

have become major information sources in the digital age and widely utilized in 

criminal investigations (Redi, Taktak and Dugelay, 2011; Xiao, Li and Xu, 2019), 

and may represent the best form of electronic evidence as it can be considered a 

real-time eyewitnesses (Singh, 2015). 

In recent years, the volume of digital photos has grown rapidly with 1.2 trillion 

digital photos taken worldwide in 2017 as shown in Figure 1.1 (Perret, 2017). 

Among the main factors, the smartphone is probably the biggest factor 

contributing to this sudden boom in the number of photographs taken (Richter, 

2017). Smartphones are now considered the easiest way to take pictures rather 

than tablets or digital cameras (Richter, 2017). In 2018, 95% of households in the 

UK owned mobile phones, compared to only 44% in 2000 (Office for National 

Statistics (UK), 2019).  
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Source: Perret, 2017 

Figure 1.1: Comparison of Image Volume 

In addition, closed-circuit television (CCTV) systems, which are found in banks, 

police stations, office buildings, prisons, and public places such as airports, 

shopping centres, restaurants, and traffic intersections produce a vast volume of 

images and video. In the UK, in addition to private security, there are now up to 

six million CCTV systems covering public places including 750,000 in ‘sensitive 

locations’ such as hospitals, schools, and care homes (Loughran, 2018). All this 

produces a vast volume of photographic, and video-based content 

(Forensicsciencesimplified.org, 2016; Singh, 2015). Consequently, forensic 

investigators need a way to retrieve specific items such as a blood trace, shoe 

mark or image of a person or an object from image databases (Yuan and Ying, 

2014). 
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Because of the increase in volumes of images and video, it is becoming too time-

consuming and costly for investigators to analyse the images manually. 

Therefore, forensic investigators require an intelligent and efficient method of 

retrieving specific items from a large amount of multimedia data (Yuan and Ying, 

2014). As a result, forensic image analysis has emerged as a new branch of 

digital forensics that enables investigators to effectively and accurately extract 

evidence from a huge number of images in an automatic and forensically sound 

manner that meets forensics requirements (Hanji and Rajpurohit, 2013).  

However, at present, many challenges are posed in image analysis for digital 

forensics: the huge volume is not the lone challenge facing forensic image 

analysis and each case has its own requirements. In addition, the content of 

images that come with cases is diverse and acquired from various data sources. 

The images themselves are realistic e.g. unconstrained illumination conditions, 

unknown position, noise, blurry and irregular texture (background). Also they vary 

in size, format, pattern of the shoe or tyres marks and number of objects that exist 

each image.  Further, the objects inside the image differ in size, colour, shape, 

texture, and orientation. In addition, captured images from CCTV cameras may 

be faded (inaccurate colours), grainy, poor contrast, night vision, resolution, and 

light balance (Conzer security marketing, 2018;  Allababidi, 2018). Further, 

investigators need to use a wide range of information to filter images so as to find 

crucial evidence. Unfortunately, existing forensic tools such as EnCase and 

Forensic Toolkit (FTK) are insufficient in areas such as automatic content image 

analysis, extraction of evidence, and in identifying the correlation between 

images. In addition, forensically, little work has been undertaken using image 

analysis to better understand the context of images. Accuracy and speed of 
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retrieving images are additional challenges faced in using image analysis in 

digital forensics.  

The above challenges raise two research questions that need to be addressed 

which are:  

 Exploring the performance of image annotation systems. 

 Exploring the approaches that enable the investigator to ask complex 

questions of the data and get more time response, meaningful response 

to understand the nature question he has been asked.  

1.2 Research Aim and Objectives  

This research is aimed at developing a novel framework that can aid the 

investigation process in analysing, interpreting, and creating a multimedia-based 

context. The proposed framework will be developed to analyse a large volume of 

image sources in an efficient and accurate manner through creating the 

necessary annotations and developing analyses method to inspect, correlate, 

and interpret the evidence. This will reduce the cognitive burden placed on the 

investigator when handling large volumes of data and provide more timely data 

analysis. To achieve this, the following research objectives were established: 

 Develop a current state-of-the-art understanding of digital forensics and 

forensic image analysis, including the challenges and available research. 

Morover, investigate the current state-of-the-art in object-based image 

retrieval and automatic image annotation (AIA).  

 Propose an approach to improve image recognition.   
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 Design a novel architecture that enables investigators to perform various 

forensic analyses that aid in reducing the time, effort, and cognitive load 

being placed on investigators to identify relevant evidence. 

 Develop and implement a prototype of the proposed architecture to 

demonstrate its practical effectiveness. 

 Evaluate the framework through presenting the work via a video and then 

send it to the academic experts in order to receive their unbiased and 

objective feedback. 

1.3 Thesis Structure 

To fulfil the aims and objectives stated in the previous section, this thesis 

continues in Chapter 2 by providing an overview of the digital forensic process. In 

addition, it lists methods for the forensic investigation of multimedia data. The 

chapter defines forensic image analysis and its various categories and provides 

a literature review of image analysis studies on digital forensics. The challenges 

and problems in the current state-of-the-art of forensic image analysis are also 

discussed. In addition, it presents a literature review of the existing research on 

object-based image retrieval (single or multiple objects) and automatic image 

annotation methods. The chapter discusses employing these methods in forensic 

image analysis to solve previously highlighted challenges.  

Chapter 3 begins by illustrating the problems and issues faced by automatic 

image annotation studies and justifies the unsuitability of the approaches. The 

chapter investigates the performance of existing commercial systems and 

proposes the multi-algorithmic approach. The performance of commercial 

systems and the proposed approach based on a more robust dataset annotation 
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are also re-evaluated.  Following this, the chapter presents each experiment 

individually and discusses the results. 

Chapter 4 starts with the system requirements devised for the proposed Object-

based Multimedia Forensic Analysis Tool (OM-FAT). The next section of the 

chapter presents the novel OM-FAT architecture followed by a discussion of its 

operation. Finally, the chapter presents the workflow system design based on 

OM-FAT architecture. 

Chapter 5 demonstrates the functional prototype that was implemented based 

upon the proposed OM-FAT architecture. The first section of the chapter 

illustrates the system’s development environment, including the front-end and 

back-end. The next sections of the chapter explain the ability of the tool to 

facilitate and expedite the investigation process in cases (e.g. Child abduction 

case) dealing with a large number of images. 

Chapter 6 begins by presenting the methodology that illustrates the steps of the 

evaluation process to determine the usability, functionality, and appropriateness 

of the system. Followed by the participants' selection phase followed by the 

methods are used to carry out the interviewee. The next sections discuss the 

participant’s feedbacks and its discussion. 

Finally, Chapter 7 concludes the research by identifying the main achievements 

made during the research. The limitations and future work are also identified and 

discussed. 
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2 Digital Forensics and Image Analysis 

2.1 Introduction  

There is a considerable number of images that can be used as clues from every 

crime scene. Therefore, during the different stages of the investigative process, 

forensic tools are needed to support the protection, management, processing, 

interpretation, and visualisation of multimedia data (Shriram, Priyadarsini and 

Baskar, 2015). Researchers have shown an increased interest in developing 

tools and protocols for dealing with images, audio and video footage, and other 

multimedia content coming from digital sources, which include evidence 

extraction, automatic categorization, and indexing.  

This chapter introduces digital forensics, its stages, and the various types of 

digital forensic evidence. In addition, techniques for analysing multimedia data 

are also presented. An overview of the challenges of image analysis that face 

image analysis in digital forensic is also outlined. Additionally, the current state of 

forensic image analysis, single/multiple object-based image retrieval and 

automatic image annotation approaches are also discussed. The chapter 

concludes with a discussion section that scientifically discusses how these 

approaches could be employed on forensic images to retrieve specific evidence 

and thus to solve the current challenges of image analysis within the forensic 

domain. 
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2.2 Digital Forensics 

The recovery and analysis of digital information has become a major component 

of many criminal investigations. Explosive growth in the number of personal 

digital devices, such as notebooks, tablets, and smartphones, as well as the 

development of communication infrastructure, has generated huge amounts of 

data. Some of this information may be valuable evidence and play a fundamental 

role in criminal investigations (van Baar, van Beek and van Eijk, 2014; Anthony 

T. S. Ho, 2015). Digital evidence can vary from child pornography images to 

encrypted data used in different criminal activities. In order to locate, maintain, 

and examine all types of digital evidence, specified methods and resources are 

required. This growth in the size of digital material, as well as the complexity and 

diversity of the digital evidence, requires a new understanding of forensic data 

analysis techniques that can keep up with the evolving digital society (van Baar, 

van Beek and van Eijk, 2014; Van Beek et al., 2015).  

According to the Digital Forensic Research Workshop (DFRWS) in 2001, digital 

forensics science can be defined as ‘the use of scientifically derived and proven 

methods toward the preservation, collection, validation, identification, analysis, 

interpretation, documentation, and presentation of digital evidence derived from 

digital sources for the purpose of facilitating or furthering the reconstruction of 

events found to be criminal, or helping to anticipate unauthorized actions shown 

to be disruptive to planned operations’ (Palmer, 2001). The digital forensics 

process can be categorized into different stages according to the DFRWS 

Investigative Model (2001) as follows (Patil and Kapse 2015):  
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 Identification: Includes recognising an incident from indicators and 

determining its type; profile detection, system monitoring, and audit 

analyses are also performed in this stage. 

 Preservation: The task of the investigator in this stage is to preserve data 

that offer evidence by using hash signatures such as MD5 or SHA1 to 

maintain the integrity of the data collected. In addition, the investigator 

deals with other data types, such as documents stored in a computer, voice 

and video files, e-mail and SMS conversations, lists of telephone contacts 

and calls made, patterns of network traffic, and virus intrusion and 

detection activity. In addition, all user data and associated metadata, 

including activity and system logs from different locations or storage 

devices, are copied by the investigator so that they can be examined 

separately without changing the original data collected. 

 Collection: In this stage, the investigator is responsible for collecting 

relevant data physically by employing approved methods. 

 Examination: In this stage, the data collected in the previous stage are 

examined using various forensic tools in order to extract information from 

the digital evidence and to configure that information for the analysis stage.  

 Analysis: The aim of this stage is to analyse the results obtained from the 

examination stage to derive useful information that addresses the 

questions to draw the conclusion and find the answers for the essential six 

questions: who, how, why, what, when, and where.  

 Presentation: The work that has been performed in all previous stages is 

documented and presented during this stage either as preparation for 

submission to the court or for returning to the work later, when required. 
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2.3 Digital Evidence and Forensic Tools 

The term digital evidence typically refers to information stored or transmitted on 

digital devices, such as computer hard drives, Personal Digital Assistants (PDAs), 

mobile phones, flash cards in a digital camera, and CDs, that can be relied upon 

in court. Digital evidence can be helpful in criminal investigations, including 

missing persons, homicides, drug dealing, sex offenses, fraud, child abuse, and 

theft of personal data (National Institute of Justice, 2014). Civil cases can also 

rely on digital evidence and electronic detection is becoming a regular part of civil 

contentions. As a result, the use of digital evidence has become more common 

for all types of crimes, not only e-crime. There are many different types of digital 

information that can be gathered from electronic devices and used as evidence. 

Examples of this kind of information include computer documents, e-mails, text 

and instant messages, electronic transactions, images, and Internet histories 

(Gubanov, 2012).  

The tools that are used to acquire and analyse digital evidence, however, may 

pose a challenge for investigators, because they are typically designed only to do 

specific tasks; e.g., Encase and FTK are utilised to retrieve data from hard drives 

and memory dumps. Another challenge that investigators face is the difficulty 

integrating the different functionalities of different tools. However, the investigator 

still must manually analyse the digital evidence and recognise interrelationships 

between artefacts in order to extract potential clues, because of limitations of the 

current forensic tools for analysing multimedia file content (image or video) to 

extract objects that could represent substantial evidence for the investigation 

process (Al Fahdi et al., 2016). 
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2.4 Forensics Investigation Methods of Multimedia Data 

Recently, a proliferation of multimedia data has taken place throughout many 

communities. Because of the abundance of high-quality audio recorders along 

with digital image and video cameras, anyone can capture multimedia content. In 

addition, access to digital data anywhere and at any time has become easy with 

the broad availability of landline and mobile Internet access. Digital evidence has 

become as important as DNA and physical evidence.  Because 80-90% of cases 

involve some type of digital evidence, it is crucial to extract evidence from 

multimedia devices so as to ensure better law enforcement (Kim Medaris, 2008). 

Therefore, protecting multimedia content from illegal use, revealing and 

reconstruct illegal activities from it, and utilising it as a source of intelligence have 

become necessary.  Also, investigators must learn how to find what they are 

looking for in an effective and efficient manner (Battiato et al., 2012). Figure 2.1 

presents a the classification of forensics approaches on multimedia data (Poisel 

and Tjoa 2011): 

 

 

 

 

 

Source: Poisel and Tjoa, 2011 

Figure 2.1: Relationship between Identified Fields of Research 
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 Source Identification: The goal of this method is to determine the devices, 

such as digital cameras, scanners, or video cameras, which were used to 

create digital content.  

 Environment Classification: This method tries to identify the location and 

the local conditions in which the data was taken or recorded. The context 

of such a classification depends on the type of media investigated, such 

as image data, audio data, or video data.  

 Content Classification: As storage media has become cheaper, it has 

become common for computers to be equipped with large capacity hard 

drives (e.g., one Terabyte). In addition, a suspect may have number of 

digital devices, with the result that several terabytes of data may need to 

be examined in a single case. In such cases, it is difficult for investigators 

to process this information manually. It becomes important to classify data 

based on its content in order to minimise the effort and time consumed. 

Typical applications in the field of content classification could assist 

identification for any data type, but most existing research has focused on 

the classification of retrieved video and digital image files. This 

classification concentrates on pornography from computer systems as well 

as evidence related to financial crimes and data from surveillance 

cameras. 

 Content Forgery: This method implements different approaches to detect 

whether the digital multimedia data content has been modified or not, such 

as by image retouching, image splicing, or a copy-move attack. 

 Data Recovery Approaches for Multimedia Files: These approaches are 

concerned with recovering unreachable data from damaged storage disks 
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or removable files when the normal approaches to access stored data fail; 

this includes file carving, which is independent of the system metadata. A 

significant increase in the number of data recovery techniques has 

occurred because of the increase of digital content being stored on a wide 

number of storage devices.  

 Fragment Identification: An important step in finding all parts of a file is 

classifying fragments discovered during file recovery. Several methods 

have been successfully used to achieve this purpose. One early method 

used “magic numbers” that persist in files of the same type; however, this 

method can be inaccurate, because locating whole files or fragments that 

contain these magic numbers is coincidentally. Therefore, new 

approaches have been advanced that deal with the statistical evaluation 

of the fragment content. 

 Steganography and Steganalysis: Steganography is utilised to hide 

information in the form of digital files, text, or images so it can be 

transmitted covertly. Steganalysis is the term used to refer to the 

technologies utilised to detect the presence of steganography. 

 Standardisation: In the context of forensics, standards ensure precise and 

trustworthy results. Such standards can be classified into two groups: 

paper and material standards. The first concerns the description of sets of 

procedures for the execution of specific activities, while the second refers 

to actual tools that can be used when conducting procedures. 

Standardisation is a key element for all research areas to better support 

collaboration as well as utilisation by practitioners and researchers (Poisel 

and Tjoa 2011).   
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Despite studies that have sought to develop efficient methods for conserving and 

analysing multimedia content, this process still suffers from several major 

drawbacks, such as multiple formats, the emergence of huge volume of data, and 

the complexity of the targeted material. Other shortcomings include the lack of  

structure and metadata, time restrictions, security, intelligence, and other 

application-specific constraints (Battiato et al., 2012; Poisel and Tjoa, 2011). In 

addition, it is evident from the aforementioned methods that most attention has 

been paid to activities that deal with the multimedia file. However, there is 

presently no method for examining multimedia file content in order to extract 

evidence that could help to solve the crime. Therefore, there is still a need to 

explore multimedia investigation methods that can examine and analyse 

multimedia file content in order to extract valuable evidence. 

2.5 Forensic Image Analysis 

According to the definition provided by SWGIT (2007), ‘Forensic image analysis 

is the application of image science and domain expertise to interpret the content 

of an image and/or image itself in legal matters’.  

The aims of Forensic Image Analysis (FIA) include feature recognition, 

measurement of similarities between image components, and extraction of 

meaningful information for comparison and/or analysis (Hanji and Rajpurohit, 

2013). Forensic image analysis can be divided into five main categories, which 

are presented below (Hanji and Rajpurohit, 2013):  

1. Photo Image Comparison 

Image comparison finds similarities, differences, or common 

characteristics through comparisons between query image features and 
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images featured in a dataset. The comparison process can include 

comparisons of people, clothing, or vehicles found at a crime scene or 

accident site, or other objects of interest in the images. In addition, images 

containing different types of impression evidence, such as tool marks, bite 

marks, tyre tracks, shoe prints, marks on a fired bullet, and injuries and 

marks on bodies, fingerprints as illustrated in Figure 2.2 can be analysed 

and compared with other images to assess individuality and uniqueness.  

 

Tyre marks Shoe prints Bullet marks Tool marks Bite marks 

Source: Hanji and Rajpurohit, 2013 

Figure 2.2: Examples of Impression Evidence Images  

2. Image Content Analysis   

Image Content Analysis (ICA) is the process of understanding and drawing 

conclusions about image content. The objectives of ICA are to identify the 

origin of an image and specify subjects and/or objects within it. Moreover, 

ICA aims to determine physical aspects of the scene, such as composition 

or lighting, and to answer the questions of which, what, or how an image 

was created or captured. Notable examples of ICA include vehicle license 

plate number identification, determination of the type of camera used to 

record a specific image, blood spatter analysis, patterned injury analysis, 

and correlation of injuries inflicted in an image sequence with autopsy 

results, as shown in Figure 2.3. 
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Blood spatter image Pattern injury Type of camera used 
Vehicle number 

plate identification 

Source: Hanji and Rajpurohit, 2013 

Figure 2.3: Examples of Image Content 

3. Image Authentication 

Image authentication is a process used to determine if the content of a 

digital image has been altered in any way since the time of its recording, 

by seeking signs of manipulation by illegal tampering (e.g., region 

duplication, resampling, inconsistencies in camera response function, 

lighting and shadows, chromatic aberrations, sensor noise, and statistical 

features, and colour filter array artefacts), degradation of the image content 

when transmitted, or the ratio of information loss in an image when saving 

it by using lossy compression (Kee, Johnson and Farid, 2011). Figure 2.4 

illustrates two examples of image tampering. 

 

 

 

 

 



 

17 

 

                     Original Image                       Fake image 

 

                                            Original Image  Fake image 

 

Source: Hanji and Rajpurohit, 2013 

Figure 2.4: Examples of Image Tampering  

4. Image Enhancement and Restoration 

Most surveillance images suffer from serious problems such as low 

resolution, especially in video images, poor contrast because of under or 

over exposure, motion blur or poor focus, corruption with noise, or 

misalignment of rows from line jitter in images (Hanji and Rajpurohit, 

2013). Figure 2.5 shows examples of low quality CCTV images. Therefore, 

it often becomes necessary to improve image content through an image 

enhancement process before it is possible to extract clear evidence 

through image analysis. Image enhancement is a process for reducing 

image noise, correcting image blur, or making adjustments to brightness 
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and contrast in order to extract details that are otherwise difficult to 

distinguish. 

Before                                           After 

  

Source: Focusmagic.com, 2019 

                                      Before                                  After 

      

Source: Caledoniandigital.co.uk, 2019 

Figure 2.5: Examples of Image Enhancement 

5. Photogrammetry 

According to a definition provided by Slama et al. (1980)‘photogrammetry 

is the art, science, and technology of obtaining reliable information about 

physical objects and the environment through the processes of recording, 

measuring, and interpreting photographic images and patterns of 

electromagnetic radiant energy and other phenomena’. 

In forensic applications, photogrammetry (sometimes called ‘mensuration’) 

is most widely used to extract features from an image, such as the height 
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of subjects depicted in surveillance images, for reconstruction of an 

incident scene. An example is given in Figure 2.6, which explains a 

photogrammetric analysis carried out to determine the height of a subject 

depicted in a bank robbery surveillance photograph (Hanji and Rajpurohit 

2013; SWGIT 2007). 

 

Source: Forensic Video Services, 2019 

Figure 2.6: An Example of a Photogrammetric Analysis   

2.6 Challenges of Image Analysis in Digital Forensics 

Many challenges have risen with the image analysis in forensic domain, from 

the volume of data (images) to web-based system advantages. 

1. A common issue with digital forensics investigations is the volumes of data 

that need to be investigated. Because of the huge developments in 

computing technology, evidence has become more varied in both nature 

and sources. Compared to past years, data provenances now reflect more 

disparity, including evidence originating from personal computers, servers, 



 

20 

 

cloud services, phones and other mobile devices, digital cameras, and 

even embedded systems and industrial control systems (Guarino, 2013). 

Consequently, a vast amount of data (‘big data’) needs to be analysed 

under the criterion of satisfying both swift execution time and the rules of 

digital forensics necessary for presenting the results in a court of law. In 

addition, the diversity of the sources of images for each case and also the 

form of evidence. 

2. The acquired images that need to be investigated, suggesting that these 

images are realistic, e.g. unconstrained illumination conditions, unknown 

position, noise, blurry and irregular texture (background). Also they vary in 

size, format, pattern of the shoe or tyres marks and number of objects that 

exist each image. Further, the objects inside the image differ in size, 

colour, shape, texture, and orientation. In addition, captured images from 

CCTV cameras may be faded (inaccurate colours), grainy, and of poor 

contrast, night vision, resolution, and light balance. 

3. The manual matching requires an investigator to look through many hours’ 

worth of footage in an environment that is extremely time-sensitive and in 

circumstances that make it difficult to work to solve the crime cases. 

4. The existence of tools such as EnCase, FTK, P2 Commander, Autopsy, 

HELIX3, and Free Hex Editor Neo have not risen to the challenges of 

extracting evidence from image content and analysing this content in order 

to solve crimes. 

5. In addition to the above, few studies focused upon image analysis for the 

purpose of digital forensics and identifying and extracting evidence from 
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images (Hsu, Kang and Mark Liao, 2013)  as will be demonstrated later.  

These studies are incapable of meeting the investigators’ requirements.  

6. The current tools and systems (proposed in forensic studies) do not 

provide the investigator the ability to ask higher-level more abstract 

questions of the data because there is no automatic correlation between 

images based on metadata and image content.  

7. The current tools and systems (proposed in forensic studies) are not web-

based applications. The web systems are accessible anytime, anywhere 

and via any computer or device with an Internet connection.  This makes 

the sharing of data and collaborating on cases much easier because data 

is stored in one central location, so investigators can share data and work 

together to solve crime cases.  

To help exemplify the above problems and challenges investigators face when 

dealing with the huge number of images to find the right pieces of evidence to 

solve a crime, the following different real crime cases were selected. The cases 

have been selected to demonstrate the several categories of evidential artifacts 

that need to be extracted to solve the crimes. Each case deals with different types 

of evidence or may need to extract more than one category within a single 

forensic case. For all cases, a number of metadata types such as date and time 

should be used to refine the search domain. 

 Child abduction (car specifications or plate number): in situations where a 

child is abducted, there is a need to collect all videos from surveillance 

cameras at the crime scene and nearby locations that could provide 

valuable footage to assist in finding the abducted child and the suspect. 

The problem that investigators face is the large number of images that 
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must be analysed in the shortest possible time because hours can literally 

mean the difference between life and death for the victim or escape for the 

suspect (Sephton, 2017). At present, this would involve teams of 

investigators manually trawling through the footage. Having identified 

possible leads, such as a child being seen getting into a car, an 

investigator may also try to identify and track the car. Currently, this would 

involve a manual process of selecting possible CCTV feeds based on an 

analysis of maps, sorting based on the time, and trawling through the 

video. The use of a manual human matching process is a laborious and 

time-consuming means of examining a large amount of image data 

collected from surveillance systems in such cases. 

 Bank robbery (suspect’s descriptions): There are many bank robbery 

cases happened and reported. The bank’s surveillance cameras captured 

images of the perpetrators when they did their crimes. Based on the 

captured images and/or the people were in the bank at the time, the 

suspect description and possible escape direction can be identified. For 

example, on November 01, 2017, Robbers wearing Halloween masks (as 

shown in Figure 2.7) escaped with cash after targeting Lloyds TSB in 

Newland Avenue, Hull, U.K. The police obtained CCTV images of the 

masked men believed to have been involved in this robbery. One of the 

men was holding a knife when they demanded money from a cashier. A 

quantity of cash was handed over before the men quickly left branch. No 

one was injured during the robbery, which happened just before 4.30pm. 

The case detective used the CCTV footage to enquire some information 

that may led to catch them. Such enquiries include their clothing, speaking 
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to local retailers who might stock this kind of mask, or, maybe some people 

bandits (MORRIS, 2017).  

 

 

Source: MORRIS, 2017 

Figure 2.7: The Masked Robbers Who Targeted a Bank in Hull 

Another case is the robbery of four banks along the US east coast over five days 

(July 20, 2019 to July 24, 2019). According to the FBI’s Charlotte division, the 

suspect was described as a white or Hispanic woman who is around 5ft 3in tall 

and weighs around 60kg. The bandit carried her pink handbag during at least two 

of the robberies, and also wore leggings, a strappy top and a navy baseball hat, 

based on the CCTV footage (as shown in Figure 2.8). The first heist took place at 

Orrstown Bank in Carlisle, Pennsylvania, on July 20. Three days later, she was 

spotted across state lines at the M&T Bank in Rehoboth Beach, Delaware. The 

following day she crossed state lines again to hit the Southern Bank in Ayden, 

North Carolina, on July 24. The same day, she did her fourth bank robbery, again 

in Hamlet, North Carolina (BREWIS, 2019). 
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Source: BREWIS, 2019 

Figure 2.8: The Suspect Different CCTV Images 

In another case on January 29, 2016, the TSB bank on Dunearn Drive, Kirkcaldy, 

UK was robbed by two armed men. The men stole money from the bank before 

escaping on bicycles (as shown in Figure 2.9). The police have collected the full 

CCTV film from a Kirkcaldy bank. The six-minute film shows them pointing what 

appears to be a handgun at staff before filling green bags with cash. Officers have 

appealed for information about the two men, at least one of whom is believed to 

be Eastern European. Staff was threatened by the men with the gun and a 

crowbar, which can also be seen in the footage. No-one was injured in the raid. 

After leaving the bank at about 10:40, the two men cycled off along Alford Avenue 

and were spotted a short time later on Cawdor Crescent. The robber’s description 

was white, roughly 30 years old and was wearing dark-colored baseball caps. 

One suspect, who was about 5ft 9in (1.75m) tall, was wearing dark blue jogging 

bottoms with a distinctive white logo, which police have established is that of 

Mordex, a Polish brand associated with bodybuilding (Police issue CCTV footage 

of Kirkcaldy armed bank robbery - BBC News, 2016). 

July 20, 2019 July 23, 2019 July 24, 2019 
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Source: Police issue CCTV footage of Kirkcaldy armed bank robbery - BBC News, 2016 

Figure 2.9: CCTV Footage Shows the Two Men Pointing What Appears To Be a 

Handgun at Bank Staff 

May 2016. Police were called to reports of a robbery at HSBC on Wimborne Road, 

Bournemouth, UK, shortly after 09:00 BST. CCTV images of a bank robbery in 

which cash was stolen have been collected by police. The images show two men 

(as shown in Figure 2.10) in black clothing and with scarves over their faces stole 

a case containing money after punching a security guard. They escaped in a black 

car driven by an accomplice. No weapons are believed to have been used. Police 

appealed for information from anyone who saw the men or the car. The Police 

keen to trace the black Fiesta car used by the offenders and ask anyone who 

sees one being driven in suspicious circumstances or abandoned in the area 

(HSBC Bournemouth bank robbery CCTV released - BBC News, 2016). 
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Source: HSBC Bournemouth bank robbery CCTV released - BBC News, 2016 

Figure 2.10: The Two Men Wore Black Clothing and Scarves over Their Faces 

 

 Car theft: in the last five years (2014-2018), Car thefts around UK have 

increased by almost 50%, with a car being stolen every five minutes (as 

shown in Figure 2.11). 112,174 vehicles were stolen in 2017/2018 alone, 

that equivalent to 307 each day (Allan, 2019). According to the latest car 

theft statistics (2018), 77% of vehicle theft investigations are closed by 

police without identifying any suspects. In England and Wales, 106,000 

offenses of theft of or unauthorised taking of a car were reported to police 

forces until March 2018. This represented the highest annual total since 

2009. More than 80,000 of those offenses, were finally classified as 

"investigation complete - no suspect identified" (Evans, 2018). 

 



 

27 

 

 

Source: Allan, 2019 

Figure 2.11: Change in Volume of Car Theft Claims, 2014 to 2018 

 Murder (car specifications and tyre marks): a Siberian policeman, Mikhail 

Popkov, 53, described as Russia's most prolific mass murderer in modern 

times, murdered 55 women and a policeman near Irkutsk in Russia 

between 1992 and 2007. He killed the victims with an axe and hammer 

after offering them late-night rides in his car. At least 10 were also raped. 

He dumped their mutilated bodies in forests, by the roadside and in a local 

cemetery. The victims were all women between the ages of 16 and 40 

apart from one male, a policeman. In three cases he was on duty in his 

police car. Tyre marks from Popkov's Niva car were found next to some of 

the bodies, which led police to check all owners of that Niva type in 

Angarsk. The owners' DNA was checked against DNA found on the 

victims, and that enabled police to identify the killer. Popkov (as shown in 

Figure 2.12) was caught in 2012 after a DNA match identified his car 

(Mikhail Popkov: Russian ex-cop jailed for 56 more murders - BBC News, 

2018).   
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Source: Mikhail Popkov: Russian ex-cop jailed for 56 more murders - BBC News, 2018 

Figure 2.12: The Murderer of 55 Women 

 Stolen goods at auction site (different objects): On January 15, 2015, Peter 

Whitehead had his £450 bicycle pinched from outside a gym in Edinburgh 

and saw it for sale online hours later for just £250. Unfortunately, the area 

that the bike stolen from is not covered by CCTV. Peter immediately knew 

the unusual Whistle Patwin model pictured in the online advert was his due 

to the position of the bike lock bracket on the frame. The cyclist who 

spotted his stolen bike on Gumtree has been told by police there is nothing 

they can do to get it back and their hands are tied until a data protection 

request is granted, reports the Daily Record. Attempts by the cyclist to 

make contact with the seller by email and phone have been ignored. Due 

to data protection laws, a warrant must be applied for before police can 

access personal information held by the site (Mair, 2015). 

The crime cases are increasing dramatically and their types are varied. Some of 

the above cases have been solved within a quietly long time such as a murder 

case that has taken five years and the other cases have been closed - no suspect 

identified such car theft. In addition, the acquired sources of data that need to be 

investigated to find the evidence are different, and also the quality of images are 

disparate. Further, the major evidence for all above cases is the object that should 
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be extracted from images (and maybe has been traced it on the Google Map) and 

differs from case to another- car cases that include child abduction and car theft 

(car module, car color or car plate number), person identifications (length, weight, 

clothes or carry something), tyre marks, other objects (bicycle, bag, hat), etc. In 

most cases, the evidence is not a single item; it is a collection of evidence (e.g. 

person, hat, green bag, etc.).  The current forensic tools such as FTK and Encase 

are insufficient in processing, analyse and extract the aforementioned evidence 

types, therefore they cannot help to facilitate the investigation process and solve 

the crimes (AccessData Group, 2018 and Guidance software, 2008). Accordingly, 

there is a need to design an automatic system that can deal with these forensic 

image analysis challenges in order to minimise the time required for extraction, 

indexing, and analysis of the recovered images to guide investigators in finding 

the requested evidence. This system will help reduce the investigative effort to 

extract accurate evidence in a short time. And finally, the system should be 

designed as a platform independent, easy to use and provide different 

approaches to visualize the results. 

2.7 The Current State of Art 

The internet's fast development and the dropping cost of digital cameras and 

image scanners have led to a significant increase in the number of digital images. 

These criteria paved the way for effective storage and image retrieval systems. 

In 1970, image retrieval was based on text to retrieve the images. Because the 

manual naming and annotating of the images is laborious and time-consuming, 

CBIR systems were developed in the early 1980s. CBIR is a technique that uses 

visual contents to retrieve images from a largescale image database 

automatically and computationally faster (Kavitha and Sudhamani, 2014; Singh, 
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Singh and Sinha, 2012). In general, however, the user of this technology is 

usually interested in objects that appear in an image rather than in the image 

itself. Therefore, sometimes the user is dissatisfied with the search result that 

comes from traditional CBIR. To overcome this problem, Object-Based Image 

Retrieval (OBIR) has been proposed as a new branch of CBIR, which can be used 

to retrieve images that contain certain objects and meet the user’s specified 

search requirements (Wen, Geng and Zhu, 2011). Moreover, there is a 

substantial gap between low-level content features (colour, shape, etc.) and 

semantic concepts (keyword, text, descriptor, etc.) used by humans to interpret 

images. Furthermore, in CBIR, users must have an example or a query image at 

hand, because the query must be an image. To overcome the semantic gap, 

relevant feedback from users is obtained. However, this solution requires 

considerable intervention from the user and is similar to traditional manual 

annotation. As a result, the next-generation approach is to develop an automatic 

system that is able to describe the content of the image semantically by a set of 

semantic labels through assigned images (Zhang, Monirul Islam and Lu, 2013). 

This system is called an Automatic Image Annotation (AIA) or linguistic indexing, 

which is able to assign words to every new test image after training the model for 

similarities between visual features and tags of images. Thus, the image retrieval 

process can be performed using input texts provided by the user (Hamid Amiri 

and Jamzad, 2015). AIA is thus considered a highly valuable tool for image 

search, retrieval, and archival systems. 

The performance of the retrieval results is measured by Precision and Recall. 

According to a definition by Hannan et al., 2016, ‘Precision is defined as the 

proportion of images among all those retrieved that are truly relevant to a given 
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query; recall is defined as the proportion of images that are actually retrieved 

among all the relevant images to a query’. Recall and precision are inversely 

related. In addition, there is another measure: ‘F1 is the weighted harmonic mean 

of precision and recall, plotted against the number of retrieved images’. If the user 

does not have a strong goal of precision or recall, then a combined metric can be 

used, which is the F1-measure. By using this metric, a comparison among 

different algorithms can be achieved. Equations 1, 2, and 3 define precision, 

recall, and F1, respectively (Hannan et al., 2016). 

                    𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑙𝑒𝑣𝑒𝑛𝑡 𝑖𝑚𝑎𝑔𝑒𝑠 𝑟𝑒𝑡𝑟𝑒𝑖𝑣𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓  𝑖𝑚𝑎𝑔𝑒𝑠 𝑟𝑒𝑡𝑟𝑒𝑖𝑣𝑒𝑑
                      (1) 

                         𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑙𝑒𝑣𝑒𝑛𝑡 𝑖𝑚𝑎𝑔𝑒𝑠 𝑟𝑒𝑡𝑟𝑒𝑖𝑣𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑚𝑎𝑔𝑒𝑠 𝑖𝑛 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛
                       (2) 

                                               𝐹 = 2 ∗
 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
                                       (3) 

2.8 Review Methodology 

This section presents the methodology for undertaking a comprehensive 

literature review related to the image analysis in digital forensic. This covers 

retrieval images in forensic domain. The research methodology was to utilize a 

range of keywords (e.g. image retrieval in forensic, content based image retrieval 

in digital forensic, image analysis in digital forensic, object recognition in digital 

forensic, object retrieval in forensic, forensic image analysis, forensic image 

retrieval) to research related studies from various academic databases IEEE, 

Google Scholar, and ScienceDirect. The words “photographic, photo or picture” 

were used instead on “image” because image in forensic is a bit-by-bit, sector-

by-sector direct copy of a physical storage device, including all files, folders and 

unallocated, free and slack space. Because the forensic images analysis includes 



 

32 

 

many subjects, the papers took about extracting meaningful information from 

images are selected and other subjects such as determining the origin and 

authenticity of an image, JPEG compression, image steganography, etc. have 

been ignored. 

In addition, this research is undertaken in an effort to better understand the 

different types of object-based image retrieval and automatic image annotation 

methods that can improve the efficiency and effectiveness of forensic image 

analysis and can facilitate forensic investigation work for the purpose of solving 

forensic cases (from an academic perspective).  

Filters were applied to the literature search results in order to identify the most 

relevant studies: 

1. Publications less than two pages long (including posters, presentations, 

abstracts, or short theoretical papers) were excluded. 

2. Non-peer-reviewed publications were eliminated. 

3. The language of this literature review is English; therefore, any reference 

written in a language other than English was considered not relevant. 

4. Site number, impact factor, and publication year of the selected papers 

were arranged in descending order. 

Table 2.1 illustrates the number of papers returned and the final number of studies 

selected for each database after application of the above expressions. The 

papers returned from Google Scholar are not duplicated of the papers already 

identified from the other three additional sources, which represent publisher 

specific sources (IEEE Xplore, ScienceDirect and ACM Digital Library). The final 

papers were filtered based on their content because not all returned papers 
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relevant with the search keywords, for example, the “retrieval” keyword returns all 

papers regardless of the targeted papers. In addition, some papers have been 

repeated when changing the keywords such as "Object based image retrieval" 

and "Multiple objects OR Objects retrieval" because keywords still have the same 

words such as "Object” "retrieval". 

Keywords 
Object based image 

retrieval 

Multiple objects 

OR 

Objects retrieval 

Automatic image 

annotation 

OR 

Automatic image 

annotation retrieval 

Database 
Number of 

References 

Final 

Selected 

References 

Number of 

References 

Final 

Selected 

References 

Number of 

References 

Final 

Selected 

References 

IEEE Xplore 73 11 441 5 73 10 

ScienceDirect 5 0 106 0 25 1 

ACM Digital 

Library 

12 1 3 0 49 2 

Google 

Scholar 

37 1 50 2 181 7 

Total 127 13 600 7 328 20 

Overall 40 

Table 2.1: Number of Returned References 

The search criteria used for the current state of art included a sequence of topics, 

starting with image analysis in digital forensics, object-based image retrieval, 

single object-based image retrieval and multiple object-based image retrieval, 

followed by automatic image annotation studies. 

2.8.1 Image Analysis in Digital Forensics 

This section presents a comprehensive review of the current state of the art in 

image analysis within a forensic domain. Very few studies have focused on 

forensic image analysis for the purpose of extracting evidence from images that 

can help in solving criminal cases. Examples of these studies are Wen, Ph and 
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Yu, 2005, Lee et al., 2011, Choraś 2013a, Hsu, Kang and Mark Liao  2013, Yuan 

and Ying 2014, Gulhane and Gurjar 2015, Aljarf and Amin 2015, Shriram, 

Priyadarsini and Baskar, 2015, Rida et al. 2019, Xiao, Li and Xu 2019. In addition, 

though these cited studies have arguably contributed to the subject of solving 

forensic cases by using content-based image retrieval, each of these works 

demonstrates some important shortcomings. This section reviews all publications 

in this domain, focusing, in particular, on the role of Content-Based Image 

Retrieval (CBIR) in finding evidence from images. 

One of the early studies that employed CBIR for crime scene images was Wen, 

Ph and Yu 2005, which presented a retrieval method for a digital database of 

crime scene images. CBIR retrieves similar images by comparing low-level 

features of a query image, such as colour, texture, and shape of the query image, 

with the features of the images in the database. The proposed system used colour 

and texture features to represent an image; colour histogram and region colour 

were used for colour, while co-occurrence matrices, coarseness, contrast, and 

Gabor features were used for texture. The color histogram of an image normally 

refers to the distribution of colors in an image.  It can be visualized as a graph (or 

plot) that gives a high-level intuition of the intensity (pixel value).  It is represented 

by two-dimensional (2D) or three-dimensional (3D) color space. The horizontal 

axis represents brightness. From left to right, brightness is becoming higher and 

higher. The vertical axis stands for pixel amount. From the bottom up, there are 

more and more pixels. Figure 2.13 illustrates an example of color histogram, the 

colorful parts of a histogram is called the channel histogram, which includes three 

types — red, green and blue. Each type explains the distribution of pixels in this 

channel (Rosebrock, 2014 and Magazine, 2017). 
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Source: Sardana, 2017 

Figure 2.13: An Example of Image Color Histogram  

Gabor Features: Gabor features, which is extracted by using Gabor filter, have 

been widely used in image analysis and processing to extract local pieces of 

information which is combined to recognise an object or a region of interest.  

(Kamarainen, 2012).  

Grey Level Co-occurrence Matrices (GLCM): it is also frequently called the spatial 

gray level dependence matrix (SGLDM). It represents one of the earliest 

statistical methods that extracts texture feature from grayscale image. Texture 

feature represents an important characteristics used in identifying regions of 

interest in an image (Gadelmawla, 2004 and Sebastian, Unnikrishnan and 

Balakrishnan, 2012).  

In addition, it used a Roman numeral recognition system to find license plate 

numbers in crime scene images. The purpose of the paper was to utilise colour 

and texture features in order to retrieve crime scene photos from a digital image 

database and achieve acceptable results, and to demonstrate an ability to 

https://en.wikipedia.org/wiki/Gabor_filter
https://www.sciencedirect.com/topics/engineering/grayscale
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manage a forensic image database. However, experimental results were not 

presented in detail to highlight the efficiency and accuracy of their proposed 

approach. 

Lee et al. (2011) employed CBIR to deal with a particular forensic image database 

containing a large collection of tattoo images (64,000 tattoo images, provided by 

the Michigan State Police). Their proposed system applied Scale-Invariant 

Feature Transform (SIFT) on a query image to extract a Tattoo-ID, then used a 

matching algorithm to retrieve images from the large database that were similar 

to a query image. The proposed system achieved 90.5% retrieval accuracy; 

however, the retrieval performance was affected by low-quality query images, 

such as images with low contrast, uneven illumination, small tattoo size, or heavy 

body hair covering the tattoo. Therefore, robust similarity measures (symmetric 

matching and keypoint weighted matching) and metadata associated with the 

tattoo images were used to overcome the low quality of such images. Despite the 

high retrieval accuracy, the proposed systems were dependent on manual 

annotations of the image, which is a time consuming task. 

Another work on forensic image analysis (Choraś, 2013) focused on forensic 

image retrieval for firearms. This article introduced a new method for comparison 

between marks of firearm bullets and featured vectors extraction to represent 

striation characteristics. Initially, a query image was given to the system. Then, a 

Grey Level Co-Occurrence Matrix (GLCM) was applied to the query image. After 

that, contrast, dissimilarity, homogeneity, angular second moment, energy, and 

entropy were calculated to extract texture features from the GLCM. The system 

was tested by using five classes of images: fired bullets, firing pins, extractor 

marks, ejector marks, and cartridges, and each class had 10 images. The best 
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five images were reviewed. The author claimed that all images were retrieved 

correctly and that the proposed system was thus convenient for forensic image 

retrieval. The main limitation of the experiment, however, is that a very low 

number of images were used. Also, the results of this study should be compared 

with the outcomes of other studies to further validate the efficiency of the 

proposed method. 

A study by Hsu, Kang and Mark Liao (2013) proposed an efficient cross-camera 

vehicle tracking technique using affine invariant object matching. Cross-camera 

vehicle tracking was formulated as an object matching problem under various 

viewing angles. The proposed system included four steps. Firstly, they used the 

Visual Background extractor (ViBe) background subtraction algorithm in order to 

detect each vehicle object. Secondly, for each detected vehicle in a camera 

network, the invariant image feature was extracted by using affine and Scale-

Invariant Feature Transform (ASIFT). Thirdly, the Bag-of-Words (BoW) model 

was employed to quantize each descriptor into a visual word based on an offline-

trained vocabulary. Thus, in this study, each vehicle object in the database was 

stored with its own set of visual words. Finally, the spatially invariant property of 

ASIFT and the min-hash technique were employed to enhance the accuracy of 

ASIFT feature matching between images from various viewpoints. The authors 

used three different videos (V0, V1, and V2) from three static cameras placed in 

different locations to create a database containing 203 vehicle object images in 

order to evaluate the system’s performance. The hierarchical K-means algorithm 

was applied to train a vocabulary of 50,000 visual words based on a pre-collected 

training set of 1,000 vehicle objects, where each training object had from 10,000 

to 20,000 descriptors. The results showed that the proposed system 
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outperformed the SIFT and ASIFT methods in term of precision, with results of 

85.62%, 30.77%, and 46.15% for V0 and 96.15%, 53.85%, and 69.23% for V1, 

respectively. Their paper was the first to find that ASIFT is not strong enough for 

affine transforms of vehicle objects, especially for those involving considerable 

viewpoint changes. In addition, this paper discovered that, after the affine 

transform process, although most of the feature points in a vehicle object will 

survive, their ASIFT descriptors will be distorted, which causes deficient matching 

performance. Furthermore, the authors achieved improvements in matching 

accuracy by presenting a novel matching criterion that depended on the spatially 

invariant property of ASIFT. One of the major challenges of image matching is 

the difficulty in retrieving images that contain an object with a certain viewpoint 

based on a query image of the same object from a different view. In addition, the 

authors noted that better matching performance could be achieved by using 

metadata. 

A comparison between the performance of different image features and different 

similarity measurements in a CBIR system using forensic images was carried out 

by Yuan and Ying (2014). Colour and texture features were extracted by using a 

colour histogram in HSV colour space (HSV stands for Hue, Saturation, and 

Value) and 2-D wavelet decomposition, respectively. Colour, texture, and colour-

texture features were used as image descriptors. Then, similarities between a 

query image and images in a database were found using Euclidean distance and 

city block distance as similarity measures. Experimentally, two databases were 

utilised. The first was generated from actual cases and included 400 forensic 

images, which were divided into eight categories: cars, roads, houses, doors, 

fingerprints, bloodstains, show marks, and tools, as shown in Figure 2.14. The 
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second was obtained from the Corel database and included 800 images, divided 

into eight categories: Africans, architecture, buses, dinosaurs, elephants, flowers, 

horses, and food. 

 

Source: Yuan and Ying, 2014 

Figure 2.14: Examples of Forensic Images  

The reason for using two databases was to evaluate the performance of the 

proposed system with different databases. The mean recall value was used to 

evaluate the system performance. The results showed that the average mean 

recall for the forensic and Corel databases was 59.37% and 48.87% using the 

colour feature and Euclidean distance, respectively; while the mean recall for the 

same two databases was 62.62% and 69.75% using the colour filter and city block 

distance, respectively. The experimental results showed that using the city block 

distance enhanced the retrieval results in both databases. The aim of this paper 

was to clarify that the special characteristics of forensic images are different from 

characteristics of standard images; therefore, the image features that were used 

car road house 

door 

fingerprint 

blood trace footprint 
tools for crime purpose 
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in this study were suitable for standard image database retrieval but inefficient for 

the forensic image database. This goal was clarified through another experiment, 

summarised in Table 2.2, which shows the differences among three types of 

features and similarity measures using precision metric through examine on the 

forensic image database and the standard database (Corel). From the illustration, 

it can be seen that colour feature achieved high precision compared with texture 

and fusion for both datasets because it depends on the colour of pixel that is 

invariance with respect to image scaling, translation, and rotation, while texture 

feature typically includes contrast, uniformity, coarseness, and density 

(Shahbahrami, Borodin and Juurlink, 2008). The results also indicate that the 

texture feature of the forensic database was lower than the Corel database 

because this database contained complex images, which contain diverse objects 

and backgrounds. The results of this experiment also show that the fusion did not 

improve the results for both databases. 

 Color feature Texture feature Fusion (Color and 

Texture) features 

Similarity 

measure 

City 

block 

Euclidean 

distance 

City 

block 

Euclidean 

distance 

City 

block 

Euclidean 

distance 

Corel 

database 

70 56 42 36 61 47 

Forensic 

database 

76 73 33 31 37 34 

 

Source: Yuan and Ying, 2014 

Table 2.2: Comparison between Corel Database and Forensic Database under Different 

Features and Similarity Measures 

In another work, Gulhane and Gurjar (2015) described different types of content-

based image retrieval methods and proposed an efficient image retrieval method 

for a digital image database of criminal photos. The proposed system was divided 

into eight steps: (1) a query image and each image in the database were 
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segmented into eight coarse partitions; (2) dominate colour was determined by 

selecting the centroid of each partition; (3) the GLCM was utilized to extract the 

texture feature; (4) invariant moments of gradient vector flow fields were used for 

shape features; (5) the colour, texture, and shape features were combined; (6) 

weighted and normalized Euclidean distance were used to find the distance 

between the feature vectors of the query image and the images in the database; 

(7) the Euclidean distance values were sorted; and (8) images with the minimum 

distance value were retrieved. This study included no experiments; instead, only 

one example was given to explain the retrieval results. 

The clarity and accuracy of forensic image retrieval are essential requirements 

for any investigation. Aljarf and Amin (2015) presented a system that solved noise 

and losing blocks problems for forensic images. Two algorithms were used to 

achieve those results: a filtering algorithm and a reconstructing algorithm. For the 

first one, mean and median filters were applied to remove the noise from the 

image. For the second one, the reconstructing algorithm was used to rebuild small 

and large missing blocks. The reconstructing algorithm started by converting the 

forensic image from RGB to greyscale, then using a histogram to find missing 

blocks. Also, the algorithm used a binary image to find white blocks, representing 

missing blocks, and black blocks, representing the rest. The “roifill” function in 

MATLAB was used to fill each missing pixel. To verify the proposed system, 

Gaussian and ‘salt and pepper’ noise with two different densities were applied on 

a grey image to evaluate the performance of the proposed filtering algorithm. In 

addition, some blocks were removed from the original image to train the system, 

before using Adobe Photoshop to evaluate the performance of the proposed 

reconstructing algorithm. Based on the experimental result, the median filter was 
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better than the mean filter for eliminating noise. In addition, small blocks were 

sufficiently reconstructed by the reconstruction algorithm, but for large missing 

blocks, the algorithm exhibited low performance. As highlighted by the authors, 

there is a need to employ more filters in order to enhance forensic images and 

therefore to gain better results. In addition, improvements should be carried out 

on the reconstruction algorithm to obtain better results in retrieving large missing 

blocks. However, the main limitation of the experimental result was that it did not 

use different types of images to show the efficiency of the proposed algorithms.  

Shriram, Priyadarsini and Baskar (2015) proposed a CBIR system involving a 

compact embedded search engine to search and extract images from databases. 

Their system started by taking a query image containing evidence, such as a 

criminal’s face or tools used for committing a crime. Then, histogram, texture, 

entropy, and Region Of Interest (ROI) methods were applied in combination to 

the query image to extract features. For ROI, the Speeded-Up Robust Features 

(SURF) method was used to extract features. Later, these features were used in 

the comparison stage. Six combinations of these methods (histogram, texture, 

entropy, and ROI) were examined. Figure 2.15 illustrates these combinations, 

where E, T, R, and H(x) represent the entropy, texture, ROI, and histogram 

methods, respectively. 
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Source: Shriram, Priyadarsini and Baskar, 2015 

Figure 2.15: Different Types of Combinations  

The proposed system was examined on a database with 250 images of criminals’ 

faces, which were collected from different websites. Figure 2.16 shows examples 

of the images in the database.  

 

Source: Shriram, Priyadarsini and Baskar, 2015 

Figure 2.16: Screen Shot of the Image Set  

The results showed that the accuracy values were 98%, 95%, 90%, and 20% for 

combination 1; combinations 2, 3, 6; and combinations 4, 6; and the others, 

respectively. As a result, the six combinations proved their efficiency in retrieving 

similar images to the query image, and also reduced the time spent by the 

investigator in matching the images in his database. 
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Rida et al. (2019) presented a brief survey of the state-of-the-art performance of 

forensic shoe-print identification. The survey illustrated the challenges that still 

face forensic shoe-print identification and have influenced performance. The 

noise, occlusions, rotation and various scale distortions are represented as one 

of the challenges that cause large intra-class variations. To overcome this 

challenge, a large variety of handcrafted features was used. However, these 

features have shown good performance in limited and controlled scenarios and 

failed when they are dealing with large intra-class variations. Another challenge 

is the limited size of a database that has mainly one example per each shoe class 

used for evaluation and the absence of public benchmarks with pre-defined. This 

led to the usage of non-realistic and synthetically generated images for 

performance evaluation by most published techniques in the literature. In 

addition, there are no standardized evaluation protocols in order to compare 

performance. 

According to Xiao, Li and Xu (2019), it important to detect and recognize persons, 

objects, cars, from a good quality image and CCTV footage to solve the cases. 

Through identifying the object in the crime scenes such as knife or firearm, it could 

help to track the object holder (suspect) that might has link with the case. The 

relation between object and subjects, environment, scenarios, and timeline is 

useful in the case investigation. The Yolov3 model was applied to detect the 

suspicious objects in crime scene and it was trained to identify knife, gun, and 

other firearms’ in video. The model failed to identify the same object when the 

camera was turned -90 degrees as illustrated in Figure 2.17. In addition, the 

model also failed to identify the main suspect when it was used to detect video 

with different quality as shown in Figure 2.18.  
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Source: Xiao, Li and Xu, 2019 

(a) Labelled Image                       (b) Origin Image 

Figure 2.17: Object Detection in Video with Different Angle  

 

 

Source: Xiao, Li and Xu, 2019 

     (a) Labelled Image                                           (b) Origin Image 

Figure 2.18: Low Quality of Video Can Significantly Affect the Detection Performance 

Consequently, it is necessary to develop a new model for object detection in crime 

scenes and enhancement the quality of images or video to improve the 

recognition performance. 
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To detect and represent complex criminal events effectively in the video, Sobhani 

and Straccia (2019) proposed an ontology for representing complex semantic 

events to aid video surveillance-based vandalism detection. Seven classes were 

considered (as shown in Table 2.3).  

 

Source: Xiao, Li and Xu, 2019 

Table 2.3: Criminal Event Classes Considered 

For each class, one or more General Concept Inclusion (GCI) was manually built 

to classify high-level events in crime videos as illustrated in Figure 2.19. 

 

Source: Xiao, Li and Xu, 2019 

Figure 2.19: Example of GCI and Vandalism Scenes in CCTV Videos 

After that, all the videos were annotated manually then checked whether the 

manually built GCIs were able to determine crime events correctly or not. Two 

experiments were conducted to evaluate the performance. In the first one, the 

classification effectiveness of manually built GCIs to identify crime events was 



 

47 

 

evaluated, while in the second, the GCIs learned automatically based on the 

examples that built manually. The context of London Riots, which happened in 

2011, was used to evaluate the manually GCIs and automatically GCIs. For the 

evaluation, 140 videos from 35 CCTV cameras (however, the videos cannot be 

made publicly available) with their features such as latitude, longitude, start time, 

end time and street name were used. The results revealed that the learned GCIs 

performance were less and completely different from the manually built ones. 

Further, the manually build GCIs achieved better performance than the learned 

GCIs. 

2.8.2 Object-Based Image Retrieval 

Humans are easily able to recognise objects that exist in images, in spite of 

differences in viewpoint, scale, location, and size. In computer vision, however, 

while many algorithms have been used for object detection and classification, 

these techniques still suffer from challenges when images require many details 

to describe the scene. In such cases, the process of extracting objects is complex, 

because these objects may have a sophisticated structure or be surrounded by a 

complicated background (Wang, Mohamad and Ismail, 2014). Another difficulty 

arises when multiple objects need to be identified and classified in a single image 

(Dimitriou et al., 2013). To overcome these problems, researchers have proposed 

various methods to recognise and extract an object or objects from the image. 

Figure 2.20 illustrates an object-based image retrieval system, which contains 

two types of query images (a single object with a simple background and multiple 

objects with complex backgrounds), and a feedback process to enhance the 

retrieval result.  
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Source: Qi et al., 2012  

Figure 2.20: Example of Object-Based Image Retrieval System  

2.8.2.1  Single Object-Based Image Retrieval 

This topic can best be treated under two methods (i.e., centric object-based 

image retrieval and non-centric object-based image retrieval) in order to 

comprehend the limitations and weaknesses, and the strengths, of each category. 

Therefore, this treatment will help to identify the best studies that can be 

employed in forensic image analysis. The studies under the first method 

concentrate only on the central object, while those in the second method 

concentrate on a non-central object, in order to overcome the limitations of the 

first approach. 

Recently, several studies that focus on single object retrieval have been 

conducted, for more details of each individual study, please see Appendix A. 

2.8.2.2   Multiple Objects-Based Image Retrieval 

In recent years, there has been an increasing interest in recognising multiple 

objects in an image. Some studies provide users with various tools to select 

interesting objects and use different types of features to represent these objects 
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of interest in order to retrieve results that better meet the user’s requirements.  

These studies attempted to extract multiple objects from images. For more details 

of each individual study, please see Appendix B.  

2.8.3 Automatic Image Annotation 

Automatic Image Annotation (AIA) has become a primary research subject in the 

areas of computer vision and multimedia, because of its important effect on both 

semantic-based image retrieval and image comprehension. The main objective 

of AIA is to determine the best annotation words to describe the visual content of 

an untagged or badly tagged image (Kharkate and Janwe, 2013; Tian, 2015). 

From the point of view of technical solutions, the correlation between the 

annotation words and the images represents the major problem (Tian, 2015). 

AIA is a process of automatically assigning words to a given image and it 

suggests a promising way of achieving more efficient image retrieval and 

analysis, by bridging the semantic gap between low-level features and high-level 

semantic contents in image access (Jin and Jin, 2015). 

In the literature, several theories have been proposed to outline the AIA process. 

Huang and Lu (2010) proposed an automatic image annotation system that 

divided an image into an object and a background. The system had two phases: 

training and annotation. In the training phase, the main object was extracted from 

the image by applying a combination of the Active Contour Model (ACM) and the 

colour image segmentation method (JSEG) algorithm. The goal of using this 

combination was to prevent over-segmentation. Afterwards, colour (colour 

histogram in HSV colour space), texture (Gabor filter), and shape (several masks) 

features were extracted from the object and background regions in order to build 



 

50 

 

the main object and background classifiers (SVM). Next, a relationship between 

the image classes and image background was built by the Gaussian Mixture 

Model (GMM) to set up the association knowledge base. In the annotation phase, 

the main object was extracted from a test image, and then the feature vector was 

extracted and used by the object classifier to determine the class of the test 

image. After that, the relevant backgrounds for detecting the image class were 

retrieved from the associated knowledge base. In the final step, the system 

determined which background was related to the image by using the relevant 

background images. Figure 2.21 presents the proposed system. 

 

Source: Huang and Lu, 2010 

Figure 2.21: System Framework  

The system was tested on ten classes from the Corel image database (1,000 

images, 100 for each class). The classes were: ships, trains, aeroplanes, buses, 

buildings, elephants, horses, tigers, eagles, and wolves. The number of images 
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in each class was divided into two halves. The first half was used as the training 

images. The second half was divided into 20 images that were for building the 

association knowledge base, while the remaining images were used as testing 

images (i.e., 30 images for testing). The results showed that the proposed system 

achieved precision=88%, recall=94% and F-measure=91% for the final 

annotation for ten classes. In addition, the system was validated by yielding 

correct background image annotations even if its image class implied different 

backgrounds in the associated knowledge base. 

Most systems treat annotation as a translation from image instances into 

keywords. However, Sumathi and Hemalatha (2011) considered annotation as a 

retrieval problem and established  a hybrid framework for image annotation. Their 

system started by extracting the feature vector using the Joint Equal Contribution 

(JEC) method for an RGB colour image. Next, several SVMs, such as the flat-

wise, axis-wise, and position-wise approaches, were trained in order to prepare 

different strings for annotation. After that, a final string was obtained by using a 

pair-wise fusion method for summing strings obtained from the three types of 

SVMs. Figure 2.22 depicts the framework of the proposed system. 

 

 

 

 
 

Source: Sumathi and Hemalatha, 2011 

Figure 2.22: A Framework of the Proposed System 
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This method was examined on a Flickr dataset containing 500 images: 450 

images for training and 50 images for testing. To evaluate the system 

performance, two types of comparisons were applied by the authors. In the first 

comparison, the proposed system was compared with other feature extraction 

methods. In the second comparison, the system was compared with a new 

baseline method, hierarchical method, MBRM method, CRM method, and NPDE 

method. Regarding the first comparison, the results for the mean precision, mean 

recall, and N+ (N+ denotes the number of recalled keywords) were 19%, 22%, and 

110, respectively. In the second comparison, the results for precision, recall, and 

common E measure of the proposed method were 77%, 35%, and 51%, 

respectively. The E measure is a metric based on precision (p) and recall (r) 

values, and the equation that describes it is as follows:  

                                         E(p, r) = 1 − 2/([1/p] + [1/r])                                 (4) 

The experiment results demonstrated that the proposed framework outperformed 

other current methods and did not require much time for training data, in 

comparison with other methods.  

A method proposed by Li et al. (2012) used both generative and discriminative 

learning models for automatic image annotation. Firstly, an image was divided 

into blocks, each with a size of 16x16 pixels. A 36-dimensional feature vector was 

extracted from each block that was composed of 24 colour features (auto-

correlogram calculated over eight quantized colours and three Manhattan 

distances) and 12 texture features (Gabor energy computed over three scales 

and four orientations). The continuous probabilistic latent semantic analysis 

(PLSA) was used to model continuous quantity and evolve an EM-based iterative 
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procedure for assessing the parameters. In addition, a Hybrid 

Generative/Discriminative Model (HGDM) was used. HGDM represents a 

combination of continuous PLSA and ensembles of classifier chains so as to 

benefit from the advantages of both of them. In the generative stage, continuous 

PLSA was used to model visual features of the images. In the discriminative 

stage, ensembles of classifier chains were used to learn the semantic classes 

and consider the correlation between labels, simultaneously. Two experiments 

were carried out to evaluate the efficacy and accuracy of HGDM. In the first 

experiment, a Corel dataset was used that consisted of 5,000 images, divided 

into three sets: a training set (4,000 images), a validation set (500 images), and 

the rest for testing. For every word in the test set, precision and recall values and 

their means were computed to estimate the performance of HGDM. The results 

were mean precision = 28% and mean recall = 32%, where number of words = 

260. Another experiment was carried out to evaluate the single word retrieval 

performance through the use of mAP. A query word was used to retrieve all 

images annotated with this word. These images were ranked based on the 

posterior probabilities of that word. The mAP value was 35% (all 260 words), 

which showed that the HGDM gave better results than other state-of-the-art 

methods. 

Xie et al. (2013) proposed a two-phase generation model (TPGM) based on 

assessing the probability of a word generating the images. This automatic image 

annotation system included two phases. In the first phase, each word generated 

its related words semantically, and then those words were used to generate an 

annotated image. In the second phase, the generation probability, that is, the 

relationship between the word and the un-annotated image, for each word was 
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calculated. Next, the words with high probabilities were selected to label the un-

annotated image. The system extracted 12 types of visual features from the 

image, 6 RGB, HSV, and LAB colour histograms and 4 SIFT histograms and GIST 

descriptors, and it also extracted HOG histograms. The posterior probability of 

the images was trained and predicted by SVM. Two datasets were used for the 

image annotation experiments: Corel 5k (5,000 images) and MIR Flickr (25,000 

images). Precision, recall and F1-measure and N+ were used to evaluate the 

annotation performance in the two datasets. The results were 34%, 51%, 40.8%, 

and 185 for Corel 5k and 44%, 50%, 46.8%, and 38 for MIR Flickr, respectively. 

Figure 2.23 presents the automatic annotation examples from TPGM as 

compared with original annotation. The results of the experiments indicated that 

using TPGM increased the number of words that were added to the dictionary 

and will be used for annotation. In addition, TPGM gave better performance than 

the one-phase generation model (OPGM) and general discriminative methods, 

which used SVM on Corel 5k and MIR Flickr. The authors found that some areas 

in the proposed model needed improvement. Specifically, a more sophisticated 

method needs to be designed for analysing the semantic relations between 

words, rather than using the co-occurrence, because the relation between words 

may be more complicated. Furthermore, the use of discriminative methods 

instead of normal SVM for estimating the first generation probability would 

increase the model’s accuracy. 
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                                     (a)                                                              (b) 
Source: Xie et al., 2013 

Figure 2.23: Automatic Annotations Compared With The Original Manual Annotations. 

(a) Shows the Image in Core 5K and (b) Shows the Image in MIR Flickr 

Zhang, Monirul Islam and Lu, (2013) presented a structural image retrieval 

method called Semantic Image Retrieval Based On Object Translation (SIRBOT), 

which is based on automatic image annotation and a region-based inverted file. 

The proposed system treated regions in an image in the same way as keywords 

are treated in a structural text document. The system started with a segmentation 

process, in which each image was segmented into regions using the JSEG 

algorithm. After that, a post-segmentation process was implemented to remove 

noisy information, which represents the mixed-up section between neighbouring 

regions. Then, colour, texture, and shape features were extracted for each region 

by employing the MPEG-7 Dominant Colour Descriptor (DCD), the curvelet 

transform, and the 10 shape features [that is, the seven Hu invariant moments 

and the three Tamura features (directionality, line-likeness, and regularity)], 

respectively. Subsequently, an Adaptive Vector Quantization (AVQ) algorithm 

was used to build a set of visual dictionaries that were comparable to monolingual 

dictionaries. Thereafter, a Decision Tree (DT) was applied to build a mapping 

between a semantic concept and code words from different visual dictionaries. 
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Finally, a novel region-based inverted file data structure was utilised to index and 

retrieve images. Figure 2.24 shows the stages of the proposed system. 

 

Source: Zhang et al., 2013 

Figure 2.24: Block Diagram of the SIRBOT System  

The system was examined using 10,000 images collected from two datasets: the 

Corel 5k dataset and Google images (5,000 from each dataset). Three criteria 

were applied to evaluate the SIRBOT performance: precision, recall, and F1-

measure. The overall annotation precision-recall of the SIRBOT was 42%, which 

was higher than the methods of Duygulo and Carnerio, which were compared 

with it. In addition, the retrieval performance was also evaluated, and the results 

showed that the proposed system outperformed the Bayesian annotation model. 

According to the authors, images were considered as structural documents using 

the same process as used for textual documents. Then, a systematic 

investigation and modelling of inverted file indexing was created in order to 

capture structural information for image retrieval. Finally, a big visual dictionary 

was constructed along with the development of the DT tool in order to obtain 

human-understandable rules for image annotation. 
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Bahrami and Abadeh (2014) proposed an Image Annotation Genetic Algorithm 

(IAGA) to solve some of the problems with AIA. For example, not all features 

present the semantic concept of an image properly, so the feature selection 

process must be addressed in order to improve the image annotation 

performance. Another challenge for AIA is high-dimensional features, which 

cause waste of time and a lack of capability to learn effective annotation models. 

These authors’ system was divided into three phases. In the first phase, a Genetic 

Algorithm (GA) was used to select suitable features for each concept in order to 

reduce the dimensions. In the second phase, a weighted neighbours process and 

selection of near features were done by applying a multi-label KNN algorithm. In 

the final phase, a GA was used to integrate the results so as to improve the 

annotation of images. Figure 2.25 illustrates the IAGA system. 

 

Source: Bahrami and Abadeh, 2014 

Figure 2.25: The Proposed Method Diagram (IAGA)  

The proposed method was implemented on a huge number of images from the 

Corel (Corel 5k including 4,999 images) and IAPR TC-12 (including 19,627 

images) datasets. Three criteria were used to evaluate the performance of the 

system: precision, recall and F1-measure. The results for the Corel 5k dataset 
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were 30.0%, 32.7%, and 31.0%, and those for the IAPR TC-12 dataset were 

39.8%, 30.0%, and 35.0%, respectively. The authors argued that the IAGA 

improved the efficiency and accuracy of the image annotation system in 

comparison with other state-of-the-art annotation methods. 

Tariq and Foroosh (2014) presented a method with the aim of using an image 

scene to facilitate understanding of the visual content in the image and 

determining which objects could appear in that image. Their system started by 

dividing an image into sections (5x6 grid). Then, colour, texture, and shape 

features were extracted for each section, including 18 colour features (mean and 

standard deviation of each channel of RGB, LUV, and LAB colour spaces), 12 

texture features (Gabor energy computed over three scales and four 

orientations), and 4 HoG and discrete cosine transform coefficients. Next, a 

holistic visual feature vector called GIST was calculated based on all feature 

vectors that were extracted from all sections. The images were classified by the 

type of scene presented using the holistic visual feature vector (GIST). Therefore, 

there was no need for local classification or identification of individual objects in 

the image. At the same time, a textual description containing a number of words 

was associated with the image. Furthermore, a certain set of scene types were 

available. Next, an image description pair was generated from the selection of 

visual units and words based on the scene type. The image description pair 

explained the importance of the scene and provided details about the image and 

its description. Automatic annotation for the image was done based on the scene 

type that was determined to represent the image. The training data was divided 

into two halves. A clustering algorithm was done on one half to divide the images 

into clusters, while images in the remaining half were distributed in these clusters 
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based on a comparison of the GIST features for the image and the cluster. The 

aim of this process was to decrease computational complexity and allow more 

images to be added into the training images without the need to repeat the training 

process from the beginning. Two datasets were used to test the system: IAPR-

TC 12 (which has 19,846 images) and ESP (which has 67,796 images). A smaller 

subset containing 21,844 images was used for the experiments (90% for training 

and 10% for testing). The system was compared with other methods on the IAPR-

TC 12 and ESP datasets. The authors used the mean values for precision and 

recall per word and the number of words with a positive recall (N+) for 

performance evaluation and the results were 55%, 20%, and 254 for the IAPR-

TC 12 dataset and 45%, 19%, and 246 for the ESP dataset, respectively. 

Additionally, the system examined the ESP-large dataset in order to prove the 

scalability of the system. The authors claimed that the comparison of the results 

proved that the proposed system outperformed other methods. Moreover, the 

system clarified the significance of image background measurement in order to 

identify details of the image. 

Zhang (2014b) proposed a Linear Regression Model (LRM) for image annotation 

that used well-integrated visual and textual information. The annotation process 

in this system comprised several steps. Firstly, the images were segmented into 

regions using the normalised cut algorithm, then a feature vector was extracted 

for each region and quantized into a visual blob vector, and 36-dimensional visual 

features were extracted from each region. Next, the K-mean algorithm was used 

to cluster the image regions into blobs. The total number of blobs referred to the 

number of objects in the training image dataset. A vocabulary was built based on 

collecting keywords from the training dataset. After that, a semantic description 
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vector was built. Finally, the linear regression method, which is based on least 

square estimation, was used to fit a strict mapping between the visual blob vectors 

and the semantic description vectors. The author used a Corel dataset, containing 

5,000 images (4,500 images for training and 500 for testing), to test the algorithm. 

The total number of keywords used in annotation was 374 (1 to 5 keywords for 

each image). Image annotation performance was measured by using the 

annotation precision and recall. The proposed model outperformed other 

systems, which were Multiple Bernoulli Relevance Model (MBRM) and 

Translation Model (TM) by 10% in terms of recall (recall = 34%) and an equivalent 

level of precision (precision = 24%), and also increased by 37 the number of 

words with positive recalls. The advantages of the new approach can be 

summarised in three points: Firstly, there is no need for any prior knowledge about 

image and keywords, because the mapping function can be built visibly, which 

involves the production of annotation. Secondly, it avoids tedious parameter 

setting, because of the substantial use of regression models. Third, it is 

computationally efficient and scalable for huge images, as well as conceptually 

simple.  

Repetition of the above study was done by Zhang (2014a) by following the same 

steps to represent the visual blob vector and the semantic description vector, 

except for the method used to find the mapping relation function between the 

visual blob vector and the semantic description vector. This paper used a 

nonlinear regression method for the mapping process because of its greater 

suitability for complex image annotation, especially nature images, than linear 

regression. The author used a Corel dataset of 5,000 images (4,500 images for 

training and 500 for testing) to test the algorithm. The total number of keywords 
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used in the annotation was 374 (1 to 5 keywords for each image). Two functions 

were used as a kernel-based nonlinear regression model: the Gaussian kernel 

and the polynomial kernel. The average precision and recall were employed to 

evaluate the performance of the two functions, and the average precision and 

recall were 25.43% and 40.83% for the Gaussian kernel function and the average 

precision and recall were 33.18% and 48.24% for the polynomial kernel function, 

respectively. The system was also compared with human annotation. Table 2.4 

illustrates an example of the annotations produced by the proposed system. 

 

Source: Zhang 2014a 

Table 2.4: Examples for Image Annotation 

In another work, CBIR and Tag-Based Image Retrieval (TBIR) were used for an 

automatic image annotation system by Shinde et al. (2014). The proposed system 
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(as shown in Figure 2.26) used two types of databases: (1) a database storing 

image paths and tags linked with the image; and (2) a database storing 

information about the object images, such as the path of the image object, the 

number of times the tag generated by this image has been accepted, and the total 

number of times that this object image has been utilized for finding tags.  Four 

choices were provided by the system for the user: train the system, tag images 

automatically, search images by keyword, and search images by image/pattern. 

For training, the users labelled an image manually by choosing a region on the 

image. In the second choice, the system tagged the image automatically. In the 

third choice, the user suggested a keyword that represents a tag used to search 

for images. In the final choice, the user submitted a query image, and then an 

image object recognition process was performed on a query image to identify 

objects using OpenCV, which involves several steps. The first step was to scale 

the image into an appropriate resolution and then convert it to the RGB format. 

After that, the key points from the images were extracted by a feature detector 

algorithm. Next, a descriptor extractor algorithm was applied in order to find the 

descriptors used for matching images. Then, these descriptors for the query 

image were compared by the descriptor matcher algorithm with descriptors that 

presented images in the database. After the object recognition process, the image 

was tagged, and based on these tags the system retrieved all images having the 

same tags. The query image tags were displayed to the user for feedback and to 

allow the addition of other tags. Finally, the query image with its tags and object 

recognised were stored in the dataset. The system was examined on a database 

containing 1,000 images. The results showed that the proposed system had a 

higher efficiency compared with manual annotating images techniques and 
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exhibited greater accuracy than simpler versions of automatic image annotation. 

However, there are a number of limitations associated with this method of 

annotation, such as its heavy reliance on the CBIR performance, object 

recognition, and relevant user feedback algorithm, especially where there was no 

initial annotation in the database. 

 

Source: Shinde et al., 2014 

Figure 2.26: Architecture of the Proposed System 

Hou and Wang (2014) used Multi-Kernel Learning (MKL) methods such as the 

radial basic kernel function combined with Spatial Pyramid (SP) and Histogram 

Intersection Kernels (HIK) to build an automatic image annotation system. The 

objective of this paper was to overcome limitations such as the lack of effective 

feature information processes in previous methods using single kernel learning. 

The proposed system started with feature extraction from an image using a SIFT 

as a descriptor. Then, the K-mean algorithm was utilised so as to cluster feature 

descriptors and build a feature dictionary of training images, considering each 

clustering centre as a visual word. Thereafter, SP was used to organise the 
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features. After that, an optimal combination of histogram intersection kernels was 

learned through the use of MKL. Finally, the radial basic kernel function, which is 

an example of the most commonly used kernel functions, was used to predict 

labels for the training images. SP and HIK were utilised to optimise parameters 

during the machine learning (SVM) process. The system was tested on three 

different datasets, the Caltech 256, Corel 5k, and Stanford 40 actions (In total 420 

images). A dictionary size of 300 words was used for the training sets. 

Performance evaluation was calculated by the mAP, and the results were around 

80% for both the Corel 5k and Caltech 256 databases and 95% for the Stanford 

40 actions database. Therefore, the proposed framework outperformed the state-

of-the-art on multiple databases. 

Bhargava (2014) introduced an object-based image retrieval algorithm for 

automatic image annotation. The aim of this method was to replace the feature 

extraction process for the whole image with the object area only, in order to 

reduce the feature matching process while maintaining effective retrieval based 

on object selection. The proposed system was divided into two parts. In the first 

part, an object selection process was conducted by applying a Hessian blob 

detector on the image and feature extraction using Speeded Up Robust Features 

(SURF). Next, step two involved training of the annotated images using an SVM 

classifier and dividing them into groups based on different keywords. Figure 2.27 

shows the framework of the proposed system. 
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Source: Bhargava 2014 

Figure 2.27: Feature Extraction and Labelling Model 

The IAPR TC12 benchmark dataset, which contains 20,000 images from 

locations around the world and contains places, animals, people, birds, and many 

other types of images, was used to evaluate the performance of the proposed 

system. Precision, recall, and the F1-measure were used to calculate the 

accuracy of the system, and the results were 38%, 35%, and 36%, respectively. 

It was found that the proposed system predicted keywords for the image better 

than human annotation. This is because the proposed technique added other 

parts of speech that both enhanced effective performance and relevant image 

retrieval, and increased the accuracy, as illustrated in Table 2.5.  
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Source: Bhargava 2014 

Table 2.5: Predicted Keywords versus Human Annotations for the Images from IAPR 

TC 12. Keywords Are Predicted Using Our Proposed Algorithm. The Differences Are 

Marked In Bold Font 

 

Another example showed the advantage of using a natural query, which retrieves 

only the required image, as demonstrated in Table 2.6. 

 

Source: Bhargava 2014 

Table 2.6: Comparison between Keywords Query and Natural Query 
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Yuan-Yuan et al. (2014) proposed a hierarchical model for multi-label image 

annotation based on global and regional features. In the first step, their system 

excluded irrelevant images from unlabelled images by using an image-filtering 

algorithm. The aim of this stage was to improve the efficiency and performance 

of the annotation. In the second step, two types of features were extracted from 

the image: global features and region features. In the third step, the system used 

the HSV histogram feature, HSV colour moment, colour correlogram, texture 

based on GLCM, and Gabor wavelets to extract global features. Meanwhile, the 

HSV colour moment, colour coherence vector, Gabor wavelets, and Hu invariant 

moments were utilised to extract regional features. Then, two models were used 

in order to find an annotation for the unlabelled image, a Baseline Model (BM) 

and a No-Parameter Probabilistic Model (NPM) for global and regional features, 

respectively. A simple weighted algorithm was utilised to fuse the results from the 

two annotation models. After that, the results from the fusion process were used 

to annotate the unlabelled image. The system was implemented on the Corel 5k 

dataset, containing 5,000 images (4,500 images for training and 500 images for 

testing). Each image was annotated with 1-5 labels. The dictionary contained 374 

words. Three measures were utilised to evaluate the performance of the 

proposed system: the precision, the recall, and the number of keywords recalled, 

which were represented by P, R, and N+, respectively. The overall performance 

of the proposed baseline method using the image-filtering algorithm was 

compared with the same method without using the image-filtering algorithm, and 

the results showed that the proposed method had better performance. The overall 

performance of the proposed system was P = 26%, R = 28%, and N+ = 133, 

demonstrating that the proposed system achieved precision result that was 
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higher than other state-of-the-art models by 8%. However, the values of R and N+ 

were not higher than all state-of-the-art methods that were compared with them.  

 

Oujaoura, Minaoui and Fakir (2014) proposed a system that used a set of efficient 

descriptors and classifiers in order to improve the accuracy of the annotation 

system. Their system was divided into two phases: an offline phase and an online 

phase. In the offline phase, images in a database were annotated by experts. 

After that, classifiers were trained and modelled by using the annotated database 

images. In the online phase, images were annotated directly. This process was 

done by segmenting the images into regions, representing objects in the image, 

by using the region growing method; then, features vectors were computed by 

applying the colour histogram (RGB and HSV histograms), moments (Hu, 

Zernike, and Legendre), texture (co-occurrence matrix), and GIST descriptors. 

Afterwards, these features were passed on as inputs to the classifiers. Finally, 

voting rule classifier combination schemes were used, where each classifier with 

each descriptor voted for the suitable keywords. All votes were compared with 

each other, and the keywords with the maximum number of votes were selected 

as the final keywords to annotate the image. Figure 2.28 presents a block diagram 

of the image annotation system. 
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Source: Oujaoura, Minaoui and Fakir (2014) 

Figure 2.28: Block Diagram of the Proposed Annotation System  

To illustrate the results, this system was implemented on an ETH-80 database 

containing a set of eight different object images.  The precision rate was used to 

evaluate the accuracy of the image annotation system. The experimental results 

showed that the annotation rate was 90.00% that was higher than 82.50% of 

method based on 3 descriptors combined with 4 classifiers. However, there were 

many limitations to this image annotation system, such as image segmentation 

challenges and their effects on system accuracy. Also, the gap between the low-

level features and the semantic content had an impact on accuracy. In addition, 

user feedback concerning the results should be added to the automatic image 

annotation. Moreover, the execution time should be decreased so as to better 

utilise the online system. 

Murthy, Can and Manmatha (2014) proposed a hybrid discriminative/generative 

model for automatic image annotation. The discriminative model and generative 
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model were implemented by an SVM and a Discrete Multiple Bernoulli Relevance 

Model (DMBRM), respectively. A Latent Dirichlet Allocation (LDA) model was 

utilized to decrease the dimensionality of the vector quantized features before 

using the DMBRM, because the DMBRM was found to work inefficiently with high-

dimensional data. The aim of using two models was to benefit from the distinct 

capabilities of each model. The SVM was used to solve the problem of poor 

annotation (images are not annotated with all relevant keywords), while the 

DMBRM model was used to overcome the problem of data imbalance (large 

variations in the number of positive samples). Initially, the system extracted two 

types of features from an image, global features and local features, such as 

histograms in RGB, HSV, and LAB colour space; SIFT descriptors extracted 

densely on a multi-scale grid; and Harris-Laplacain interest points; along with four 

different features such as HOG2x2, LBP, Textons, and Geotextons. Next, a 

model was built for each feature type, and then all these models were combined 

together appropriately. For a given test image, the SVM and DMBRM models 

were used individually to compute the probabilities for each word, based on its 

ability to characterize the image. Next, the normalized scores of the SVM and 

DMBRM models were fused together. Finally, the top five (fixed annotation) words 

having the high scores were used to annotate the image. For experimental 

verification, Corel 5k (5,000 images, 4,500 for training and 500 for testing), ESP 

Game (20,770 images, 18,689 for training and 2,081 for testing), and IAPRTC-12 

(19,627 images, 17,665 for training, and 1,962 for testing) datasets were used. 

For evaluation, the authors utilized three criteria: the average precision, the 

average recall, and the non-zero recall (number of distinct words that were 

correctly assigned to the test image set), represented by P, R, and N+, 
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respectively. The results showed that the proposed system outperformed other 

state-of-the-art methods of automatic annotation in two criteria, but not all. The 

results were (P = 36%, R = 48%, and N+ = 197), (P = 55%, R = 25%, and N+ = 

259) and (P = 56%, R = 29%, and N+ = 283) for Corel 5k, ESP Game, and 

IAPRTC-12, respectively. The bold numbers refer to results reflecting the 

superiority of the proposed system over other systems. The proposed framework 

was able to tackle imbalanced data and the poor labelling problem in an efficient 

way, as demonstrate by the high N+ scores as compared with the others. Table 

2.7 gives examples of automatic image annotation by the proposed system for 

the Corel 5k, ESP Game, and IAPRTC-12 datasets compared with true 

annotation.  
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Source: Murthy, Can and Manmatha, 2014 
 

Table 2.7: Examples of Automatic Annotation of Proposed System Matching With 

Ground Truth for All Three Datasets. Each Row Corresponds To a Different Dataset, 

First Row: Corel-5k, Second Row: ESP-Game, Third Row: IAPRTC-12 

Another experiment was carried out to evaluate the single word retrieval of the 

proposed system by employing the mean Average Precision (mAP) for the three 
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datasets, and the results were 57%, 71%, and 73% for Corel 5k, ESP Game, and 

IAPRTC-12, respectively. These results showed the superiority of the proposed 

system over the other methods it was compared with. 

Tian (2014) presented a new model for automatic image annotation based on two 

semi-supervised learning models. The first was a Transductive Support Vector 

Machine (TSVM), used to improve the quality of training image data by exposing 

it to the underlying relevant data from unlabelled images. The second was a 

Bayesian model, which was used to execute the image annotation. The images 

were segmented into 1 to 10 regions by using the Normalised cuts (Ncuts) 

algorithm. The region’s image number determined the number of keywords used 

to annotate the image during the ground truth annotation. Then, 809-dimensional 

feature vectors were extracted from each region, which size was larger than a set 

threshold. These features were separated into 512-dimensional GIST features, 

120 dimensional Gabor wavelets texture features, 81-dimensional grid colour 

moment features, 59-dimensional Local Binary Pattern (LBP) texture features, 

and 37-dimensional edge orientation histogram features. The Corel 5k dataset 

(5,000 images, 4,500 for training, and 500 for testing) was used as the 

experimental dataset. The recall and precision of every word in the test set were 

computed, and the mean of these values was used to summarise the model’s 

performance. To verify this method, the model’s performance was compared with 

several earlier approaches. In addition, another metric was employed to evaluate 

the performance of the system, namely, the mAP. The results were 23%, 18%, 

and 24% for the mean per-word recall, mean per-word precision and mAP, 

respectively (for 260 words). The author claimed that the efficiency of the 

proposed model was higher than that of previous methods. As shown in         



 

74 

 

Figure 2.29, the system achieved better retrieval results from a single word query 

on queries of several challenging visual concepts.  

 

Source: Tian, 2014 

Figure 2.29: Semantic Retrieval Results on Corel5k Data Set  

Another AIA system was presented by Majidpour et al. (2015). Initially, all images 

in this system were divided into groups, each group having the same subject type. 

Then, each group was saved in one folder that represented one class, such that 

the number of classes equalled the number of folders. The next step was features 

extraction; standardised MPEG-7 features, such as the colour layout descriptor 

(CLD) and scalable colour descriptor (SCD) for colours and the edge histogram 

descriptor (EHD) for image texture, were used. Then, principal components 

analysis (PCA) was utilised to decrease the scope of the colour layout descriptor. 

Finally, SVM was employed as a classifier in order to classify the above-

mentioned features.  Figure 2.30 shows the stages of the proposed system. 
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Source: Majidpour et al., 2015 
Figure 2.30: Automatic Annotation Stages Proposed 

All the above steps were done on the training image dataset. The same procedure 

was then repeated for a query image in order to extract features and give them to 

the SVM. The SVM then determined the class that the query image belonged to. 

To evaluate its performance, the system was implemented on an image bank 

related to the training set TUDarmstadt. Three different classes were used: 114 

images of motorbikes, 100 images of cars, and 111 images of cows. The 

annotation process was tested separately for each type of feature, CLD, SCD, 

and EHD, and the precision results were 93%, 64%, and 95%, respectively. The 

experiments showed that the proposed framework could reduce the dimensions 

of the features vector using PCA (maximum of 400 elements for each image), 

enhance the annotation accuracy, improve the system efficiency, and speed up 

the training process (21 seconds for 325 images). In addition, the system could 



 

76 

 

be used with any number of images or classes. 

Another proposed system that improved the performance of annotation-based 

image retrieval (ABIR) and solved the semantic problem was suggested by 

Hidajat (2015). This system had two phases: a training phase and a testing and 

validation phase for automatic image annotation and image retrieval. Figure 2.31 

shows the proposed framework methodology. 

 

Source: Hidajat, 2015 

Figure 2.31: Annotation Based Image Retrieval Methodology  
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In order to evaluate the performance of the proposed system, the LAMDA dataset 

was employed, with 84 training images and 457 testing and validation images. 

The annotation keywords included dessert, mountains, sea, sky, and trees. In 

addition, precision, recall and F1-measure were employed to evaluate the results 

of the retrieval testing. Based on these metrics, the ranges of the precision, recall, 

and F1-measure were 66.67-100%, 46.15-66.67%, and 54.54-84.85%, 

respectively. Consequently, the proposed system is adequate for use in image 

retrieval. The proposed framework was compared with a CBIR system using a 

colour histogram for matching and sorting images based on similarity. The 

average precision of the CBIR system was 31%, compared to 88% precision 

demonstrated by the proposed system. Based on these results, semantic 

labelling was shown to be better than the use of low-level features for matching. 

In addition, the proposed system used spatial information between objects, which 

was further able to improve the performance. However, this study needs to 

improve upon its annotation process in order to increase its recall and precision 

performance. Also, the results show that images based on image identification 

resulted in displays of unrelated images among the first or second data results. 

Xia, Wu and Feng (2015) proposed a probabilistic model to label un-annotated 

images by finding correlations between images and texts. Their system used a 

training images dataset that segmented images into regions and annotated them 

manually. Then, a K-mean algorithm was used to cluster image regions into 

blobs. Thereafter, the system anticipated the probability of specifying a keyword 

into a blob. Finally, the image was annotated with suitable keywords. This system 

focused on automatic image annotation through the probabilistic model rather 

than by the segmentation process. A segmented and annotated IAPR TC-12 
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dataset (1,500 images as training dataset and 300 images as test dataset) for AIA 

testing and a text document dataset (500 Wikipedia web pages about landscape) 

for text retrieval by image query were used as the experimental datasets. The 

precision and recall were measured to determine the accuracy of the probabilistic 

model. The average precision and average recall were 35% and 44% for the IAPR 

TC-12 dataset, and the 37% and 44% for text document dataset, respectively. 

Figure 2.32 presents a comparison between the true annotation and the proposed 

system annotation.  

 

Source: Xia, Wu and Feng, 2015 

Figure 2.32: Comparison of Image Annotation  

The authors claimed that the probabilistic model achieved the best accuracy 

results for AIA and cross-media retrieval among other state-of-the-art annotation 

methods. However, the accuracy of this method still depends on the performance 

of the image segmentation. Though this probabilistic model has good results, the 

parameters of the probabilistic model must be set manually. In addition, the 

performance of the model should be evaluated when these parameters change.  

 
SREEDHANYA and CHHAYA (2017) proposed a Modified multi-label dictionary 

learning (MLDL) using Hierarchical sparse coding approach as shown in       

Figure 2.33. This automatic image annotation approach included two stages: the 

training stage and testing stage. In the training stage, the feature vector was 
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calculated for all images in datasets. SSIM, GIST, LBP, HOG, SIFT and Color 

descriptors were used as main feature descriptors. Histogram of oriented 

gradients (HOG) was used for the purpose of object detection.  Then, Tree 

conditional random field model (TCRF) was employed to describe the dictionary 

learning. In the testing stage, the same descriptors were utilized to extract feature 

value, and then using the trained dictionary, calculating the score with the 

database dictionary score and maximum value selected from that.  

 

Source: SREEDHANYA and CHHAYA, 2017 

Figure 2.33: System Flowchart of Proposed Method 

For experimental verification, LabelMe image data set and Caltech image data 

set (In which total 96 images, 60 for training and 36 for testing). The overall 

performance of the proposed system was P = 57% and R = 46%, demonstrating 

that the proposed system achieved results that were higher than the existing 

methods Tag-Prop, MIML and MLDL by (P = 7%, 2% and 5%) and (R = 6%, 2% 

and 4%) respectively. 
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2.9 Discussion  

As mentioned previously, few studies focused upon image analysis for the 

purpose of digital forensics and identifying and extracting evidence from images 

(Hsu, Kang and Mark Liao, 2013), Table 2.8 summarises the existing works on 

FIA.  

Table 2.8: Summary of Forensic Image Analyses studies 

Some of these studies have offered good procedures for FIA and achieved high 

retrieval accuracy. However, they suffer from the fact that it deals with a specific 

criminal case. In addition, they suffered from limitations in their work, such as they 

did not specify the number of images that used for experiments or analysis, or 

they only used a small volume of pictures. Further, no criteria was applied to 

Authors 
Segmentation 

Method 
Features Extraction 

Performance 

(%) 

Database Name 

#
Im

a
g

e
s 

P
r
e
ci

si
o

n
 

R
e
c
a
ll

 

Yuan and 

Ying 
2014 

- Colour and texture - 
62 forensic 

Corel 

400 

800 70 

Chao-Yung 

Hsu et al. 

2013 

Background 

subtraction 

algorithm 

Scale-Invariant Feature 

Transform (ASIFT) 
and 

min-hash technique 

85 - Three videos 

203 

vehicle 
object 

images 

Wen et al. 

2005 
- Colour, texture, and shape - - - - 

Choraś 2013 - 
Grey Level Co-Occurrence 

Matrix (GLCM), texture 
- - 

fired bullets, firing pins, 

extractor marks, ejector 

marks, and cartridges 

50 
 

Shriram 
et al. 

2015 

Region Of 

Interest (ROI) 

Histogram, texture, entropy and 
Speeded-Up Robust Features 

(SURF) 

98 - - 250 

Gulhane and 
Gurjar 2015 

- Colour ,texture and shape - - - - 

Aljarf and 

Amin 

2015 

- 
Filtering algorithm and  

Reconstructing algorithm 
median 
filter 

- - - 

Lee et al. 
2011 

- 
Scale-Invariant Feature 

Transform (SIFT) 
90 - 

tattoo images 

from 

Michigan State Police 

64,000 

Xiao, Li and 

Xu 2019 
Yolov3 - 92 - - - 

Sobhani and 
Straccia 2019 

- - 

GCIs Manually 

London Riots 

140 

videos 

 

91 
96 

82 
78 

GCIs Learned 

75 

60 

96 

71 
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evaluate the performance, or no comparison with other studies was performed 

(e.g., Wen, Ph and Yu, 2005; Choraś, 2013; Shriram, Priyadarsini and Baskar, 

2015; Gulhane and Gurjar, 2015 and Sobhani and Straccia, 2019). Moreover, the 

special characteristics of forensic images are different from characteristics of 

standard images; therefore, the image features that are suitable to describe 

standard image databases are inefficient for forensics. For example, the 

background of forensic photographs is typically far more complicated than those 

used within the experimental studies, because the target object could be 

damaged, deficient, or the object may appear small in the picture (Yuan and Ying, 

2014). In addition, the clarity of images is an essential factor impact on the 

accuracy of forensic image retrieval; however, some real-life images suffer from 

noise, occlusions, rotation and various scale distortions, or losing blocks such as 

losing a number of bits, when sending the image through a wireless channel, and 

thus require enhancement before analysis (Aljarf and Amin, 2015; Rida et al., 

2019 and Xiao, Li and Xu, 2019). Manual image annotation is yet another 

challenge, because annotating image manually needs a big effort, cost, time 

consuming, etc. (Lee et al., 2011; Sobhani and Straccia, 2019). 

In addition, this chapter critically analyses studies that concerned with retrieve 

images for different objectives, such as object retrieval and automatic image 

annotation to consider how such methods could be employed in the forensic 

image analysis framework. However, in forensic image analysis, different 

questions are asked by the investigator, and the images that need to be 

investigated and analysed to extract evidence are usually huge, realistic 

[unconstrained illumination conditions, unknown position, orientation, size, and 

pattern of the marks, and irregular texture (background)], and contain multiple 
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objects. Current forensic tools are unable to answer investigator questions related 

to image content and require manual analysis. Different state-of-the-art image 

retrieval systems have been implemented in different areas and have 

demonstrated varying degrees of performance. 

All of single object-based image retrieval studies offered good procedures for 

object extraction and representation and achieved high retrieval accuracy. 

However, most of the studies concentrated on images that have only a central 

object or extracted only the central object and neglected others. Furthermore, 

these studies did not take into account images having multiple objects. In 

addition, if there was more than one central object in an image, the method 

considered all objects in the centre of the image as a single object. Moreover, all 

datasets used in these studies had uncomplicated content (a simple background). 

Figure 2.34 shows the different types of images, which clarifies the difference 

between simple images and complicated images, especially forensic images. 

   

                A                                           B                                                     C 

Figure 2.34: (A) Simple Image and (B and C) Images with Multiple Objects and 

Complicated Background  

Table 2.9 summarises the existing work in single object-based image retrieval for 

both a centric and non-centric object. The literature on centric single object 
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retrieval concentrated on recognising and retrieving only the centric object in the 

image and neglected other objects. 
A
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Wang et al. 

2011 
Otsu algorithm Texture: 1 texture feature 84 17 - 

SIMPLIcity dataset 
from 

(Corel image 

dataset) 

1,000 

Lunshao et al. 

2011 

Mask image to main 

region image 

Color: 1 color feature 

Shape: 1 shape feature 
- - - 

Product Image 
Categorization 

Data Set 
(PI 100) 

1,820 

Wu et al. 

2011 
User 

Color: 1 color feature 

Texture: 2 texture 

features 
 

- - 
 

37 

 

Corel 1,000 

Huang et al  

2012 
Multiple steps Color: 2 color features 70 - 800 

Kavitha and 
Sudhamani 

2014 

- 

Bidirectional Empirical 
Mode Decomposition 

(BEMD) technique and 

Harris corner detector 
(local features) 

Color: 1 color feature 

83 69 - 
Columbia Object 

Image Library 

(COIL-100) 

7,200 

Mohammadpour and 

Mozaffari 
2015 

Itti-Koch model 
[IttiKoch]and graph-

base visual saliency 

(GBVS) 

Color: 1 color feature 
Texture: 1 texture feature 

Shape: 1 shape feature 

SIFT descriptor 

74 

57 
- - 

COREL 

Caltech101 

1,000 

- 

Gupta et al. 

2014 

GrabCut  and Graph 

based Visual 
Saliency (GBVS) 

Texture: 1 texture feature 

Shape: 2 shape features 

34 

46 

- 
 

- 

 

PASCAL 2007 

MSRC-v1 + 
SLAR CBIR 

9,963 

240 
- 

Chathurani et al.  

2015 

the circular image 
decomposition 

method 

Color: 3 color features 

Texture: 2 texture 

features 
Shape: 1 shape feature 

73 

15 
- - 

Wang 

Caltech 256 

1,000 

3,0522 
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Shivakumar et al. 

2013 

Edge detection and 

segmentation 
SIFT 83 75 - Caltech 101 1,012 

Mochizuki et al.  

2013 
Visual saliency map 

RGB average, hue 
histogram, fractal feature, 

and edge direction 

histogram 

- - - 

Randomly sampled 

from various nature 
TV programs 

15,000 

Shamsujjoha et al. 

2014 

local region based on 

semantic modelling 
Color: 1 color feature 90 - - 

Natural scenes 

images 
2,000 

Wang et al.  
2014 

the color features 

from image was used 
for  object 

recognition 

- 
Accuracy 

94 - 
Complex traffic 

scene images 
100 

Cedillo-Hernandez 
et al. 

2015 

- SURF 90 - - 
Flickr photo 

sharing website 
800 

Table 2.9: Summary upon a Single Object Based Image Retrieval Approaches 

The segmentation phase plays a fundamental role in single object-based image 

retrieval systems because the results obtained depend on the segmentation 

algorithm that was implemented. Kavitha and Sudhamani (2014) forewent the use 
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of a segmentation approach and treated the image as one piece. Their study 

yielded a retrieval precision of 83.2% and 69.3% of recall as compared to other 

studies that implemented an image segmentation phase in their systems. 

However, interestingly, their approach can be helpful in the case of single-content 

images. Unfortunately, this study is ineffective for use with forensic images, 

because of the particular content of such images. In contrast, some studies 

implemented the segmentation phase in their works to extract objects and 

disregard the image background, such as Lunshao Chai et al. (2011) and 

Mohammadpour and Mozaffari (2015). The aim of a segmentation approach that 

focuses on the object itself rather than its background is to reduce the number of 

features that need to be calculated for the object and background, consequently 

reducing the time and memory size requirements that are required to deal with 

these features. In a different study, Wu, Wang and Xing (2011) examined the 

effect of enabling the user to select the object of interest from the image. This 

approach of a manually selected object gives the user the opportunity to choose 

an interesting object from the image; however, it increases the effort required to 

select the correct objects and raises the possibility of an incorrect selection of the 

object area.  

With respect to the dataset, three studies examined their systems using the Corel  

image dataset (1000 images), which are Wang et al. (2011), Wu, Wang and Xing 

(2011)  and Mohammadpour and Mozaffari (2015), and the performance were 

84%, 37% and 74%, respectively. This diversion in performance returns to the 

difference of object extraction and feature extraction methods, in addition to the 

number of selected categories, which were 4, 10 and 8, respectively. Wang et al. 
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(2011) achieved the highest precision because they select only four categories to 

evaluate their system performance. 

Gupta, Das and Chakraborti (2014) and Chathurani et al. (2015) performed 

experimental work on different types of datasets, and they reported different 

results in terms of retrieval accuracy. In the study by Gupta, Das and Chakraborti 

(2014), the retrieval precisions were 34% and 46% for the PASCAL (9963 

images) and MSRC-V1 (240 images) datasets, respectively. In the study by 

Chathurani et al. (2015), the precision values were 73% and 14% for the Wang 

(1,000 images) and Caltech 265 (30,522 images) datasets, respectively. This is 

expected because an increase in the number of images that need to be analysed 

also leads to greater diversity in their contents, and thus the number of features 

needed to describe these contents will also increase. This, in turn, means that the 

feature extraction and comparison process to retrieve relevant images will be 

more complicated, and so the retrieval accuracy will be more inefficient. 

Within the context of object extraction, non-centric single object-based image 

retrieval studies have endeavoured to solve the problem of the object 

centralization condition in centric object studies. Some of these studies achieved 

more than 89% retrieval precision when tested on natural images, such as 

Shamsujjoha et al. (2014) and Wang, Mohamad and Ismail (2014). Shamsujjoha 

et al. (2014) performed an experimental investigation on a natural scenes image 

dataset (3,000 images) and the resulting degree of precision was 90%. Wang, 

Mohamad and Ismail (2014) proposed a system to deal with complex traffic scene 

images (using only 100 vehicles) and achieved a great retrieval precision of 94%. 

Although these studies reported many interesting results, the main limitations of 

them are the attention on images having a single main object only and the 
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experiments for these studies were conducted on only a small number of images. 

Regarding the discussion and analysis of multiple objects- based image retrieval 

papers (as illustrated in Table 2.10), Hanh and Ngoc (2012) studied the extraction 

of objects in street scene images by implementing the Hmax detector and colour 

feature as object segmentation and feature extraction techniques, respectively. 

This study achieved 89.79% retrieval precision using the proposed method. A 

lower precision value was achieved by Chen, Zhang and Gao (2012), who used 

a multi-resolution hierarchical segmentation algorithm as the segmentation 

algorithm. However, their study was tested on 1,000 images, and the average 

segmentation efficiency was 98.26%. As such, the segmentation approach 

implemented in this study was more robust. With the same objective, 

Muralidharan et al. (2015) used two different approaches, the active contour 

model and superpixel over-segmentation, to extract multiple objects from various 

complex scenes in order to improve the results when extracting the complete set 

of salient sub-regions for an image. In another study, Chamasemani et al. (2015) 

achieved high accuracy in extracting objects from a video frame by employing an 

adaptive background subtraction method. However, many small areas were 

extracted that represented non-valuable objects along with main objects. These 

useless objects have an effect on system retrieval accuracy. With respect to the 

contribution of multiple object-based image retrieval studies, it is obvious that the 

resulting outcomes can be employed for forensic image analysis to retrieve all 

images that have the same objects at one time. This could contribute to finding 

the relations among objects, and thus may help to solve the crime. 
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Authors Segmentation Method Feature Extraction 

Performance 

(%) 

Dataset 
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#
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Kumar et al. 

2011 
User 

Color: 1 color feature  

Texture: 1 texture 

features 
Shape: mathematical 

morphology operators 

40 - - - - 

Hanh and Ngoc  

2012 
Hmax detector Color: 1 color feature 90 - - Street scene 3,547 

Chen et al. 

2012 

Multi-resolution hierarchical 

segmentation algorithm 
- 

16 

18 
- - 

Corel 

Image 
10,000 

Dimitriou et al. 

2013 

Sequence of methods: Effective 
depth map, edge detection 

connect component detection 

and filtering approach 

- - - - - 100 

Pourian and 

Manjunath 

2015 

JSEG algorithm Densely sampled SIFT 
65 

59 
- - 

PASCAL 
VOC2007, 

ImageNet 

ILSVRC20
10 and 

TREC 

9,963 

 

Muralidharan et 

al. 
2015 

Aware saliency detection with 
Superpixel over-segmentation 

and 

the Active Contour techniques 

- - - - 

Varied 
complex 

scene 

images 

- 

Chamasemani et 

al. 

2015 

An adoptive of mixture of 

Gaussian (MoG) approach in 

HSV color space 

Area, centroid, 
orientation, SIFT, color 

histogram, entropy, 

homogeneity, and Hu 
moments 

- - - PETS 2007 - 

Table 2.10: Summary upon Multiple Objects-Based Image Retrieval Approaches 

In addition, several theories have been proposed to outline the AIA process (as 

illustrated in Table 2.11). The studies utilized a number of different datasets with 

differing compositions, making it difficult to compare their performances directly. 

It does, however, provide an understanding of the general performance that can 

be achieved.  

Authors 
Segmentation 

Method 
Feature 

Extraction 
Classifier Name 

Performance 
(%) 

Dataset Name 
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Huang and Lu 

2010 

Active Contour 

Model (ACM) 

and JSEG 

algorithm 

Color: 1 color 

feature   Texture: 

1 texture features                                          

Shape: several 

masks 

SVM 88 94 91 Corel 1,000 

Sumathi and 

Hemalatha      

2011 

- 
JEC feature 

extraction 
SVMs 77 35 - flicker 500 

Li et al.           

2012 

Dividing image 

into blocks 

(16*16) 

Color: 24 color 

features            

Texture: 12 

texture features 

Hybrid 

Generative/Discriminative 

Model 

28 32 - Corel 5,000 
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Xie et al.         

2013 
- 12 visual features 

Two-phase generation 

model (LIBSVM, co-

occurrence measures) 

34 

44 

51 

50 

41 

47 

Corel 5K         

MIR Flickr 

5,000        

25,000 

Zhang et al.    

2013 
JSEG algorithm 

Color: 1 color 

feature               

Texture: 1 texture 

features                        

Shape:  10 shape 

features 

Decision Tree 42 - 
Corel5K     

Google image 

5,000          

5,000 

Bahrami and 

Abadeh           

2014 

- - K-nearest neighbor 
30 

40 

33 

30 

31 

35 

Corel 5K      

 IAPR TC-12 

4,999        

19,627 

Tariq and 

Foroosh 2014 

Divide images 

into 5*6 grid 

Color: 18 color 

features Texture:  

12 texture features  

Shape:  5 shape 

features 

K-mean algorithm 
55 

45 

20 

19 
- 

IAPR-TC 12  

ESP-Game 

21,844 

 

67,769 

Zhang           

2014b 

normalized cut 

algorithm 

36-dimensional 

visual features for 

each region 

Linear regression 24 34 - Corel 5,000 

Zhang           

2014a 

normalized cut 

algorithm 

36-dimensional 

visual features for 

each region 

Non-Linear regression 

(Gaussian kernel and the 

polynomial kernel) 

33 48 - Corel 5,000 

Shinde et al. 

2014 
- 

Feature Detector 

Algorithm 

Descriptor 

Extractor 

Algorithm 

- - - - Image database 1,000 

Hou and Wang 

2014 
- SIFT 

SVM, Spatial Pyramid and 

Histogram Intersection 

Kernels 

 

 

80 

80 

95 

- - 

Caltech-256  

Corel 5k   

Stanford 40 

actions 

-                

5,000               

420 

Bhargava        

2014 

Hessian blob 

detector 
SURF SVM 38 35 - IAPR TC12 20,000 

Yuan-Yuan et 

al. 2014 
- 

Color: 3 color 

features           

Texture: 2 texture 

features 

Baseline Model No-

parameter Probabilistic 

Model 

26 28 - Corel 5K 5,000 

Oujaoura et al. 

2014 

Region growing 

method 

Color: 1 color 

feature               

Texture: 1 texture 

feature                        

Shape:  1 shape 

feature 

SVM, Neural networks, 

Bayesias networks and 

nearest neighbor 

90 - - ETH-80 3,280 

Murthy et al.   

2014 
- 

Color : 9 color 

features 

SVM,  Discrete Multiple 

Bernoulli Relevance Model 

36 

55 

56 

48 

25 

29 

- 

Corel-5K     

  ESP-Game 

IAPRTC-12 

5,000        

20,770       

19,627 

Tian                

2014 

normalized cut 

algorithm 

Color: 81 color 

features Texture: 

179 texture 

features                

  Shape: 549 

shape features 

TSVM, Bayesian model 24 - - Corel 5K 5,000 

Majidpour et al. 

2015 
- 

Color: 2 color 

features                      

Texture: 1 texture 

feature 

SVM 

93 

64 

95 

- - 

image bank 

relate to the 

training set 

TUDarmstadt 

325 

Hidajat           

2015 

Gaussian Mixture 

model 
SIFT SVM 88 66 76 LAMDA 541 

Xia et al.         

2015 

Image’s low-level 

features 

Region area, 

width and high for 

each region 

K-mean algorithm 35 44 - IAPR TC-12 1,800 

SREEDHANYA 

and CHHAYA 

2017 

- 
7 features 

 
semi-supervised CCA 57 46 - 

LabelMe 

Caltech 
96 

 

Table 2.11: Summary upon Automatic Image Annotation Approaches 

Some studies have dealt with the image as one object and ignored the 

segmentation stage such as (Sumathi and Hemalatha 2011) (Xie et al., 2013) 



 

89 

 

(Bahrami and Abadeh 2014) (Hou and Wang 2014) (Yuan-Yuan et al., 2014) 

(Murthy, Can and Manmatha, 2014) (Majidpour et al., 2015) and (SREEDHANYA 

and CHHAYA 2017). The highest P was achieved by the studies (Sumathi and 

Hemalatha 2011) (Majidpour et al., 2015) and (SREEDHANYA and CHHAYA 

2017) that utilized a small set of images to evaluate their performance. Indeed, it 

appears that as the size of the dataset increases, the retrieval accuracy 

decreases. This suggests results are particularly sensitive to the nature, 

composition and size of the dataset. This finding is also repeated in the study that 

employed the segmentation algorithm such as (Hidajat, 2015). This is expected 

because an increase in the number of images that need to be analysed also leads 

to greater diversity in their contents, and thus the number of features needed to 

describe these contents will also increase. This, in turn, means that the feature 

extraction and comparison process to retrieve relevant images will be more 

complicated, and so the retrieval accuracy will be more inefficient. 

With respect to the dataset, several authors examined their systems using the 

Corel 5k dataset (Li et al., 2012), (Xie et al., 2013), (Zhang, Monirul Islam and Lu, 

2013), (Bahrami and Abadeh 2014), (Zhang, 2014b), (Zhang, 2014a), (Hou and 

Wang 2014), (Yuan-Yuan et al., 2014), (Murthy, Can and Manmatha, 2014) and 

(Tian, 2014). The study (Hou and Wang, 2014) achieved 80% P, which is higher 

than the results of other studies using the same dataset with a single or double 

classifier(s). This can be explained by the fact that multiple classifiers can improve 

accuracy results by combining the advantages of all implemented classifiers. In 

addition, the use of multiple classifiers affords the chance to generate different 

results that can be fused together in order to achieve high accuracy of annotation 

results. (Zhang, 2014a), (Zhang, 2014b) and (Tian, 2014) used the same dataset 
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(Corel 5k) and segmentation method (the normalized cut algorithm) and their P 

were 33%, 24%, and 24% respectively. These varying results can be attributed 

to using different types of classifiers and variation in feature extraction methods. 

The research studies by(Zhang, 2014a) and (Zhang, 2014b) and  applied the 

same segmentation approach, feature extraction methods and dataset (Corel 5K) 

the former study reported 33% P and 48% R using non-linear regression for the 

classification task, while the latter utilized linear regression. The prior researches 

demonstrate the performance that can be achieved can vary considerably, 

between classifiers and even with the same segmentation and feature extraction 

approach and dataset. It is, therefore, challenging to really understand the extent 

to which this approach works in practice. 

On another note, (Hidajat, 2015) (Sumathi and Hemalatha 2011) (Oujaoura, 

Minaoui and Fakir, 2014) and (SREEDHANYA and CHHAYA 2017) offered good 

procedures for AIA and achieved high retrieval accuracy. However, these studies 

have been typically evaluated against datasets with a specific focus. They do not 

have the complexity and diversity that one might expect with a forensic 

investigation. The need for diversity and complexity in the forensic investigation 

comes from the diversity of cases that need to be solved which lead to the 

diversity of images contents that required to be analysed in order to find the 

evidence thereby solve the crime. 

As demonstrated above, AIA studies suffer from multiple problems. First, there is 

no standard annotation database for performance testing. Second, there is a 

disparity in system performance, because of the divergence in segmentation, 

features, and classifier approaches, as well as the number of images used in the 

assessment. Third, most studies conduct experiments using unrealistic image 
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databases. Datasets that are unrelated to real-life complex and diverse imagery 

as would be expected in a forensic case. This makes it impossible to determine 

whether these studies would achieve a high performance in forensic image 

analysis.  

The forensic examiner needs an automatic system that is able to recognise 

multiple objects in the same image, although these objects may differ in size, 

colour, shape, texture, and orientation. In addition, this system should contain a 

fast search engine that will swiftly retrieve all images that correspond to the 

examiner’s requirements. In most investigations, the examiner does not have a 

query image; therefore, image-based retrieval techniques are useless. 

Consequently, keyword searching based on image content must be employed to 

find the target images. An AIA system could thus be used instead of an image-

based retrieval system in order to describe images with words in place of using 

image features. This will improve the search process and solve problems 

presented by image-based retrieval system.  

For forensic image analysis, it will be useful to examine different multiple object 

segmentation algorithms that have the ability to recognise different objects with 

different characteristics from the image, in order to improve the object extraction 

process. Then, various feature extraction methods that reflect all characteristics 

of an object, such as colour, texture, and shape along with size and orientation, 

should be applied. As a result, multiple AIA systems should be employed and 

their outputs fused in order to improve the accuracy of annotation results over the 

results that can be achieved through employment of a single annotation system. 
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2.10  Conclusion  

Images are one of the best forms of electronic evidence and play an important 

role in the investigation of crimes because they show the exact details of what 

has occurred. Therefore, images can be considered as a real-time eyewitness to 

any crime. So far, however, there has been little work performed on the subject 

of extracting evidence from images or solving criminal cases through forensic 

image analysis. Moreover, very little studies are able to overcome the challenges 

of finding and discovering forensically interesting and suspicious or beneficial 

patterns within huge datasets while taking into account the requirements of 

accuracy and speed. 

Several studies from different perspectives have been proposed to solve the 

problems of object retrieval and automatic image annotation associated with 

image retrieval systems. Overall, it is difficult to make adequate comparisons 

among the performance of the reviewed studies, because of variations in the 

databases used in the experiments, and the different methods used by the 

authors for feature extraction, segmentation, and classification in their proposed 

systems. Some studies achieved high retrieval accuracy; however, there is still 

the problem that none of these studies tested images related to forensic cases. 

This makes it impossible to determine whether these systems could also achieve 

high precision in forensic image analysis in low processing time. 
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3 Evaluation of a Multi-Algorithmic Approach Performance 

3.1 Introduction 

Chapter 2 has shown that existing AIA studies suffer from multiple problems. 

Further, images extracted from different sources to solve crime are considerable 

and changeable, which leads to difficulty building individual AIA system for each 

case or building general AIA system to describe precisely the varied image 

content. In addition to what has been mentioned, the ability of an investigator to 

search based on keywords (an approach that already exists within forensic tools 

for character-based evidence) provides a simple and effective approach to 

identify relevant imagery. Moreover, many commercial computer vision API 

systems have been designed by big players in the market (e.g. Google, 

Microsoft). However, there is little evidence or literature to suggest how well these 

systems work and to what extent the problems that exist within the academic 

literature still remain. 

All these problems and issues need to be solved through evaluating existing 

commercial systems and introducing a fusion of multiple commercial computer 

vision API systems to improve the annotation performance of forensic images and 

overcome complex issues in AIA studies. 

This chapter presents the understanding and evaluation of the performance of 

the current computer vision API systems using real-life imagery and proposes a 

multi-algorithmic approach to improve the image annotation performance. The 

objective of using commercial systems over developing a system is the benefit of 

using the latest developments in image analysis without having to develop and 

manage the system and undertaking the aforementioned problems. Moreover, 
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the reasons for using the multi-algorithmic approach are to increase annotation 

accuracy, improve the retrieval performance, and collect different annotations for 

the same image (synonyms for the same object such as car and vehicle). 

3.2 Research Hypothesis  

It is clear from previous art that research in AIA has been undertaken independent 

of the forensic domain and significant progress has been made as illustrated in 

Chapter 2. This raised the question of the extent to which existing commercial 

systems could be of benefit in digital forensics—where the nature of the imagery 

being analysed is far more complicated than has been used in prior studies. 

Therefore, the initial goal was to evaluate the performance of commercial 

systems. An extension of this investigation was also to explore how the 

performance would be affected by fusion. Because of missing annotations or 

indeed having the incorrect classified annotation in the dataset. Therefore, a 

further experiment was undertaken. Three experiments were conducted with the 

aim of: 

Experiment 1: understanding and evaluating the performance of the current 

commercial systems using real-life imagery. 

Experiment 2: determining whether a multi-algorithmic approach of the 

aforementioned commercial systems would improve the performance. 

Experiment 3: re-evaluating the performance based on a more robust dataset. 

The following sections describe each experiment and show the results, followed 

by an overall discussion. 
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3.3 Understand and Evaluate the Performance of Commercial 

Systems  

The purpose of this experiment was to evaluate the performance of commercial 

systems to determine their accuracy and ability to comprehensively annotate 

images in a forensic context (rather than simply single-object imagery, which is 

typically the case). Several commercial providers were identified: Microsoft 

Cognitive Services (Computer Vision API) (Microsoft Cognitive Services, 2017), 

Google Cloud Vision API (Google Cloud Platform, 2017), Imagga (Imagga.com, 

2016) and Clarifai (Calrifai, 2018). These systems were chosen because they 

represent the top computer vision API and their mean_tags_count, which is the 

number of labels for each image on average, is  6.00, 8.50, 50.00, and 20.00 for 

Microsoft, Google Cloud, Imagga and Clarifai, respectively (Yao, 2017). In 

addition, Clarifai has the strongest concept modelling while Google Cloud Vision 

API has the best scene detection and sentiment analysis system (Scott Domes, 

2017).  

The aim of using multiple systems was to benefit from the distinct capabilities of 

each system. Also, commercial computer vision APIs were selected because 

their use as a whole will provide the following requirements (Janus, 2016; 

Bobriakov, 2018 and Filestack, 2019):  

1. Accepted various image formats. 

2. Supported different languages. 

3. Determined the dominant colour. 

4. Ability to tag different areas of images such as “general”, “NSFW”, 

“weddings”, “travel”, and “food,” and also tag video. 
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5. All of them were cloud computing services. Localization cloud 

resources make it more efficient to ensure that you have updated and 

managed the software, which removes the need for localized 

configuration management, so it is more cost-effective and efficient. 

6. They were different in generating relevant labels with different 

confidence scores for describing image content. 

7. The ability of optical character recognition (OCR), landmark, logo, 

scene, and image attribute detection. 

8. Pay only for what is used with no upfront commitments. 

The other commercial computer vision systems (as demonstrated in Table 3.1) 

that developed by the various companies like IBM, Amazon and Kairos are not 

selected because they do not meet the work requirements. 

 

 Source: Bobriakov, 2018  

Table 3.1: Comparison between the Most Popular Cloud APIs Features 
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3.3.1 Experimental Methodology 

To conduct the experiment, there was a need for a dataset on which to run the 

experiment against. An essential requirement for the dataset was to simulate (as 

closely as possible) image characteristics similar to those that would be obtained 

in a forensic investigation. These special characteristics include images that 

contain multiple objects with different sizes and orientations, irregular 

backgrounds, varied quality, unconstrained illumination, and different resolutions. 

Consequently, two publicly available datasets IAPR-TC 12 (Tariq and Foroosh, 

2014; Bhargava, 2014; and Xia, Wu and Feng, 2015) and ESP-Game (Tariq and 

Foroosh, 2014; Murthy, Can and Manmatha, 2014) were identified because not 

being able to obtain real cases, that argument leads to datasets. The other 

datasets such as Corel, Caltech-256 and Flickr datasets are disregarded because 

it concentrates on the one main object (as demonstrate in Figure 3.1) in its images 

that do not simulate the images acquired in a forensic investigation and do not 

have filly annotated  
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Corel Dataset 

 

Caltech256 Dataset

 

Flickr dataset 

 

Figure 3.1: Examples of Corel, Caltech256 and Flickr Datasets 

The reason for using those particular datasets (IAPR-TC 12 and ESP-Game) is 

because of their suitability given the problem at hand.  In addition, they are 

extensively used as basic comparative datasets for recent research on image 

annotation. The details of these two datasets are provided in the following: 

IAPR-TC 12 Dataset: The IAPR-TC 12 dataset contains diverse and realistic 

images collected from different locations around the world and includes places, 

animals, people, birds, and many other types of images. IAPR-TC12 is a large 

collection that contains 19,627 images which are split into 17,665 training set and 

1,962 testing set. In addition, all collected images are stored in the JPEG image 

format and the size of each image is 480x360 or 360x480 pixels. In addition to 

the images, the dataset contains text descriptions (manual annotations) for each 

https://www.researchgate.net/figure/Caltech256-Dataset-Examples_fig5_334006473
https://www.researchgate.net/figure/Caltech256-Dataset-Examples_fig5_334006473
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image that are freely available in three different languages (English, German, and 

Spanish). This dataset uses 5.7 tags as an average to annotate each image and 

the total tags that were used to annotate all images in the dataset are 291 (Murthy, 

Majji and Manmatha, 2015 and Uricchio et al., 2017). 

ESP-Game dataset: The ESP-Game dataset contains 20,770 images that have 

various sizes. The training dataset consists of 18,689 images and the test set 

consists of 2,081 images. Each image is annotated with 4.7 tags on average and 

the image annotation vocabulary consists of 268 tags (Kalayeh, Idrees and Shah, 

2014). Table 3.2 illustrates an example image with IAPR-TC 12 and ESP-Game 

datasets’ annotations. 

Dataset Image Annotation 

IAPR-TC 12 

 

1 entity->->man-made->construction->road->street   

2 entity->->landscape-nature->_sky->sky-light   

3 entity->->humans->person   

4 entity->->man-made->construction->road-

>sidewalk   

5 entity->->landscape-nature->vegetation->trees   

ESP-Game 

 

window 

green 

white 

house 

crowd 

people 

gathering 

Table 3.2: Example images with IAPR-TC 12 and ESP-Game Annotations 

The commercial systems were evaluated using the two different datasets, IAPR-

TC 12 and ESP-Game, through a selection of 500 images from each dataset 

(1000 images were used for evaluation) to demonstrate the impact of changing 
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image content on the systems’ performance. This number of images (1000 

images) is appropriate to get sufficient evaluation and show the variation between 

the systems’ performance. It also proves the concept of the multi-algorithmic 

approach (Experiment 2) is successful to achieve better performance than other 

systems when using 1000 images; it will succeed when using a larger number of 

images. Images were selected based on content diversity to get a varied 

collection of images and obtain a reliable assessment, such as human 

photographs, landscapes, public places, traffic, animals, clothes, tools, etc. The 

vocabulary sizes for the IAPR-TC 12 and ESP-Game datasets are 153 and 752 

words, respectively.  

Four software development kit (SDK) script, three program scripts were written in 

Microsoft Visual Studio Python (Google Cloud Vision API, Imagga, and Clarifai), 

and one program script was written in Microsoft Visual Studio C# (Microsoft 

Computer Vision API) were used to generate annotations. After that, various 

changes should be carried out on each script depending on the system 

requirements, such as installing different libraries, such as the client library and 

changing or adding steps in the script in order to perform image label detection 

requests for each image and saving the response in JavaScript Object Notation 

(JSON) format as a text file. Additionally, four Microsoft Visual Studio Python 

scripts were also written to evaluate the system's performance. 

Each system provides a result that has a special form as compared to other 

annotation systems’ results (as illustrated in Table 3.3). The difference appears 

in the number of words used to annotate the image and in the output style of these 

annotations in addition to the extra information. 
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Table 3.3: Comparison between Four Commercial Systems’ Annotation Output Forms 

To evaluate the quality of the final annotation in a set of test images, three 

performance measures, which are commonly used for evaluating the annotation 
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performance, were used. Precision and recall per word were calculated based on 

equations 5 and 6, respectively  

                                 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝐵/𝐴                                       (5) 

                                          𝑟𝑒𝑐𝑎𝑙𝑙 = 𝐵/𝐶                                           (6) 

  where A is the number of images automatically annotated with a given keyword;      

B is the number of images correctly annotated with that keyword; and 

             C is the number of images having that keyword in the ground truth-based 

annotation 

After that, average precision (AP) and average recall (AR) were used to 

summarise the performance of each system, then the F-measure value, which 

describes the semantic level, was also calculated. Two lists of words, 93 words 

and 366 words from the IAPR-TC 12 and ESP-Game datasets were extracted 

depending on truth-based annotation after excluding the unused words by the 

four systems, respectively. 

3.3.2 Results 

Four commercial systems were used to produce annotations per image with 

different probability scores. Each systems’ performance was compared to others 

for each dataset. The following two sections outline the results and their analyses 

for all systems depending on the dataset name that was employed for evaluating 

the performance. 

IAPR-TC 12 dataset: all systems provide suitable annotation results. The 

precision and recall per word (93 words) for each system was computed, then 
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AP, AR, and F-measure were calculated to summarise the systems’ performance, 

as shown in Table 3.4. 

System Name AP (%)   AR (%) F-measure (%) 

Microsoft 0.38 0.31 0.34 

Google cloud 0.44 0.45 0.45 

imagga 0.34 0.54 0.41 

Clarifai 0.36 0.52 0.43 

Table 3.4: The Comparison of Annotation Performance for Microsoft, Google Cloud, 

Imagga, and Clarifai on the IAPR-TC 12 Dataset 

From the illustration, it can be seen that Microsoft and Google Cloud achieved 

high precision compared with other systems because they used the same words 

utilised by the truth-based annotation to describe the image content and their 

number of words is small. However, their recalls were low because the 

mean_tags_count was 6.00 and 8.50, respectively. It was also observed that the 

AR results were 31%, 45%, 54%, and 52%, which was proportional with the 

number of words (vocabulary size) used to annotate the images by Microsoft (67 

words), Google Cloud (80 words), Imagga (95 words), and Clarifai (85 words) 

compared to truth-based annotation of the IAPR-TC 12 dataset (93 words), 

respectively. 

ESP-Game dataset: For each system, precision and recall per word in the ESP-

Game dataset list of words (366 words) were computed. Three metrics were 

calculated to obtain the final systems performance, AP, AR, and F, as shown in 

Table 3.5. 
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System Name AP (%)   AR (%) F-measure 

(%) 

Microsoft 0.23      0.18 0.20 

Google cloud 0.27 0.23 0.25 

imagga 0.21 0.52 0.30 

Clarifai 0.29 0.45 0.35 

Table 3.5: The Comparison of Annotation Performance for Microsoft, Google Cloud, 

Imagga, and Clarifai on ESP-Game Dataset 

It can be seen from Table 3.5 that all systems’ performance decreased (AP, AR, 

and F-measure) when using the ESP-Game dataset for evaluation compared with 

the performance of the same systems when using the IAPR-TC 12 dataset. There 

are many reasons behind this decline in performance. Firstly, the size of 

vocabulary (366 words) of the ESP-Game dataset is larger than 93 words for the 

IAPR-TC 12 dataset. The difference between the vocabulary size of each system 

and the vocabulary size of the ESP-Game dataset is larger than the difference of 

the IAPR-TC 12 dataset, as demonstrated in Table 3.6. For instance, the 

difference in vocabulary size of the Microsoft for IAPR-TC 12 dataset was 16, 

which is smaller than 190 for the ESP-Game dataset. This variation means that 

Microsoft did not use 190 from the 366 of the ESP-Game dataset, which led to a 

decline in performance (whenever the variation is small, the performance is 

better). In addition, the results showed that the Imagga system used words more 

than the vocabulary size of both datasets to annotate the images. However, the 

words were not similar to words used by the two datasets, as will be explained in 

the second reason. 
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System Name 

IAPR-TC 12 ESP-Game 

Vocabulary 

Size of Each 

System 

Difference from 

Vocabulary Size 

(93 words) 

Vocabulary 

Size of Each 

System 

Difference from 

Vocabulary Size 

(366 words) 

Microsoft 67 16 176 190 

Google Cloud 80 13 286 180 

Imagga 95 -2 458 -92 

Clarifai 85 8 392 16 

Table 3.6: Difference between Vocabulary Sizes of Systems from IAPR-TC 12 and 

ESP-Game Datasets 

Secondly, there is variation in the words used by the systems to annotate the 

images from the words in the truth-based annotation of the ESP-Game dataset 

Thirdly,there is a variation in image sizes (contain images with small sizes). 

Finally, there is a disparity in the clarity of image content. For example, Microsoft's 

precision performance decreased in the ESP-Game dataset because this dataset 

contained images with sizes less than the acceptable size accepted by Microsoft 

for accurate label detection (the dimensions of the image must be greater than 50 

x 50 pixels). The AR values of all systems were proportional with 176, 286, 458, 

and 392 words (vocabulary size) for Microsoft, Google Cloud, Imagga, and 

Clarifai, respectively. The Imagga system achieved the highest AR value because 

it used 458 words—which was more than other systems—to annotate the 500 

images.  

The performance of the systems was compared with existing works, particularly 

those that used the same datasets. While the methodologies behind the studies 

differ, and the number of words used to annotate the images, all were based on 

using the same dataset. The results showed the F-measure of Google Cloud 
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(45%), Imagga (41%), and Clarifai (43%) was higher than 34%, 29%, 36%, 38%, 

and 39% found by Bahrami and Abadeh (2014), Tariq and Foroosh (2014), 

Bhargava (2014), Murthy, Can and Manmatha (2014), and Xia, Wu and Feng 

(2015) for the IAPR TC-12 dataset, respectively. For the ESP-Game dataset, only 

Imagga (30%) and Clarifai (35%) achieved higher F-measure than 27% and 34%, 

as found by Tariq and Foroosh (2014) and Murthy, Can and Manmatha (2014), 

respectively. The reason behinds variation in the performance of the systems 

(commercial systems and studies) is the number of words used by each system. 

When the system used a small number of words to annotate the image precision 

will be much higher, even though the recall will be a little lower, vice versa. 

3.4 Determining whether a multi-algorithmic approach of the 

aforementioned commercial systems would improve the 

performance 

Data fusion methods are often used in pattern classification if there are multiple 

ways to solve a particular problem (Gökberk and Akarun, 2006). Data fusion is a 

“multilevel, multifaceted process handling the automatic detection, association, 

correlation, estimation, and combination of data and information from several 

sources.”  (Gu et al., 2015). The objective of fusion is to get a more accurate final 

decision by using data from multiple knowledge sources and sensors. Data fusion 

is classified into three types: data-level, feature-level, and decision-level fusion 

(Gu et al., 2015). Decision-level fusion combines the decisions of multiple 

classifiers into a common decision to obtain a more accurate decision 

(Castanedo, 2013) which is used in this experiment. 
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Having established the baseline performance (Experiment 1), it became 

immediately apparent that the systems’ performance was different. This variation 

led to a hypothesis of whether fusing the systems would provide a better degree 

of performance. The aim of combining existent commercial systems into one 

system by using the proposed approach is to benefit from the different feature 

extraction, segmentation, and classification approaches used by each system. 

Also, this experiment highlights how to improve, and make more reliable and 

robust, the annotation process, which will have an important effect on the overall 

system retrieval accuracy. 

3.4.1 Experimental Methodology  

The same datasets used to evaluate the performance of the current commercial 

systems (Experiment 1) were employed to evaluate the proposed multi-

algorithmic approach performance. 

The multi-algorithmic approach was proposed to combine the outputs of multiple 

systems to improve recognition performance. A multi-algorithmic approach was 

developed that consisted of three stages: annotation extraction, normalisation, 

and fusion, as illustrated in Figure 3.2. 

 

Figure 3.2: Block Diagram of the Multi-Algorithmic Approach 
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Annotation Extraction: extracts the annotations for each image in the dataset 

through sending the image to multiple AIA systems, and then stores the result for 

each system individually. Three program scripts were written in Microsoft Visual 

Studio Python (Google Cloud Vision API, Imagga, and Clarifai), and one program 

script was written in Microsoft Visual Studio C# (Microsoft Computer Vision API) 

were used to generate annotations. The outputs from each system (as illustrated 

in Table 3.3) have a special form compared to other systems. This difference 

leads to the problem of how to combine the different styles of annotation and 

express them in a unified form that can be fused to find the final image 

annotations. 

Multiple Normalisation Procedures: a normalisation process was required before 

the fusion stage. The normalisation process was employed to exclude all useless 

data and store only the words and their confidence scores for each system 

individually. In addition, the confidence score (probability) for all systems was 

presented in the same format. The outputs were parsed and reformatted 

accordingly by implementing four Microsoft Visual Studio Python scripts. Figure 

3.3 demonstrates an example of the normalisation process for Clarifai’s 

annotation results. 
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(a)                                            (b) 

Figure 3.3: Normalisation of the Clarifai Annotation Result: (a) As Gained from Clarifai 

(b) After Normalisation 

Fusion: the final stage of the multi-algorithmic approach was fusing the results 

from the four commercial systems (after normalisation) to obtain the correct and 

accurate annotations that describe image content and would later be used as the 

query text by the investigator. The fusion stage was carried out through 

aggregating all annotation results collected from four systems, then the repetition 

for the same word was excluded, and a new probability was calculated through 

accumulating the probabilities generated by the four systems for the same word, 

as demonstrated in Table 3.7. After that, the final annotations were arranged in 

descending order depending on the probability values to acquire for the final 

annotations of each image as shown in Figure 3.4. 

 



 

110 

 

System 1 System 2 System 3 System 4 Fusion 

sky sky sky sky sky 

95.9426 28.5957 99.2699 96.3234 320.1316 

Table 3.7: Example of Word Repetition by Different Systems 

 

Figure 3.4: Example of Fusion Result 

The results were presented in two forms. Fusion (All) based on all annotations 

words and Fusion (Threshold) based on the words having achieved a sufficient 

probability score of 90% or higher that represent the most accurate results and 

less error. This presentation of the results provides a focus on the annotations’ 

accuracy. The Fusion (All) and Fusion (Threshold) were examined using the 

same two datasets employed in the first experiment. In Fusion (All), each image 

was annotated with more than 50 labels. The average precision, average recall, 
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and F-measure were used to calculate the performance. The investigation of the 

experiment was developed using Microsoft Visual Studio Python script. Four 

types of evaluation methods were conducted to evaluate the performance of the 

multi-algorithmic approach.  

 Comparing a multi-algorithmic approach performance with commercial 

systems performance. The same 1,000 images of Experiment 1 were used 

in the evaluation. 

 Validating the semantic retrieval performance of the multi-algorithmic 

approach. The retrieval performance for eight different words from the 

ESP-Game dataset (500 images) based on dataset truth-based 

annotation, Fusion (Threshold), and Fusion (All) results were evaluated.  

 Comparing between dataset truth-based annotation (original annotation) 

and Fusion (Threshold) annotation results. This investigation was 

conducted to show the advantage of the proposed approach, the Fusion 

(Threshold) annotation results were compared with the truth-based 

annotation (original annotation) for two datasets. The Fusion (Threshold) 

was selected for evaluation because of the large number of words in the 

Fusion (All) results (more than 50 words for each image). 

 Evaluating the annotation performance of the proposed approach by 

calculating the precision for every word in the Fusion (Threshold) and 

Fusion (All) results. The credibility of each word in Fusion (All) and Fusion 

(Threshold) results used for annotating the image was validated. The 

reason for carrying out this validation was a lack of any fully annotated 

dataset that annotates images with 20 words or more. In addition, a set of 

words used by the systems are not included in the original annotation 
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(dataset annotation). Therefore, the existence of each word is manually 

checked in the image content for 100 images that selected randomly from 

the IAPRTC-12 dataset. Equation 5 was used to calculate the precision 

value of each image, then AP was calculated to summarise the annotation 

performance.  

3.4.2 Results 

The following sections show the performance of the proposed multi-algorithmic 

approach based on different evaluation manners. 

 To demonstrate the effectiveness of the proposed multi-algorithmic 

approach, its performance was compared with the commercial systems’ 

performance, as shown in Table 3.8 and Table 3.9. The bold red numbers 

refer to results reflecting the superiority of the proposed approach over 

other systems. 

System Name AP (%) AR (%) F-measure (%) 

Microsoft 0.38 0.31 0.34 

Google cloud 0.44 0.45 0.45 

imagga 0.34 0.54 0.41 

Clarifai 0.36 0.52 0.43 

Fusion (All) 0.35 0.77 0.48 

Fusion (Threshold) 0.44 0.60 0.51 

Table 3.8: Results of Comparison of the Multi-Algorithmic Approach with the 

Commercial Systems in the IAPR-TC 12 Dataset 

 

 

 



 

113 

 

System Name AP (%) AR (%) F-measure (%) 

Microsoft 0.23      0.18 0.20 

Google cloud 0.27 0.23 0.25 

imagga 0.21 0.52 0.30 

Clarifai 0.29 0.45 0.35 

Fusion (All) 0.32 0.78 0.46 

Fusion (Threshold) 0.37 0.50 0.42 

Table 3.9: The Results of Comparison of the Multi-Algorithmic Approach with 

Commercial Systems in the ESP-Game dataset 

It was found that the performance of the proposed approach outperformed 

the commercial systems against all three criteria across both datasets. In 

most object recognition cases, precision is a support measure. Only in 

forensics, the investigators do not mind getting some wrong signals, they 

care about missing the right signals. Fusion (All)-based recall rates of 77-

78% against a single-classifier with the best result of 54% show a 

significant improvement. Regarding the average precision (AP), the 

highest value achieved by Google Cloud was 44%, which annotates 

images with approximately 10 labels; however, Fusion (All) achieved 35% 

despite that it annotates images with more than 50 words on average.  

Furthermore, Fusion (Threshold), which annotates each image with more 

than 20 words, achieved high average precision (AP) for both datasets 

than the other AIA systems, because it vocabulary size was 93 and 369 of 

IAPR-TC 12 and ESP-Game dataset, respectively. Moreover, the 

precision of the Fusion (Threshold) is greater than the precision of Fusion 

(All) results because there is an inverse proportion between the number of 

words and accuracy.  
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 Regarding validating the semantic retrieval performance of the multi-

algorithmic approach, Precision, Recall, and F-measure were employed to 

evaluate the single word retrieval performance. The retrieval performance 

was tested separately based on dataset truth-based annotation, Fusion 

(Threshold), and Fusion (All). The F-measure values for the semantic 

retrieval performance (eight words) were 72.4%, 84.0%, and 77.5% for 

dataset truth-based annotation, Fusion (Threshold), and Fusion (All) 

respectively, as shown in Table 3.10. These results show the superiority 

of the multi-algorithmic approach over original annotation (ESP-Game 

dataset) despite that some of the images were very small, low in contrast, 

or have part of the requested object. In addition, the image object itself 

differed in shape, colour, size, location and direction in each image. The 

Fusion (All) annotation achieved the lower average precision (AP) 

because it retrieved some images that have objects related to the tested 

word; however, it successfully retrieved all images that have the tested 

words in their content, and its AR was 98%. This means that the proposed 

approach will help investigators retrieve all the requested evidence from 

the image dataset; thereby, it will facilitate the process of identifying and 

solving the crimes.  
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 Dataset 

annotation 

Fusion 

(Threshold) 

Fusion 

(All) 

Words P (%) R (%) P (%) R (%) P (%) R (%) 

car 97.7 86 96 96 75.3 100 

food 100 69 91.4 76.1 78.8 97.6 

dog 100 100 92.3 92.3 75 92.3 

Flower/ 

rose 
100 1.25 85.7 60 75 100 

cold 100 27.7 83.3 55.5 51.5 94.4 

bicycle 100 33.3 100 100 66.6 100 

bed 100 85.7 77.7 100 63.6 100 

boy 100 51.6 65.7 74.1 27.6 100 

Average 99.7 56.8 86.5 81.7 64.1 98 

F 72.4 84.0 77.5 

Table 3.10: The Retrieval Performance Based on One-Word Queries (Those in red refer 

to the superiority of the proposed approach) 

 Four examples of annotation obtained by the proposed approach are 

shown in Table 3.11. The comparison between dataset annotation and 

Fusion (Threshold) annotation results indicates the original annotation lost 

some words and did not provide synonyms or substitute words that 

describe the same image content. The proposed approach has significant 

advantages over dataset annotation (original annotation). Firstly, it is more 

accurate in describing image content. Secondly, the number of words that 

describe the image using the proposed approach is greater than dataset 

annotation. Thirdly, the multi-algorithmic approach describes all image 

contents efficiently, which will help in avoiding missing any object in the 

image. Thus, the proposed approach can solve the problem of poor 

annotation (images are not annotated with all relevant keywords) and 

overcome the limitations of AIA studies that have been illustrated above. 

Finally, it offers many synonyms and describes the whole image content. 
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APR-TC 12 Dataset 

Image  

 
 

Original  

Annotation 

Humans, group of persons, 

landscape nature, sky 

Humans, person, child, child 

girl, man made, floor 

Fusion 

Annotation 

Snow, sky, winter, ice, cold, 

outdoor, landscape, travel, 

outdoors, water, beach, 

people, leisure, vacation, 

frosty, vehicle, froze, 

recreation, frost, weather 

 

People, group, education, class, 

child, person, adult, classroom, 

boy, school, man, room, 

teacher, woman, indoor, wear 

ESP- Game Dataset 

Image  

  
Original  

Annotation 

Car, building Chicken, meal, table, bowl, 

food, white, Asian, dinner 

Fusion 

Annotation 

Building, sky, road, street, 

town, downtown, 

architecture, city, travel, 

outdoor, urban, house, 

tourism, old, outdoors, car, 

modern, horizontal, facade 

Food, meal, plate, dish, table, 

cuisine, lunch, restaurant, 

dinner, meat, delicious, sauce, 

vegetable, healthy, tasty, 

cooking, hot, indoor, epicure, 

refreshment, no person 

 

Table 3.11: Examples of Fusion Annotation Matching with Ground Truth Annotation 

for Two Datasets (APR-TC 12 and ESP-Game) 

 Finally, this section demonstrates the validity of the annotations that have 

been generated by the proposed approach. The experiment showed the 

AP of Fusion (All) (more than 50 words annotating each image) and Fusion 

(Threshold) (more than 20 words annotating each image) were 55% and 

80%, respectively. Although the images varied in content and some were 
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blurred and small, the results show that the proposed approach improved 

the efficiency and accuracy of the image annotation in comparison with 

other state-of-the-art annotation methods. The reason for heterogeneity 

between precision scores (as illustrated in Figure 3.5) is diversity between 

the quality and inconspicuous content for an image. 

 

Figure 3.5: Precision of 100 Images Based On Fusion (All) and Fusion (Threshold) 

Results 

3.5 Re-evaluate the performance of Commercial Systems and the 

Multi-algorithmic Approach Based on More Robust Dataset  

The analysis of the results from experiments 1 and 2 found the IAPR-TC 12 and 

ESP-Game datasets’ annotations have missing annotations as shown in         

Table 3.12. This leading to misleading results, as many of them were incorrectly 

annotated. Therefore, a further experiment was undertaken where a subset of the 

images were manually annotated. This experiment was aimed at comparing the 

performance of the commercial system and the proposed approach against 

dataset annotation (original annotation) and the re-annotation dataset. 
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Dataset Name Image Original Annotation 

IAPR-TC 12 

 

 
 

man made 

construction 

road 

sidewalk 

humans 

couple of persons 

street 

ESP-Game 

 

 
 

tree 

bridge 

cover 

road 

Table 3.12: Examples of Missing Annotations 

3.5.1 Experimental Methodology  

A re-evaluation was undertaken against dataset annotation and the manual re-

annotation dataset for 100 images from the IAPRTC-12 dataset was completed. 

To build the re-annotation dataset, all words used to annotate the 100 images 

based on their dataset annotation (original annotation files) were collected in one 

list. After that, the images were re-annotated by the words in the list. Table 3.13 

demonstrates a comparison between the original annotation and the re-

annotation datasets. 
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Image Original Annotation Re-annotation 

 

humans 

group of persons 

landscape nature 

sky 

Arctic 

Car 

Cloud 

Glacier 

Group of person 

Humans 

Landscape Nature 

Man 

Person 

Sky 

Sky blue 

Snow 

Tire 

Vehicle 

woman 

 

 

Humans 

Person 

Woman 

Landscape Nature 

Vegetation 

Trees 

Bush 

Face of person 

Grass 

Ground 

Group of persons 

Hat 

Humans 

Leaf 

Man 

Person 

Plant 

Tree 

Trees 

Vegetation 

woman 

Table 3.13: Examples of Image Re-annotation 

3.5.2 Results 

Correcting the annotation errors (missing annotations) that came with the dataset 

improved the overall precision across the board (as illustrated in Figure 3.6), with 

Fusion (Threshold) achieving the highest performance. This is because of the 

increase in the number of words that describe the image content. The highest 

performance improvement was achieved by Imagga, which used more than 50 

words to annotate the image, because of increasing the number of words that 
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were used to annotate the image in the re-annotation dataset. This means the re-

annotation dataset allows for significantly getting more precise and true results 

than dataset annotation (IAPRTC-12 dataset) because the re-annotation dataset 

addresses the missing annotation issue. 

 

Figure 3.6: Average Precision of the Six Systems with Two Different Annotation 

Datasets 

For average recall values, opposite results were obtained (as presented in   

Figure 3.7), because the re-annotation dataset is more precise than the original 

annotation (inverse relationship between precision and recall ( CLEVERDON, 

1972; Buckland and Gey 1994). However, the AR of the Fusion (All) in the re-

annotation dataset is still higher than the other systems because Fusion (All) 

includes all annotations collected from all systems. Generally, the F-measure 

value of Fusion (All) is higher than the other systems when using the re-

annotation dataset, as shown in Figure 3.8. The issue re-annotation introduced 

the expansion in the number of annotations listed for each image. The results of 

this investigation show that the Fusion (All) and Fusion (Threshold) in all metrics 

were higher than other systems regardless that the dataset validity used for 

evaluation supports using a multi-algorithmic approach. 
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Figure 3.7: Average Recall of the Six Systems with Two Different Annotation Datasets 

 

Figure 3.8: F-Measure of the Six Systems with Two Different Annotation Datasets 

3.6 Discussion  

The evaluation of different commercial systems (as illustrated in Experiment 1) 

revealed the performance of these systems contrast against the same or different 

datasets. The reason for the performance disparity is the systems’ variation in 

describing a given image. The variation in the description includes 1) 

concentrating only on the main objects in the image; 2) annotating the same 

object using different words (synonyms); and 3) concentrating on the main 

objects, using synonyms, and adding the general description of the whole image 

content. The findings showed that each annotation system (Microsoft, Clarifai, 

Imagga, and Google Cloud) has a different performance level, with systems 
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struggling more with the ESP-Game dataset. Likely, the different approaches 

used by each system to find the image annotations lead to differences in the 

number of labels and probability values. The results showed the highest 

performance for all systems was achieved by using the IAPR-TC 12 dataset 

compared to the corresponding results using the ESP-Game dataset. It was 

expected because of the large vocabulary size of the ESP-Game dataset, as well 

as that it contains some images that are small and of low quality. This means the 

performance of the systems is affected negatively by the quality and size of the 

image. This has appeared in recent studies (Tariq and Foroosh, 2014; Murthy, 

Can and Manmatha, 2014). Besides, Imagga achieved the highest average recall 

values for both datasets, as a result of a large number of words used by the 

system to annotate each image. However, the Clarifai system achieved higher 

results regarding the F-measure for both datasets compared to the others 

systems because the mean_tags_count number was far larger than that of 

Microsoft and Google Cloud and smaller than Imagga, which made it more 

precise. Generally, the systems’ performance was low because of the poor quality 

of images that were used for evaluation in addition to the difference between the 

words are used by the systems and the dataset annotation (original annotation) 

and its count.  

The second conducted experimental results showed the performance of AIA is 

improved through the fusion of many systems. Image annotation results from an 

individual commercial system constructively improved through the combining of 

results of multiple AIA systems. This because of the increase in the number of 

annotations, collecting alternative words for the same object (synonym), 

describing whole image content, as well as its objects, in addition to increasing 
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the reliability of the words because they are repeated by different systems. The 

proposed approach was able to retrieve most images that have the text query 

(tested word) in their content successfully and the average recall rate was 98%. 

The approach also improved image annotation and solved the problem of poor 

annotation (images are not annotated with all relevant keywords). Additionally, 

the annotation performance of Fusion (Threshold) was AP=80% and its 

mean_tags_count of 20 would be considered better than other state-of-the-art 

annotation systems whose mean_tags_count is 5. Ultimately, the proposed 

approach contributes to demonstrate that the annotation of forensic images is 

possible, the using of commercial systems is set reliable and fusion based 

approach is best to get better results and provide more operation flexibility. 

The last conducted experiment results highlighted that the usage of the re-

annotation dataset improved all systems’ precision performance by finding 

mistakes in the dataset annotation. Additionally, the proposed approach achieved 

better performance than the rest of the systems, regardless of the dataset used 

for evaluation. 

However, the use of publicly available annotation systems introduces some 

operational limitations. Firstly, some of these systems, such as Microsoft Vision 

API, take a copy of the image to improve its system performance. Secondly, there 

are various pieces of forensic image evidence that have been captured by 

different devices; some of them are often poor quality and highly variable in size 

and content. Thus, the precision of annotation obtained from available 

commercial annotation systems are affected by several factors such as image 

clarity, image size, and the size and direction of an object in the image. 
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Consequently, there is a need to explore and evaluate a range of pre-processing 

procedures to introduce the necessary privacy required and tackle image factors. 

3.7 Conclusion 

The chapter experimentally investigated the performance of existing commercial 

systems and the proposed multi-algorithmic approach, as well as re-evaluated 

the performance based on a more robust dataset annotation. There are several 

online systems supported by significant results that have developed operational 

image annotation systems, such as Google Cloud Vision API, Clarifai, Imagga, 

and Microsoft Cognitive Services (Computer Vision API). As such, the proposed 

approach seeks to capitalise on the use of multiple existing annotation systems 

and the development of a fusion engine to constructively argument the results. 

This will permit investigators to retrieve multiple pieces of evidence from a 

heterogeneous forensic image database efficiently. The experimental results 

using two datasets (IAPR-TC 12 and ESP-Game) have proven that the proposed 

approach performance outperforms existing AIA systems. The existing systems’ 

results show that the highest average recall was achieved by Imagga with 53% 

while the proposed multi-algorithmic system achieved 77% across the selected 

datasets. In addition, the F-measure of the proposed approach was higher than 

all systems for both datasets. These results demonstrate the benefit of using a 

multi-algorithmic approach.  

The results in this context have also demonstrated the capability of the suggested 

approach to retrieve most requested images. The F-measure of Fusion 

(Threshold) and Fusion (All) were 84.0% and 77.5%, respectively. Thereby, the 

multi-algorithmic approach will help reduce the effort exerted by the investigator 

and decrease the cost and time of the investigation process, which is needed to 
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retrieve all images that have the required evidence in their content. The proposed 

method annotates the image with many correct and accurate words that reflect 

the image’s content and will later improve retrieval performance. The results 

showed that the proposed approach improved the efficiency and accuracy of the 

image annotation compared to the state-of-the-art works.



 

126 

 

4 A Novel Framework for Object-based Multimedia 

Forensic Analysis Tool 

4.1 Introduction 

 

As mentioned previously, multimedia forensic investigation can include an 

extensive collection of data/evidence from various sources that are required to be 

analysed in a short time. Given the ever-increasing volume of multimedia content 

in the form of images or videos containing objects and/or scenes that may be 

related to criminal behaviour, it makes searching and retrieving images/videos 

from the vast quantities of such data a tedious process that requires significant 

effort.  

Building upon the challenges (as illustrated in section 2.6), the author is looking 

for to develop the forensic image analysis system that has the capability to 

automate the process of extracting, indexing, and analysing the recovered 

images/videos and providing an investigator with an environment in which they 

can ask more abstract and cognitively challenging questions of the data such as 

identifying a particular object such as a car and then ask the system to track the 

car (selected) and plot the locations of the car move around the city using a 

graphical map alongside the sources of the images utilised to identify the path. In 

addition, the extracted evidence must be in a form that makes it convenient and 

acceptable in a court of law. This tool reflects the procedures that will be 

undertaken by investigators during a typical digital forensics investigation to 

detect the required evidence in a huge amount of data. This chapter describes 

the OM-FAT contents that will reduce the time, effort, and cognitive load being 

placed on investigators to identify relevant evidence. The chapter begins with a 
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set of requirements that must be met by the proposed system to achieve the 

research goal. A detailed description of the proposed system engines and 

processes is presented in the rest of this chapter. 

4.2 System Requirements 

Chapters 2 and 3 demonstrated many challenges faced in using image analysis 

in digital forensics, such as enormous amounts of data and the diversity and 

complexity of the image content. Moreover, the existing forensic tools are 

insufficient in areas such as automatic content image analysis, extraction of 

evidence and correlating images, and the lack of the standard annotated image 

database, which can be used to learn the system used to annotate forensic 

images. This leads to needing image analysis and retrieval techniques, in addition 

to intelligent systems that can be used to overcome these challenges through 

evidence extraction, indexing, and correlation of evidence using various methods.  

The proposed system’s key requirements are divided into two levels:  

4.2.1 High-Level Requirements 

The high-level requirements indicate the essential requirements that should be 

met in the proposed architecture because of their impact on the performance of 

the evidence extraction process. And also they were placed to meet limitations 

faced by the existing forensic tools regarding images analyses.   

 Using multi-algorithmic approach to recognize different objects with 

different characteristics that exist in the images, thereby improving the 

evidence extraction process. 
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 Provide a range of forensic analyses and correlation capability to aid 

investigators in querying the required images. By using multiple AIA 

systems that can recognise different objects with different characteristics 

in an image and fuse their results using the multi-algorithmic approach, the 

proposed system can improve the evidence extraction process. The 

objective of using the multi-algorithmic approach is to overcome the 

limitations of each system individually and to look for different reliable 

information. Further, the accuracy and speed of retrieving images are the 

biggest challenges facing image analysis in digital forensics. However, 

once annotated, merely looking at all the results of a single or a set of 

keywords will not necessarily diminish the investigative task. Therefore, 

the proposed system tackles this challenge by applying additional 

knowledge to the retrieved images with the aim of enabling investigators 

to filter evidence using a wider range of information (different types of 

image retrieval methods (Malcom Marshall, 2014)). As a result, it is 

important to develop the correlation engine that can link the annotation, 

image feature, and text features alongside relevant metadata to enable 

investigators to ask higher-level and more abstract questions of the data. 

4.2.2 Low-Level Requirement 

In addition to the aforementioned high-level requirements, the following 

requirements must be considered to make the performance and use of the system 

proper and efficient. Also, met the requirements that should look for when 

selecting a digital forensics software platform (DIJKSTRA, 2016): 
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 The proposed system should provide a facility that enables investigators 

to access the tool anytime, anywhere and via any PC with an Internet 

connection.  

 Execution of the system should be platform-independent, which means it 

should not be restricted by the type of operating system used (Linux, 

MacOS, Unix, Windows, etc.). 

 It should have good usability to enable investigators to achieve their tasks 

easily and efficiently.  

 It should provide a case-based management infrastructure. Case 

management introduces in order to enable the management of the forensic 

processes effectively. Rather than a lot of utilities or a lot of different 

providers, one tool is effectively able to get start to the end of the case. 

 Implement authentication, authorisation, and accounting (AAA) technology 

for all investigators using the system to ensure the chain of custody. 

 Acquire and process a wide variety of forensic database images and live 

sources (e.g. computer, mobile, CCTV).  

 Conduct image enhancement approaches to improve image quality that 

would improve the annotation and feature extraction systems’ 

performance. 

 Visualise the results in a timely manner and different forms to help 

investigators understand the significance of data by placing it in a visual 

context.  
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4.3 Object-based Multimedia Forensic Analysis Tool Architecture 

OM-FAT is intended to be a complete forensic image analysis tool. This could be 

achieved by incorporating image analysis in a single-case management-based 

system that goes beyond the current state-of-the-art in both forensics and their 

specific specialist domains. Based on the requirements analysis to understand 

what required of the system that included evaluation of the currently existing tools. 

The author looked to how the commercial systems today work such as FTK, 

Encase, which are very well known forensic case management tools and are not 

object-based image retrieval, how they operate and match to forensic processes; 

collection, examination, analysis, and presentation, reporting. In addition, the 

working based forensic principles and the system requirements that let to achieve 

OM-FAT structure. 

The proposed system provides investigators with an aggregation of the image 

analysis techniques in one place to extract multiple pieces of evidence from a 

heterogeneous forensic image database automatically. Whether the evidence is 

an object or text inside the image or metadata, OM-FAT has the ability to extract 

different types of evidence. The system will process and index the image using 

multiple AIA systems and incorporate the use of metadata and image features to 

effectively and efficiently retrieve the evidence. The overall architecture of the 

proposed Object-based Multimedia Forensic Analysis Tool (OM-FAT) system is 

depicted in Figure 4.1. 
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Figure 4.1: Overall OM-FAT System Architecture 

The proposed system framework (OM-FAT) consists of several key components 

namely the Data Acquisition Engine, the Automatic Image Annotation (AIA) 

Engine, the Correlation Engine, the Visualisation Engine, and Reporting. These 

engines carry out various tasks, including case management, investigators’ 

management, collecting data from different sources, generating the annotation 

for images, searching images using annotations, correlating between images 

(evidence) through image features, text features, and metadata, visualising the 

results in different approaches, and, finally, generating the report. But also there 

is a set of functions organized to accomplish these missions (filtering the acquired 

images, calculating the hash value for the source (Forensic Image) and the 

images themselves, carrying out different pre-processing on the images and 

showing the retrieve results in more than one way. Multiple tables are used in the 

proposed system because of the variation in the type of information that needs to 

be stored, in addition to using multiple levels of analysis. Database normalisation 
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is employed to improve the database’s performance including accuracy, speed, 

efficiency, and producing the expected data. The system operations sequence 

and data flow will be explained in the following: 

 The investigator received the case details with sources of digital evidence 

such as CCTV, hard disk or other digital media sources, etc. and also the 

preliminary evidence collected from the crime scene. The investigator can 

use the OM-FAT and interact with the tool components via the Case 

Management engine that responsible for managing the overall system and 

provides the interface to the forensics investigator. It enables the 

investigator to create and configuring new cases, open a case that has 

previously been created, archiving a case, adding new users to a database 

and assigning roles, managing roles and customize the global settings.  

 After creating the case, the system will start the acquisition phase (Data 

Acquisition engine) to acquire the images from the collected sources. In 

this stage, the investigator uses filters to quickly locate specific objects and 

exclude data that do not want to be analysed to reduce the time of 

acquisition and analysis. In addition, the system will carry out different pre-

processing techniques that include calculating a hash value, convert video 

files to images, extracting metadata, image resize and enhancement. After 

storing the images with their details in the system database, the data 

(images) will be sent to the AIA engine to generate the annotations for each 

image and store them in the database.  

 Once the case is created and the sources are acquired and examined, the 

system provides the investigator with analysis interface (Correlation 

engine) that include multiple options to start conducting the analysis stage. 
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The Correlation engine employs different types of image retrieval 

techniques to meet all retrieval requirements (annotation, object, text, 

metadata, etc.) so as to analyse the acquired images based on the type of 

evidence. The first stage of analysis is the use of search terms 

(annotations) and defining search criteria (search filters, probability score 

and number of retrieved images). To keep track of particular search 

results, the investigator can select all or part of retrieved images that want 

to include in the bookmarks. After that, the system enables the investigator 

to exclude undesirable data by using forensic analysis techniques, which 

correlate between images through different approaches, in order to reduce 

the search domain and find the desirable images.  

 Finally, the investigator can create a case report includes case information, 

the investigator(s) details and bookmarks, which include all detail 

regarding the retrieval process such as investigator name, time, date and 

search criteria, and also the retrieved images. In addition to the above-

mentioned processes, the system documents all actions performed in the 

case to obtain a clear view of what has been achieved. 

Each the OM_FAT engines and their functionalities will be fully discussed in the 

following sections. 

4.3.1 Case Management Engine 

This engine represents an interface between investigators and the underlying 

engines that help investigators manage the overall system. The aim of this engine 

is to make sure to do not change of data chain custody and integrity of data to 

keep principle in forensic. It is able to maintain both far better than non-case 
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management based approach. All information from this engine is stored in the 

Manager Database. It consists of seven core functions (as shown in Figure 4.2) 

which are: 

 

Figure 4.2: Case Management Engine 

Account Management: each case has its data and privacy. Thereby, there is a 

set of data that may be sensitive for other investigators to view. Therefore, there 

is a need to block important data from specific investigators. This could be 

achieved by specifying the permissions set for each investigator that permits data 

access and doing some tasks to maintain the chain of custody and meet privacy 

and security requirements. The Administrator can add new roles, modify existing 

roles, and view a role’s permissions. 

Regarding adding a new user function, it includes entering all the details of the 

new investigator as presented in Table 4.1, including Investigator ‘Id’, ‘Role’, 

‘Title’, ‘Forename’, ‘Surname’, ‘Email Address’, ‘Office’, ‘Phone’, ‘Username’, and 

‘Password’. The ‘Role’ filed in Table 4.1 specifies a specific set of permissions to 

perform defined investigative tasks. These roles are defined as per the users’ job 
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requirements, as shown in Table 4.2, in order to make the work more effective 

and maintaining strict protocols for access.  

Investigator 

ID 
Role Title Forename Surname Email Office Phone 

User 

Name 
Password 

1 Admin Mr. Nathan Clarke 

N.C @ 

plymouth.a
c.uk 

A304 
01752

… 
NClarke ###### 

2 
Primary 

Investigator 
Mrs. Shahlaa  

Mashhad
ani 

S.M @ 

plymouth.a

c.uk 

A304 
01752

… 
Mshahlaa ###### 

…. …. …. …. …. …. …. …. …. …. 

Table 4.1: Investigator Information 

Roles 

Admin 

Primary Investigator 

Digital Investigator 

Reviewer 

Table 4.2: Roles 

As for the permissions list (as illustrated in Table 4.3), the system has a list of 

permissions that reflects what tasks can be performed by users with that role. The 

list of permissions reflects all functions included in the system. Table 4.4 

illustrates the permissions given for each role in the system. 
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Permissions Id Permissions 

1 Change Global Settings 

2 Add New Investigator 

3 Edit Investigator Information 

4 Update List of Privileges 

5 Archive Case 

6 Promote to Active and Back Up 

7 Edit Case Details 

8 Create New Case 

9 Assign an Investigator to the Case 

10 Review New Case 

11 Assign Additional Case Sources 

12 Edit Case Sources Details 

13 Review Case Findings 

14 Search Process 

15 Forensics Analyses Process 

16 Bookmark Results 

17 Prepare Case Report 

Table 4.3: List of Permissions 

Role Permissions Id 

Admin 1 

... 

... 

Admin 17 

Primary Investigator 5 

... 

... 

Primary Investigator 17 

Digital Investigator 13 

... 

... 

Digital Investigator 17 

Reviewer 16 

Reviewer 17 

Table 4.4: Role Permissions 

Global System Settings: it represents the second core function in the case 

management engine available to administration investigators who have privileges 

to change these settings. This function permits modifying settings relevant with 

specifying: (1) the names of external recognition systems that will be later used 

for image annotation; (2) the external mapping API that will be used in geo-

tracking procedures; (3) session time out; (4) the number of images that will be 
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displayed after the search or forensic analysis process; and, finally, the colour of 

system interfaces. The system configures initial default values for setting that will 

be applied to the whole system. These settings are applied identically for all 

investigators and the system can read but is not allowed to change them. 

New Case: on receiving a new case, all available information relating to the case 

is fed through a graphical interface to the system by the investigator, who has 

permission to add new cases. This information includes the case reference, case 

name, open time and date, description, etc., as demonstrated in Table 4.5. Table 

4.6 represents the connection between investigator information and case 

information to identify the investigators responsible for each case. After adding 

the new case, the system will allow the investigator to add images (forensic 

images) relevant to the case from various sources through the data acquisition 

engine. 

Case 

Reference 

Case  

Name 

Case 

Type 

Case 

Status 

Open 

Time Date 

Due 

Time 

Date 

Complete 

Time 

Date 

Operational 

Name 
Description 

101 Case1 abduction open 
11:23:20 

01/09/2017 
…. ….. 

Child 

abduction 

The child 

has been 

kidnapped 

from … 

102 Case 2 stolen close 
10:20:30 

01/11/2017 
…. …. 

Stolen 

phone 

Stolen 

phone at 

auction site 

…. …. …. …. …. …. …. …. …. 

Table 4.5: Case Information 

Case Reference Investigator ID 

101 1 

101 2 

102 1 

…. …. 

Table 4.6: Case Investigator 
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Editing Case: using the case management engine, the investigator can edit the 

selected case details, such as changing investigators who are responsible for the 

case, adding new sources, or changing the description field, etc., then storing the 

updated information. 

Open Case: this function permits the investigator to select any active case from 

the case information table (Table 4.5) in order to start the analysis stage, which 

includes different phases that are responsible for searching and correlating 

between images through different procedures in order to find crucial evidence.  

Archive Case: another function is archiving cases. This function transfers cases 

from an active case table (Table 4.5) to an archive table (Table 4.7). This function 

would only be required when the case is solved or when there is no need to work 

on it. Importantly, however, as the system stores the case in the archive table (as 

demonstrated in Table 4.7), an investigator would also be able to work again on 

this case through transferring it to the active case table by using a reactive 

function. Another function that could apply in the saved case in the archive table 

is the backup function. The backup function aims to transfer the case from the 

archive table (Table 4.7) to an external drive. 

Case 

Reference 

Case  

Name 

Case 

Type 

Case 

Status 

Open 

Time Date 

Complete 

Time Date 

Operational 

Name 
Description 

Archive 

Time Date 

103 Case3 murder close 
11:23:20 

01/09/2017 

12:00:00 

020/11/2017 

woman 

murder 

Missing woman 

from three nights…. 

10:00:00 

01/12/2017 

104 Case 4 stolen close 
10:20:30 

01/11/2017 

18:00:00 

17/01/2017 
Stolen car 

Stolen car from car 

park…… 

12:00:00 

01/02/2018 

…. …. …. …. …. …. …. …. …. 

Table 4.7: Case Archive 
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Case History: case history is considered as a central part of the system because 

it eliminates any ambiguity relevant to the case through displaying a list that 

documents each investigator’s action with the date, time, the purpose of the 

action, and all relevant details (as shown in Table 4.8). The case history function 

allows the investigator to know how many times the case was opened and all 

actions that carried out on it in addition to who is responsible for each action. The 

system records all actions placed on the selected case and provides a list of 

actions including editing case information, archiving or reactivating the case, 

analysis, adding new data sources, or reporting. The aim of the list of actions is 

to establish a full vision of what has happened and which action was completed 

by using the ‘flag’ field. The system also uses the ‘analyses’ field (Table 4.8) to 

indicate if the results of any search or forensic analysis have been analysed or 

not. This will inform investigators that the data is still under analysis and more 

time is needed to find the final results. Furthermore, when an action is selected 

such as searching or adding a new source etc., except for open action, the system 

will show all the relevant details. 

Investigator 

Name 
Date Time 

Case 

Name 
Action 

Search 

Id 
Flag Analyses 

Source 

Id 

Shahlaa  10/08/2018 18:28 Case1 Open - - - - 

Shahlaa  10/08/2018 18:30 Case1 Search 3 Work No 1 

Shahlaa  10/08/2018 18:35 Case1 
Metadata 

filtering 
1 Finish Yes 1 

…. …. …. …. … … …. …. …. 

Table 4.8: Actions 

Table 4.8 will be used later by the correlation engine in the log option. The 

objective of using this table in the correlation engine is to allow the investigator to 

return to the previous search or forensic analyses that remained uncompleted 

(analyses or not) to complete unfinished work. 
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4.3.2 Data Acquisition Engine 

The primary duty of the data acquisition engine is to capture a relevant image and 

video files from the various data sources by employing approved methods such 

as FTK, and then carry out multiple phases to store the relevant images only, as 

illustrated in Figure 4.3. These sources include forensic images, physical/ logical 

acquisition, CCTV images, and database and smartphone images, etc. 

 

Figure 4.3: Data Acquisition Engine 

The data acquisition engine contains three main phases to capture the input data 

that will be later analysed by the correlation engine. The first phase of the data 

acquisition engine is source acquisition, which is separated into two levels. The 

first level concerns acquired forensic images (FI) for the case sources. The 

system provides the functions that can deal with physical/logical images, Forensic 

image, databases, CCTV cameras etc. In logical images, the system will acquire 

only the files that are on the drive (no deleted files). For physical images, the 

system will acquire everything, including deleted files and file fragments. In case 

the source type is CCTV or database, the system will provide investigators with 
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multiple filters before the acquisition process such as the time, date, location, file 

format, camera model etc. The aim of these filters is to find interesting files that 

should be acquired and investigated from a large number of files (data reduction), 

thereby reducing the time and the effort spent on the investigation. Thereafter, 

the system will store a copy of the selected data and associated metadata from 

different sources, such as CCTV cameras, mobile phone, digital cameras, etc., 

so it can be examined separately without changing the original data collected. 

Finally, the system will calculate hash values for each FI to ensure the 

preservation of data integrity from any manipulation or change. In addition to 

acquired FI, the system will save all relevant information such as FI location, 

which shows where the FI will be saved or where the FI comes from (CCVT 

location), FI size, date, the acquisition started timestamp, and the finished 

timestamp. The FI of files may contain various file types, compressed files, or 

unallocated files. In the second level of the source acquisition phase, data filtering 

is carried out to find interesting files (image/video files only) that need be 

investigated from a large number of captured files. The system will use image file 

formats such as JPEG, PNG, or GIF etc. and video files formats MOV, AVI, DIVX, 

60D, or MPG etc. and metadata to filter the FI. Some file extensions may be 

changed leads to missing these files. Consequently, there is a need for pre-

processing before data filtering and file signature analysis is used to spot 

suspicious files. In addition to file signature analysis, other pre-processing should 

be carried out including data carving and data compounding. The aim of 

employing data carving is to retrieve important data and evidence from damaged 

or corrupted data sources (Garfinkel, 2007) whereas expanding compound files 

allows for opening email files, compressed files, and system files and collecting 
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all relevant files (Tipa, 2018). The task of pre-processing is dependent on the type 

of resource. For instance, in case the source is the image database, there is no 

need to perform any of pre-processing. After extracting all images and video files, 

the system will calculate hash values for each file. Once the source acquisition 

has captured all images/video files, the data acquisition engine will proceed to the 

image extraction phase and the system will extract video files only in order to 

convert them into images with JPEG format. All videos are converted to images 

by choosing one of the following methods depending on the investigator's choice: 

(1) extracting an image every number of frames; (2) extracting an image every 

number of seconds; (3) taking a total number of frames from the video; finally, 

extracting every single frame. The output from the image extraction phase, which 

involves existing images and images extracted from video files, will be fed to the 

metadata extraction phase, which represents the last phase of the data 

acquisition engine to extract metadata for all images. Metadata represents 

valuable information about the images because it identifies where and when an 

image was taken and the device module that captured the footage. Thereby, it 

assists in improving the analysis and decision-making process, which leads to a 

successful investigation. Image metadata varies in content and format based on 

the image file format, such as JPEG, GIF, PNG or BMP. The exchangeable image 

file format (EXIF) metadata for JPEG format involves date taken, dimensions, 

camera maker, camera model, timestamp, item type, folder path, GPS 

information, and many other important data. The system will choose the part of 

image metadata that is useful for the investigation. The GPS information will be 

converted to latitude and longitude to use it later in the geo tracking procedure 

that uses Google Maps. As long as there is various image evidence that has been 
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captured from different devices, some will have poor quality and will be highly 

variable in size and content. Therefore, image quality is an important criterion in 

image analysis because the reliability of any inspection task is based on the 

quality. Therefore, the image under consideration should be checked first to 

determine whether the image quality is sufficient to allow for a meaningful and 

reliable analysis. For instance, the images captured by CCTV cameras and other 

types of cameras may suffer significantly from noise, poor quality, illumination, 

contrast, or other factors. Consequently, once the metadata extraction phase is 

completed (add new data source) the system will start employing different image 

pre-processing operations on the image to improve the visual appearance of 

features in the image including image resizing, image enhancement, image 

restoration, and other image processing activities. Therefore, this stage focuses 

on steps that enhance image quality and make them more suitable for image 

analysis than their original state (if required). Thus, before the pre-processing 

stage, a copy of the images must be created to ensure the original images are 

always available. Later, the image quality will affect the performance of the AIA 

systems used by the AIA engine, thereby improving image retrieval performance 

later on. Finally, all images and their metadata are saved in the forensic image 

database.  

The forensic image database is used to store all acquired images, in addition to 

their metadata and the source details relevant to the selected case. The general 

structure of the database of the forensic image consists of four tables. Table 4.9 

is used to identify all sources related to each case. 
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Case Reference Source Id 

101 1 

101 2 

102 3 

…. …. 

Table 4.9: Case Sources 

For each case, all information regarding all sources is stored as described in 

Table 4.10. This information will help investigators in the last stage of the 

proposed system regarding generating the final report. In addition, all images are 

extracted from each source and their metadata and other important information, 

such as file location and hash value are stored in Table 4.11. The ‘Image’ field is 

used to save the image as field in database as Binary Large OBject (BLOB) type. 

The hash field is employed to save the hash value that will be used later to prove 

the image’s integrity (the image file has not been altered) while the file location 

field will store the location of the camera if the image is acquired from CCTV or 

the name of the hard drive such as ‘C: \’ if the image is acquired from a computer. 

Metadata information may be different based on image format; therefore, all 

images that have JPEG format have additional metadata that include GPS 

information and camera information, as in Table 4.12. 

Source 

Id 
Type 

Hash 

Value 
Size 

Time 

Stamp1 

Time 

Stamp2 
Location Serial Number 

1 CCTV 82a28…. 152627 
11:23:20 

01/09/2017 

12:23:00 

01/09/2017 
D:/ 

WD-

WCAS2D270613 

2 CCTV …. …. 
11:23:20 

01/10/2017 

12:00:00 

07/010/2017 
…. …. 

3 
Hard 

drive 
…. …. 

10:20:30 

01/11/2017 

11:20:30 

01/11/2017 
…. …. 

4 
iPhone 

6 Plus 
…. …. 

07:00:00 

15/10/2017 

15:00:00 

15/10/2017 
…. …. 

…. …. …. …. …. …. …. …. 

Table 4.10: Source Information 
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Source 

Id 

Image 

Id 
Image Name Image 

Date 

Created 
Time Size 

File 

Format 

File 

Location 
Hash 

1 1 IMG_1837.JPG BLOB 2016:01:15 12:23:50 
734 

KB 
JPEG PL3 5SH 97b… 

1 2 IMG_101.JPG BLOB 2016:01:15 13:57:26 
500 

KB 
JPEG …. 73e… 

1 3 IMG_102.JPG BLOB 2016:01:15 13:58:26 
320 

KB 
JPEG …. …. 

…. …. …. …. …. …. …. …. …. …. 

2 4 IMG_2277.GIF BLOB 2015:05:04 14:25:57 
450 

KB 
GIF C:\ …. 

2 5 IMG_2281.PNG BLOB 2015:05:04 14:27:32 
200 

KB 
PNG …. …. 

…. …. …. …. …. …. …. …. …. …. 

Table 4.11: Image Information 

Image 

Id 
Latitude Longitude 

Camera 

Maker 

Camera 

Model 

Author 

1 50.3753277778 -4.13706111111 iPhone 6 Plus …. 

2 50.3747138889 -4.14203888889 iPhone 6 Plus …. 

3 50.3747138889 -4.14203888889 iPhone 6 Plus ….. 

…. …. …. …. …. ….. 

Table 4.12: JPEG Metadata 

4.3.3 Automatic Image Annotation Engine 

The automatic image annotation (AIA) engine’s primary function is to generate 

annotations for each image in the forensic image database automatically to 

describe the visual content of the image as demonstrated in Figure 4.4. 

Annotations could be considered as the best way to help investigators retrieve all 

images that include the requested evidence, especially in cases when there is no 

eventuality of finding a query image. The AIA engine is achieved by using the 

forensic image database and multiple AIA systems. 
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Figure 4.4: AIA Engine 

The proposed system suggests using a multi-algorithmic approach as mentioned 

in Chapter 3. Sometimes, an image includes a label or text in its content, such as 

a name, a car registration number, or a personal address, which may be 

considered as private information. Thus, the privacy phase will be employed to 

reveal whether the image includes any private information and, if so, the image 

will be stored in a separate list so it can be addressed on its own. The images 

stored in the separate list will be tackled separately by hiding important 

information using a mask and then sending them to external AIA systems or by 

sending them to a private AIA system. If there is no significant information inside 

the image, the image will be sent to multiple AIA systems to find different 

annotations that will be fused to find the final annotation as aforementioned in 

Chapter 3.  

To find full information of the images starting with the cases that belong to them 

and ending with metadata, the AIA engine will use the forensic images database. 

The process evidence database will be used to store the images, metadata, and 
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their annotations that will later be used to reveal the requested artefacts (images 

that have clues in their contents). 

All annotations that are extracted for each image will be stored in the image 

annotation table (as illustrated in Table 4.13) in the process evidence database; 

however, each word will be represented by the identification number (Word id) 

connected with the word table (Table 4.14) in order to exclude repetition. The 

word table will store a list of all words used to annotate all images.  

Source Id Image Id Word Id Score 

1 1 1 124.68 

1 1 2 110.08 

1 1 3 109 

…. …. …. …. 

1 2 1 320.13 

1 2 3 284.47 

…. ……. ……. ……. 

Table 4.13: Image Annotations 

Word Id Word 

1 stone 

2 grass 

3 sky 

…. …. 

Table 4.14: Words 

The process evidence database is used to store the annotations associated with 

the extracted artefacts and their probability scores in order to find links between 

different images through text query. It also stores images and their metadata. All 

this information will help reduce the search domain and facilitate the forensic 

analysis stage. Subsequently, this database will be used by the correlation engine 

to detect interesting images that contain evidence. 
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4.3.4 Correlation Engine 

The correlation engine (as demonstrated in Figure 4.5) plays a primary role 

among the other engines within the Object-based Multimedia Forensic Analysis 

system through the search and forensic analysis processes. This engine is fed 

with the required images, metadata, and annotations as basic input from the 

process evidence database. The aims of the correlation engine are: 

1. To make the search process less daunting and time-consuming. It will 

also improve the search results by finding relationships between 

images, especially when the images are extremely large for manual 

analysis. Therefore, it will assist investigators in finding relevant pieces 

of evidence.  

2. To enable the investigator to ask higher-level and more abstract 

questions of the data then find answers to the essential questions in 

the investigation: what, who, why, how, when, and where. This will help 

in constructing the crime scene and understanding the relationship 

between evidence from the same source or different sources.  

3. Rather than looking through hundreds, possibly thousands of images, 

investigators would be given a small number of images of the specific 

content and metadata through object recognition, text similarity and 

metadata, etc. 

4. To help to demonstrate the presence or absence of a relationship 

between images. If there is no relationship when using a selected 

approach (e.g. using metadata), the correlation engine provides 

another approach such as text similarity or geo tracking that could take 

place and show further results.  
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The recursive process will continue until the results are acceptable. This will 

assist investigators with finding relevant pieces of evidence from a large number 

of retrieved images. 

 

Figure 4.5: Correlation Engine 

The correlation engine includes two main phases: a search phase and a forensic 

analysis phase. The search phase connects with the process evidence database, 

which has images, annotations, and metadata. The goal of the search phase is 

to find similarities between images based on text query, which includes single or 

multiple words or based on metadata filters. The engine has the ability to combine 

between text query and metadata filters. The system will use the text query to 

search the process evidence database and find all images that contain text query 

in their annotations. The text query can have one word or more connected by 

‘and’ or ’or’. The words are connected by ‘and’ if the investigator needs to find all 

the words in each image while ‘or’ is used if any word from the text query in the 
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image annotations is fine to retrieve the image. In addition, the system also uses 

the probability value related to each annotation to filter the retrieved images. The 

investigator can select ‘All Scores’ or specify the probability value ‘Greater Than’; 

for example, the value of test text is ‘sand’ the first option retrieves all images that 

content the ‘sand’ in their  annotations regarding the confidence values. In the 

second option (‘Greater Than’), all images that contain ‘sand’ in their content and 

the proportion or presence of ‘sand’ in the image is greater than ‘350’ (the ‘sand’ 

word has been used by all systems to label the image and the confidence score 

as average was 85 for each system). This means all retrieved images should 

contain sand because the inserted probability score is high. By inserting more 

than one word in the text query, the system will find the total scores for all words 

included in the text query for each retrieved image, and then rank the images 

based on the total scores in descending order. The search phase provides the 

investigator with multiple choices of search filters and the ability to select more 

than one. When selecting any filter, the system will provide a menu or text box to 

select or insert the filter value. The system will be able to filter the retrieved results 

based on a combination of multiple filters, as shown in Figure 4.6. After retrieving 

the requested images based on text query, search filters, or using both, the 

investigator can specify the number of images that need to be displayed. The 

system provides three choices to specify the number of display images, including 

all images, the first ten images, or the investigator could specify the number of 

images that need to be displayed. In addition to these three choices, the 

investigator has the ability to not specify the number of images displayed and 

work depend on the number determined in the system’s global settings. 
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Figure 4.6: Search Phase (Text Query and Filters) 

Once the search determinations are completed, the images will be displayed 

depending on their probability scores and then stored in the process evidence 

database. The objective of storing the results in the process evidence database 

is to use the results in the next phase. The engine will provide the ability to 

indicate if the displayed results have been analysed by the investigator or not in 

order to return to it later. All search details will be saved, as in Table 4.15. 

The search information table (Table 4.15), which contains eight fields that store 

all information that describes the search process, such as ‘Source Id’, which 

specifies which source data has been used in the search process, ‘Search Id’, 

‘Case Reference’, Date’, ‘Time’, ‘Word Id’, ‘Score’, and ‘Confirm’. In addition, 

Table 4.16 stores the filtered details that were supplied by the investigator in order 

to view the search results, and the results from the search process are stored as 

in Table 4.17. 

Source 

Id 

Search 

Id 

Case 

Reference 
Date Time 

Word 

Id 
Score Confirm 

1 1 101 15/05/17 10:00:00 1 all Finish 

1 1 101 15/05/17 10:00:00 3 90 Finish 

1 2 102 22/06/17 11:00:00 2 80 Work 

…. …. …. ….  …. …. …. 

Table 4.15: Search Information 
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Search Id Filter Name Filter value 

1 Source C: 

1 File format jpg 

2 Image size 
Greater than 

759 KB 

…. …… …. 

Table 4.16: Search Filters 

Search Id Image Id 

1 1 

1 10 

1 11 

…. …. 

2 20 

….. …. 

Table 4.17: Search Results 

After saving all results with their details (Table 4.15, Table 4.16, and Table 4.17), 

the engine will provide the investigator with the bookmark function. In the 

bookmark process, the investigator could select interesting images from the 

search results or select all search results representing useful information that will 

be used later in the reporting engine. The selected images will be stored in     

Table 4.18, which has ten fields: a ‘Case Reference’ field for storing the case 

number, a ‘Investigator Name’ field that stores the name of the investigator who 

selected interesting images and saved them as a bookmark, followed by the next 

eight fields (i.e., ‘Date’, ‘Time’, ‘Bookmark Id’, ‘Bookmark Name’, ‘Bookmark 

Comment’, ‘File Comment’, ‘Search Id’, and ‘Action’) to store the bookmark 

details. The ‘Search Id’ field is used to indicate from which search process the 

images were selected while the ‘Action’ field illustrates the process name that has 

been carried out to display the images, thereafter selecting the interesting 

images. Table 4.19 stores the images that are relevant to each ‘Bookmark Id’ filed 

in Table 4.18. 
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Case 

Reference 

Investigator 

Name 
Date Time 

Bookmark 

Id 

Bookmark 

Name 

Bookmark 

comment 

File 

Comment 

Search 

Id 
Action 

101 Nathan 27/07/2018 02:00:08 14 …. …. …. 1 Search 

101 Nathan 27/07/2018 02:06:25 15 …. …. …. 1 
Metadata 
Filtering 

102 Shahlaa 
30/07/2018 

 

11:48:56 

 
17 …. …. …. 2 Search 

…. …. …. …. …. …. …. …. ….. … 

Table 4.18: Bookmarks 

Bookmark Id Image Id 

14 1 

14 2 

…. …. 

15 7 

15 4 

…. …. 

17 18 

17 34 

…. …. 

Table 4.19: Bookmark Images 

The engine records the search process with all the relevant details in the actions 

table (Table 4.8) so as to return to the results later. The investigator could 

complete the correlation process to find the requested evidence by working on 

the last search results or by selecting any prior search or forensic analysis from 

the actions table.  

After image selection, which will be correlated by using the forensic analysis 

phase, the engine introduces main four options that include different forensic 

analysis options and an optional option. These four options have various types of 

image comparison approaches that match between images depending on image 

features, text, GPS information, or metadata. For instance, rather than merely 



 

154 

 

asking for all images with a car in them, the investigator could ask to track a 

specific car, with the underlying image sources, geo-location, and timestamps to 

provide a probabilistic set of results. 

In the forensic analyses phase, the engine will correlate between the retrieved 

images (last search or prior search/forensic analyses) through finding the 

relationships that connect between images by using multiple approaches. The 

reasons for employing multiple approaches are: (1) the inability to rely on 

metadata, such as EXIF data because it can be unavailable in all images, easily 

manipulated, or unable to determine the type of device used to capture the 

images; (2) the query image may be unavailable in some cases; (3) the query 

may not be image but text inside the image or logo etc.; (4) the query may be 

shoeprints or tyre marks that need to matching between images pixel by pixel; 

finally, finding evidence in some cases may be based on the location where the 

image has been captured. Moreover, these approaches will enable the 

investigator to correlate between relevant images based on which analysis would 

be most appropriate for types of evidence requests. This will help reduce the 

search domain, find the requested evidence in a short time, and show the 

relationship between images to draw a complete picture of the crime. It can also 

be helpful in solving criminal cases such as kidnappings and runaway youths to 

drug trafficking and homicides. Different forensic analysis approaches will be 

employed to correlate between images, including: 

 Metadata Filtering: Using metadata provides useful information that can 

help investigators to determine the exact location of a photo that was 

captured or obtain information about the device holder from the model or 

the serial number collected in the photo’s metadata, in addition to using 
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date and time to identify where and when the image was taken. Therefore, 

forensic investigators can track down suspects based on metadata. The 

correlation engine will refine the retrieved images by excluding all 

irrelevant images based on image metadata, as identified by the 

investigator, to facilitate the process of selecting the target images.  

 Object Recognition: The correlation engine uses the object recognition 

approach to find, from a query image, identical or similar images in the 

chosen data as shown in Figure 4.7. For instance, a comparison between 

vehicles depicted in surveillance images with images recovered in an 

investigation. The similarity between images depends on object 

recognition, shape, or colour. This means it depends on the content of an 

image rather than on textual information. The system provides the 

investigator with two methods of selecting an image supplied to the system 

to return all images that have features similar to those of the supplied 

image.  The first method is selecting the image from search results while 

the second method is choosing the image from any drive on the computer. 

The system will first create a descriptor in terms of colour, shape, texture, 

and many higher-order visual features of the query image and all selected 

images that need to be compared, then store the descriptors in the case 

cache database, which includes images with descriptors. The case cache 

database represents a temporary database because its contents will be 

deleted after finding valuable evidence. In the similarity comparison step, 

the object recognition approach will match descriptors of the query image 

and other images descriptors from the database to find similar images. 

Once the similarity comparison has been done, all related images will be 
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queried and retrieved. Finally, the results of the retrieval will be stored 

along with all relevant details such as investigator name, query image, 

date, etc. in the case evidence database, and then display the results 

based on the degree of matches.  

 

Figure 4.7: Object Recognition Approach 

 Text Recognition: some images contain valuable information, such as car 

plate number, phone number, serial number, street signs, traffic signs, or 

chatting text that could help solve the crime. The system will detect and 

extract all texts that exist in the last search results or previous 

search/forensic analysis results to select the required text. The system 

also provides the investigator with the ability to insert the required text, as 

shown in Figure 4.8. After that, the comparison process will be carried out 

between query text and texts of selected data. Finally, all images that 
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contain the same query text or part of the text are retrieved. The 

comparison is then carried out by matching the entire extracted string or 

the individual words based on the investigator’s selection. 

  

Figure 4.8: Text Recognition Approach 

 Geo Tracking: from a forensic point of view, the location data (possibly 

from GPS coordinates) are valuable because it gives an overview of the 

last locations of a suspect or provides an accurate movement profile of a 

person. The geo tracking approach will provide an overview of what 

directions a person/object used and specify their whereabouts. The basic 

purpose of the geo tracking approach is to track a specific target vehicle or 

other objects through locating and viewing the images on Google Maps 

based on GPS information and then finding the paths between images and 

following the correct paths and thoroughly investigating. The system 

provides different Google Maps API functionalities, such as showing 

directions, showing flags, or showing images on Google Maps.  In addition, 



 

158 

 

the system not only deals with GPS information of images, but also will be 

able to show the location of CCTV cameras or other sources. 

In addition to the aforementioned forensic analysis options, the engine provides 

the ability to add a new analysis to obtain the desired evidence, such as sketch-

based image retrieval, person re-identification (ReID), and photogrammetry, etc. 

The process evidence database is used to store the search results and the 

forensic analyses results. The search results come from employing search 

processes based on annotations and multiple filters while forensic analysis 

results are produced based on which forensic analysis approach was employed 

to correlate between selected images. Before displaying the results of any 

selected forensic analysis approach, the results will be stored in the process 

evidence database (Table 4.20 and Table 4.21). Table 4.20 stores all details 

related to forensic analysis, such as the name of the forensic analysis approach 

and query type used in the correlation process etc., while the retrieved images 

will be stored in Table 4.21. After that, the correlation engine will provide the 

investigator with the bookmark option in order to create a new bookmark and the 

system will permit the investigator to select all or part of the results. In the case 

of using the geo tracking approach, the system will store a screenshot of Google 

Maps. In addition, the system will record this action in Table 4.8 in order to have 

a full vision of every action that has been carried out on the selected case. 
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ID 
Search 

Id 

Forensic 

Analysis 
Query Value Date Time 

1 1 Object IMG_2281.JPG 06/08/2018 10:06:58 

2 1 Text google 18/07/2018 10:43:05 

3 1 GPS 

50.3849361111, -

4.15124444444,50.3753277778, -

4.13706111111 

07/08/2018 07:15:28 

4 2 Metadata 28/10/2016,12:23:50,Apple,iPhone 6 Plus 13/08/2018 01:40:57 

…. …. …. …. … …. 

Table 4.20: Forensic Analyses Information 

ID Image Id 

1 1 

1 10 

…. …. 

2 20 

2 4 

…. ….. 

Table 4.21: Forensic Analyses Results 

The last database is the case evidence database, which stores definitive images 

bookmarked by the investigator. The data stored in the bookmark table           

(Table 4.18) represents the end of the analysis process and will be used by the 

reporting stage. 

4.3.5 Visualization Engine  

Data visualization is the process of presentation data in a pictorial or graphical 

format in order to make the information easy to understand and easy to be 

continued on. It presents data generated from different sources effectively. This 

enables decision-makers to see and understand the analytics in visual form and 

makes it easy for them to make sense of the data (Castellano, 2014). Therefore, 

the key role of the visualisation engine is to show the links between artefacts 
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(images) to get a complete picture of the overall crime scene. Moreover, the 

visualisation engine enables investigators to see analytics presented visually and 

assists him in understanding complex concepts. The engine is responsible for 

displaying the retrieved images from any phase of the correlation engine. The 

images are viewed based on their annotations, metadata or image content 

(object, text). Different styles such as Google Maps, lists, or 3D network graphs 

are employed to present the results (as shown in Figure 4.9). When the list style 

is used to visualise the retrieved images, the engine allows the investigator to 

select any of the retrieved images that were found interesting in order to store 

them as bookmarks. 

List 
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Google Maps 

 

Source:(Faure, 2016) 

3D Network Graphs 

 

Source: (Holtz, 2019) 

Figure 4.9: Examples of Visualization Styles 

4.3.6 Reporting  

Creating the report is the last stage of digital forensic investigation. The work 

performed in all previous engines is documented and presented during the 

reporting engine, which represents the last engine in the proposed system. The 

engine creates the final report that contains the requested results. The report 

includes case information such as the case reference, case name, date of 
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creation, and time etc., as well as information on investigators who are 

responsible for the selected case and the evidence list, which may contain a 

number of evidence items. Each item of evidence includes a group of images and 

the details that explain how these images are extracted (search details or forensic 

analyses details). The information of each evidence item will be retrieved from 

the bookmark table (Table 4.18) connected to other tables. The investigator will 

be able to select which data need to be reported from the case evidence database 

(bookmark table). 

4.4 Workflow System Design Based on OM-FAT Architecture  

Having introduced the main components of the OM-FAT system architecture, the 

OM-FAT system workflow is shown in Figure 4.10. All the OM-FAT system 

components are connected, providing the ability to navigate between system 

processes easily. The work on the system starts when the investigator has logged 

in to the system. Once the login is successful, the system will automatically direct 

the investigator to the dashboard interface. The dashboard interface represents 

the case management engine and consists of seven main processes that include 

‘Account Management’, ‘Global Settings’, ‘Add New Case’, ‘Edit Case 

Information’, ‘Open Case’, ‘Archive Case’, and ‘Case History’. Each process is 

carried out through an interface, and each interface may direct the investigator to 

another interface because some processes may include a sequence of actions. 
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Figure 4.10: OM-FAT Workflow 

Every investigator has a specific task to conduct based on his privileges. Thus, in 

the dashboard interface, the privileges given to the investigator to specify which 

process can be performed will be checked. For instance, the system admin has 

full system access. After checking the investigator’s permissions, the system will 

direct him to a new interface based on the selected process. 

The purpose of the Account Management interface is to manage the investigators 

that work on the system and specify their roles in order to achieve authentication, 

authorisation, and accountability (AAA) aspects. This interface contains three 

processes: (1) add new investigator; (2) set privileges; and (3) edit investigator 

information. The admin can add a new investigator to the system with a specific 

role, update the list of privileges, update the investigator’s details, and also can 

delete the investigator from the system. 
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Regarding the global settings interface, it includes different types of settings such 

as session time out and mapping API that permit to the administrator to change 

these settings depending on work requirements and then confirm these changes 

to implement them on the all system’s parts.  

The new case process is concerned with creating a new case, saving it in the 

system database, then adding all sources relevant to the case. Once the sources 

are added, the system will provide the investigator with the ‘analyse acquired 

images’ process, which stores the images, metadata, and annotations in the 

system database. After that, the list of pre-processing tasks will carry out to 

enhance the acquired images and calculate hash values for each one. 

The fourth process that exists in the dashboard interface is ‘edit case information’, 

which enables the investigator to edit the case details and store the updated 

information in the database. 

 When the case is created and all images are stored in the system database, the 

case dashboard interface will open by choosing open case process from the 

dashboard interface to find the set of evidence required to solve the crime from 

all acquired images. The case dashboard handles the process of extracting the 

evidence from a large number of images through employing different image 

comparison methods that can find the relationships between images and reduce 

the search domain.  Once the investigator finds the desired evidence, the system 

will provide the ability to bookmark the set of evidence as bookmark data and will 

record all investigator interactions in the system environment. The OM-FAT 

workflow does not depend on the single investigator to complete the whole 

investigation process because it provides the ability to complete the work by the 
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same investigator or by another investigator using log information that stores all 

actions and their details. The final process in the case dashboard interface is the 

reporting process, which is responsible for creating the report including the crucial 

evidence with the details explaining how this evidence is extracted and when, in 

addition to the investigator responsible for finding the evidence. 

In addition, the dashboard uses the archive process to transfer the case to 

another place in the system database when there is no need to act on the case. 

The case history is the last process in the dashboard interface responsible for 

displaying the history of the case, including all actions and their details performed 

on the case. 

The system will use the system database as shown in Figure 4.11 to illustrate an 

overall view of the database tables that explain the above and the relations 

between them. The system database schema diagram shows only the major 

tables in the system database to facilitate understanding of the diagram. 
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Figure 4.11: System Database Schema Diagram 
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4.5  Conclusion 

The proposed novel framework for the Object-based Multimedia Forensic 

Analysis Tool (full case management tool) has addressed the requirements of 

image analysis in digital forensics. The novel OM-FAT system has been designed 

to deal with various image content collected from different sources by using a 

combination of image content analysis techniques that permit obtaining more 

accurate results. Therefore, this tool is designed to use the multi-algorithmic 

approach that collects different annotations for the same image from multiple AIA 

systems to increase the accuracy of annotations and allow for using different 

words to retrieve the same object. By employing various image analysis 

techniques for correlating between images based on the type of evidence, the 

retrieving process will be more accurate and efficient. Thereby, the investigator 

can select the analysis style for comparing images based on crime requirements. 

Further, multiple visual forms are used to view the results in order to show the 

relevant images. By using permissions for each investigator, the framework can 

control who can access certain areas of the system and the actions they can 

perform to maintain the chain of custody. The system architecture enables all 

investigative processes to be integrated and managed within one system. Thus, 

a complete case can be tracked starting from the acquisition passing through 

analysis and ending with the reporting process. 
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5 OM-FAT Prototype Implementation 

5.1 Introduction 

This chapter reflects how the OM-FAT prototype would integrate the 

aforementioned functionalities of the OM-FAT tool and how this would help digital 

investigators to find the pieces of evidence between a large number of images 

starting from the acquisition stage and ending in the reporting stage using less 

effort and less time. It will also illustrate the prototype development environment 

to explain how design and development are implemented; the website 

development environment was divided into front-end and back-end in Section 5.2. 

The website was used rather than a standalone application because it meets the 

system requirement. In addition, the chapter will discuss all functions that exist in 

each page of the prototype pages via screenshots to illustrate how the OM-FAT 

architecture would work in practice. The dummy data are used to build a scenario 

that illustrates the ability of the prototype to retrieve the demanded images and 

reduce the retrieval domain and met investigator requirements. 

5.2 Development Environment 

The prototype was developed not to be a complete operational prototype or to 

implement a full commercial operational system but to provide sufficient 

functionality to address the research questions. The prototype was implemented 

as a web-based tool to meet system requirements. The development environment 

of the OM-FAT is designed and developed from scratch. The prototype design 

starts from determining the page layout using storyboarding to explain how the 

website could work and illustrating all actions existing in each page to provide an 

early review of the system’s pages and aware of how the investigator transmits 
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between pages. At the first, ASP.Net Web Application had been used for 

developing the web site, however, it did not meet the project requirements such 

as responsive structures and styles. This process took more than two months 

because the author does not has any background in web developing. After that, 

the author looking for the new front end framework which is bootstrap is 

represented as one of the top front-end frameworks (Patel, 2017). Bootstrap is an 

HTML, CSS and JavaScript framework used for developing responsive (12-

column grids, layouts and components) and mobile-first projects on the web.  

Another challenge was all the web site pages are connected with the database 

that contains multiple tables (front-end and back-end development). In addition 

to the front-end website developing, the author should develop the back-end 

because the web-based pages connect with the database. The learning of all 

these languages has been taken time, especially the connection between 

JavaScript in the front-end and the C# in the back-end. All these made the 

prototype development taken a large body of work.  

The website is implemented by dividing the work into two parts: the front-end and 

back-end as illustrated in Figure 5.1. 
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Figure 5.1: OM-FAT Development Environment 

1. Front-End: the front-end represents the “client side” of development 

that is responsible for the look, feel, and the design of the OM-FAT site, 

which composed of a set of web pages. HTML (Hyper Text Markup 

Language), CSS (Cascading Style Sheets), JavaScript, and jQuery 

have been used to develop the OM-FAT. All these languages are used 

under Bootstrap, which is a free and open-source front-end framework 

for designing websites and web applications 

2. Back-End: the back-end refers to the “server side” of development, 

which is primarily focused on how the site works, making updates and 

changes in addition to monitoring the site’s functionality. The code is 

written by C#.NET in the back-end, which communicates the database 

information to the browser. MySQL Workbench is employed as a 

database management system. 
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5.3 OM-FAT Prototype Implementation 

In order to show the capability and usability of the OM-FAT prototype and show 

how the investigators will interact with the system in accomplishing key 

objectives, the criminal case of child abduction will be examined to show the 

viability of the OM-FAT system: 

In order to solve the child abduction case, an investigator starts by collecting all 

preliminary evidence that may help to find the child as fast as possible, such as 

narrowing the time frame of abduction, examining the properties of a car that a 

witness believes was involved in the abduction, and determining the location of 

the abduction. Then, all CCTV cameras footage from the crime scene and nearby 

areas will be collected. Based on the collected information, the investigator 

decides to analyse the images existing on CCTV recorded videos, which will 

assist in finding any valuable information that could be extracted to find the child 

or the suspect. After collecting all preliminary evidence, the investigator starts 

using the OM-FAT as follows: 

5.4 Login   

When the investigator starts using the OM-FAT prototype, the login page, which 

represents the primary starting point of the OM-FAT prototype’s user page, is 

prompted asking him/her to set a username and password (as shown in         

Figure 5.2). At the login page, the investigator must input the username and 

password then press the ‘Login’ button to send the details to the database to 

check their validity. The login action will be recorded in the system database with 

the login details, such as the date and time. 
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Figure 5.2: OM-FAT Login Page 

5.5 Dashboard  

Once the investigator has logged in, the system will automatically direct him/her 

to the dashboard page, as shown in Figure 5.3. The dashboard page represents 

a mediator that connects the investigator to the underlying processes that help 

with managing the whole system. It was developed to have six main functions 

that come under ‘Add New Case’,  ‘Edit Case Information’, ‘Open Case’, ‘Case 

History’, ‘Account Management’ and ‘Global Setting’, which are discussed in 

subsections 5.5.1, 5.5.2, 5.5.3., 5.5.4, 5.5.5, and 5.5.6 below. Some functions 

could be implemented in the dashboard page and the remainder in other pages. 

Each investigator has specific tasks to conduct based on his/her privileges as 

specified in the system.  
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On the left-hand side of the dashboard page, there are multiple headings; each 

has several options. For example, case management includes four options: ‘New 

Case’, ‘Case Sources’, ‘Case Dashboard’, and ‘Case History’. When an option is 

clicked, the system will move to the selected option page.  

 

Figure 5.3: Dashboard Page 

5.5.1 Add New Case 

After collecting all preliminary evidence, the investigator starts creating the case 

and adding all resources (CCTV recorded videos) with their details. Adding a new 

case is a functionality provided by the dashboard page through clicking on the 

‘New Case’ option in the case management heading on the left-hand side. To add 

a new case, the investigator must insert the mandatory information including the 

case number, case name, case date, investigators’ names, and all relevant 

details, which will be fed to the system database by clicking the ‘Confirm’ button 

as depicted in Figure 5.4. 
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Figure 5.4: Adding New Case 

The next stage after adding the new case is to add a forensic image that is related 

to the case from the resources that come with it, as shown in Figure 5.5. To add 

a new resource (forensic image), the investigator must complete the fields which 

include the reference, source type, source selection, image location, size, 

acquisition started, and acquisition finished information fields. The system will 

display the Filter CCTV/ Database Data page as shown in Figure 5.6, when the 

investigator selects the source type value is ‘CCTV’ or ‘database’. The aim of this 

page is to filter the data that needs to be acquired from CCTV or a database (huge 

data) to reduce the time and effort needed to analyse the acquired data and 

improve the investigation process. After confirming the filter values (Figure 5.6), 

the system will go back to the Add New Data Source (Evidence) page to complete 

the process of adding the new data source before the ‘Confirm’ button is clicked. 
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The Add New Data Source process will be recorded in the system with all relevant 

details such as the name of the investigator who did this process, the date and 

time of adding the new data source, and the source type. 

 

Figure 5.5: Adding New Data Source 



 

176 

 

 

Figure 5.6: Filter CCTV/Database Data 

Clicking on the ‘Analyses’ button leads to displaying a list of processes that will 

be implemented in the back-end for the acquired data. The investigator can select 

all or part of the processes from the list and then press on the ‘Click’ button to 

hide the list and perform the selected processes. Further, the ‘Analyses’ button is 

also responsible for sending all extracted images to the commercial computer 

vision API systems in order to extract annotations for each image through fusing 

the annotation results by using the multi-algorithmic approach and then saving 

the results in the system database in order to use it later in the search process. 

The system will save all images that meet the investigator’s specifications, such 

as date, time, location, and size etc. After that, the system will carry out the 

selected pre-processing based on the investigator’s selections and store the 

images in the system database with their details. In addition, by generating 
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annotations for each image and storing them in the database through using the 

multi-algorithmic approach, the investigator will be able to select the objects of 

interest— in this case, the car that she got the child into. 

5.5.2 Editing Case Information 

The investigator can edit the case details when some details are changed through 

the investigation process. This is by clicking the edit icon beside each of the cases 

in the active case list and this will change the fields to textboxes in order to edit 

the case details, as illustrated in Figure 5.7. After changing the selected case 

details, the system permits the investigator to store all changes by pressing the 

‘Update’ button or cancelling the editing process by pressing the ‘Cancel’ button.  

 

Figure 5.7: Edit Case Details 

In addition to updating the case details, the dashboard allows for listing all 

resources relevant to the selected case by clicking the case resources option that 

exists in the case management heading on the left-hand side. The case resources 
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page (as depicted in Figure 5.8) provides investigators with the list of all resources 

relevant to the required case when selecting the case reference. In addition, this 

page has been designed to enable investigators to edit the resource details, store 

the updated details, and allow the backup of any resource. 

 

Figure 5.8: Case Resources 

5.5.3 Open Case 

In order to start analysis stage and find the evidence starting from the car that a 

witness believes was involved in the abduction), the investigator presses ‘open 

case’ button for the case in the active cases list. When this button is clicked, the 

case dashboard page will be opened. The case dashboard page contains eight 

tabs, which are ‘Log’, ‘Search’, ‘Metadata Filtering’, ‘Object Matching’, ‘Text 

Similarity’, ‘Geo Tracking’, ‘Bookmark’, and ‘Reporting’. These tabs permit 

investigators to carry out different levels of analysis, list the bookmark results, and 

print the report. The case dashboard page allows the investigator to work on the 

tabs non-sequentially. It was also designed and developed in such a way that it 

can present the images of each tab visually. The prototype employs the list and 

Google Maps to achieve the visual representation of the images. Nevertheless, it 
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must be noted that the name of the investigator who opened the case and the 

case name are transferred to the case dashboard page so they can be used in 

recording all actions that will be carried out on the case in this page.  

5.5.3.1  Search Tab 

In the first step of investigation, the investigator uses the search tab that is 

considered as the major tab of the case dashboard page (as shown in Figure 5.9) 

because it represents the first stage of the analysis process. All tabs will depend 

on the results obtained from the search tab before carrying out any forensic 

analyses, including metadata filtering, object matching, and text similarity. The 

investigator can start a new search without having to pass through the log tab and 

work on all images in the database. In addition, he/she could work on a previously 

selected search (selected from the log tab as shown in Figure 5.17). 
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Figure 5.9: Search Tab 

This tab is divided into three panels: Search Query, Results, and Create New 

Bookmark. The search process depends on the test text. The system allows the 

investigator to write more than one word, delimit words by the comma in the test 

text box, and combine between the words via and/or. The investigator insert ‘car’ 

in order to retrieve all images that have car in their content. The system also 

provides investigators with two options: all scores and greater than to specify the 
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score value in a confidence score panel to refine the search results. In the first 

option, the system retrieves all images that have the query text in their 

annotations regardless of the confidence score value. In the second option, the 

system will retrieve all images that contain query text in their annotations and the 

confidence score of each word in the query text is greater than the inserted value. 

In addition, the investigator can use one or more search filters to reduce the 

search domain and find the requested images precisely. The search filter panel 

was designed with five types of filter options in mind: images source, date, time, 

file format, and image size. ‘Image Sources’ provides investigators with a list of 

all resources that related to the selected case. The ‘date’ and ‘time’ filter options 

allow investigators to select the date and time of photos they want to retrieve. The 

date and time dropdown lists contain the dates and times of all images (new 

search) or selected images (previous search). The investigator can also 

determine the format and size of the requested images. 

The investigator can specify the number of images listed by using one of the 

options in the ‘No. of Images’ panel or using the number of displayed images 

specified in the system global settings. After specifying all details of the search 

query, the investigator clicks on the ‘Retrieve’ button to retrieve all images that 

met all search conditions (133 images). The ‘Reset’ button is used to restore all 

search condition values to their original value. 

To facilitate reviewing the retrieved images in the results panel, the ‘-‘ button on 

the left-hand side of the search query panel is used to hide the search query panel 

and place the results panel as a first panel (the button name will be changed from 

‘-’ to ‘+’). The investigator can display the search query panel again by clicking on 

the ‘+’ button.  
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All retrieved images will be presented in the results panel. Right-clicking on any 

image will show a menu that includes two choices; ‘Object Matching’ and ‘Text 

Similarity’. When investigators select the first option, ‘Object Matching’, the 

system will hide the search tab and show the object matching tab and put the 

selected image as a query image. By selecting ‘Text Similarity’, the system will 

hide the search tab, show the text similarity tab, extract all text included in the 

selected image, and show it in the search text as will be explained later.  

All details documenting the search process and the retrieved images will be saved 

in the system database. The investigator could indicate if the results (images) are 

analysed or not by clicking on the button under the results panel. The default 

value of the button is ‘No’. The aim of this button is to clarify if the results are 

reviewed in order to return to the results and analyse later. 

The third part of the search tab is for creating a new bookmark panel. The 

investigator has two options to select the desired images from the results. Either 

pressing on ‘Select All’ to select all images or selecting images individually to 

save them as a bookmark. After that, the investigator should insert the bookmark 

details (bookmark name and bookmark comment) and then click on the ‘Upload’ 

button to list all selected images in the ‘Item Selected’ list. Finally, they must click 

on the ‘Bookmark’ button to save all bookmark details such as case name, 

investigator name, bookmark name, date, and time etc. The bookmarked images 

will be used later in the report tab. 

When the investigator clicks on any image listed in the results panel, the system 

will display the images, as shown in Figure 5.10. By pressing on the side arrows 

(left/right), the investigator can pursue the previous/next images. 
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Figure 5.10: Browsing the Retrieved Images 

Before using the Metadata Filtering, Object Matching, Text Similarity, or Geo 

Tracking tabs to reduce the search domain, the investigator should determine the 

data (images) that need to be compared. The data can be specified in two ways: 

1. The last search result that was recorded as the latest action (there is no 

need to select). 

2. Selecting the data from the actions list, as displayed in the log tab.  

The functionalities of the results and great new bookmark panels in the Metadata 

Filtering, Object Matching, and Text Similarity tabs are the same as the results 

and the great new bookmark panels’ functionalities in the Search tab.  

5.5.3.2  Data Filtering Tab 

In order to refine the retrieval images (133 images), the system will use the 

metadata (time, location, and date of the abduction) in order to reduce the number 
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of retrieval results. The investigator will be able to target images (the suspect's 

car) from the retrieval results, and the system will provide further correlation and 

analysis functions that will enable the target car to be tracked across the different 

evidence sources. 

Before using the metadata filtering tab (Figure 5.11), investigators should specify 

which data (images) need to be filtered. The functionality of the metadata filtering 

tab is to refine images that have been retrieved by the search tab (the last search) 

or by another tab, thereby retrieving relevant images only. This tab consists of 

three panels: Metadata Filters, Results, and Create New Bookmark. The top 

panel is a metadata filters panel that contains multiple filters: date, time, camera 

model, camera maker, latitude and longitude. These filters can be used to refine 

the selected data. The system will fill all dropdown lists (Date, Time, Camera 

Maker, and Camera Model) based on the selected images’ metadata; for 

instance, the date dropdown list will contain all date values that are relevant for 

the selected images after arranging them in ascending order. Using the dropdown 

list to select requested values of the filter will facilitate the selection process and 

exclude inserting a wrong value. The metadata filtering panel has two buttons: 

‘Retrieve’ and ‘Reset’. Clicking on the ‘Retrieve’, button the system will search the 

database (selected images) and retrieve all images whose metadata values 

match the filter values. Clicking on the ‘Reset’ button leads to restoring all filter 

values to the original. This tab assists to reduce the number of retrieved images 

from 133 to 18 that help the investigator to find the required images in a short time 

and less effort. 
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Figure 5.11: Data Filtering Tab 

5.5.3.3  Text Similarity Tab 

In case the investigator has part of the car’s number plate, the system will retrieve 

all images that have the required number in their content. The investigator will 

use text similarity tab. 

The text similarity tab is the fourth tab concerned with text recognition and text 

similarity to retrieve all images that contain similar text in their content.            
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Figure 5.12 illustrates what the ‘Text Similarity Tab’ looks like in the case 

dashboard page. 

 

Figure 5.12: Text Similarity Tab 

This tab enables investigators to search for text that exist in the content of the 

image using detection and recognition and then converting the characters to text. 

The text similarity tab consists of four main panels: Query, Text Extraction 
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Results, Results, and Create New Bookmark. The query panel includes three sub 

panels: Query, Search Text, Number of Images, and ‘Retrieve’ and ‘Reset’ 

buttons. The investigator has three ways of specifying the query text as illustrated 

below: 

1. By clicking on the ‘Process Selected Images (Text Similarity)’ button in the 

query sub panel to extract all texts from the selected data and show the 

results in the ‘Text Extractions’ panel, the investigator can select the 

desired text. The panel has two labels ‘Process’ and ‘Finish’ to illustrate 

the continuity of the text extraction process or finishing. In the beginning, 

the ‘Process’ label is green and the ‘Finish’ label is red during the text 

extraction process. Once the text extraction process is finished, the 

finished label becomes green. 

2. Right click on any image in the results panel of the search tab, then the 

system will extract the text and present it in the search text box. 

3. Insert the requested text in the search text box. 

After specifying a query (relevant words), the investigator will click the ‘Retrieve’ 

button to find all relevant images. The retrieved images will be gained by 

comparing part or all of the query text with the texts of the selected images. This 

tab aids in reducing the number of images to 11 images, instead of revising 133 

images, the investigator now has only 11 images for reviewing. 

5.5.3.4  Geo Tracking Tab 

After rretrieving all images that have the same car plate number (target car), the 

Geo Tracking tab will be used to track the target car by using GPS information to 

find the last appearance of the suspect car. The resulting visualisation will provide 
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the graphical map of the resulting journey alongside the image sources used to 

identify the path of the car.  

The Geo Tracking Tab (as illustrated in Figure 5.13) employs the Google Maps 

API to specify the location of a person/object and shows the direction between 

points. Two panels, namely ‘List of Functionalities’ and ‘Google Map’ are included 

in the Geo Tracking tab. The ‘List of Functionalities’ panel provides investigators 

with a Maps JavaScript API that displays the geographic location of a user, 

device, or imagery on Google Maps. This panel has three functions ‘Route’, 

‘Show Photos,’ and ‘Show Points’, as well as ‘New Search’ button. When the 

investigator chooses the Route function, the system will add two dropdown lists 

‘Start’ and ‘End’. Each list will fill with images that are selected previously 

(selected data). The images in these two lists are listed based on their captured 

time in ascending order. The investigator can select any image from the start list 

and another image from the end list, then the system will display the route 

between these two images in Google Maps, using driving as a mode of travel. 

The investigator can click on the pin to know the address of the image. 
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Figure 5.13: Geo Tracking Tab (Route) 

The system will not save the images (items selected) in other tabs as bookmarks; 

however, it will store screenshots of the Google Map panel to demonstrate the 

relationship between images. Therefore, the investigator should press the 

‘Review’ button to screenshot the route. The screenshot will be displayed under 

the ‘Preview’ label. Also, the investigator can download the screenshot by 

pressing the ‘Download’ button. Thereafter, the investigator should click on the 

‘Bookmark’ button to show the bookmark panel, add new bookmark details, such 

as bookmark name and bookmark comment, then click on the ‘OK’ button to store 

a new bookmark in the database with all its relevant details. 
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In the ‘Show Photos’ function, the images are pinned to locations where they were 

originally taken, as shown in Figure 5.14. The last function (Show Points) will 

pinpoint the locations of all selected images on the map.  

 

Figure 5.14: Geo Tracking Tab (Show photos) 

5.5.3.5  Bookmark Tab 

In each stage of the investigation, the investigator has the ability to bookmark 

desired images. The Bookmark panel in each tab is used to store the interesting 

images selected by the investigator. The bookmark tab is used to display all 

bookmarks with their relevant details, such as investigator name and action, as 

illustrated in Figure 5.15. The investigator can review any bookmark from the list 

to check the authenticity of the selected results.   



 

191 

 

 

Figure 5.15: Bookmark Tab 

The bookmark tab initially provides an overview of interesting results. However, 

by selecting any bookmark from the list through clicking ‘Review’, the details of 

the bookmark will be displayed. The details are divided into three panels: 

Bookmark Comment, Details, and Item Selected. All comments and notes that 

describe the details of the selected bookmark are displayed in the bookmark 

comment panel, and all details that explain how to find the images that are 

bookmarked are displayed in the details panel. The ‘Item Selected’ panel will 

display all bookmarked images. This tab will also permit the investigator to delete 

any bookmark he/she might not want. 
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5.5.3.6  Reporting Tab 

Once the case is thoroughly analysed, the final stage of the investigation process 

is the output of the report. Figure 5.16 illustrates what the report may look like. 

The report details will be displayed when the investigator clicks on the ‘Show 

Details’ button. 

The reporting tab has three main sections through which the relevant information 

will be presented. The top section of the reporting tab displays the case details. 

Following the case information, the ‘Investigator Information’ section shows all 

investigators who are responsible for the case investigation and their details, such 

as their name, role, and email etc. The last section is the evidence list, which is 

divided into parts (evidence items) depending on the amount of evidence 

extracted to resolve the case. Each evidence item includes two types of 

information. The first type is the evidence (images) and the second is the details 

that explain how and when the images are retrieved. The ‘Print’ button at the end 

of the reporting tab is used to print the report. 
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Figure 5.16: Reporting Tab 
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5.5.3.7  Log Tab 

In case the investigator needs to conduct a new analysis (starting a new search 

or working on previous results in order to find new results or complete the 

previous work, the log tab will be used. 

The log tab is the first active tab on the case dashboard page (as demonstrated 

in Figure 5.17) because it provides the investigator with a list of all actions that 

were accomplished on the selected case. When the investigator clicks on the 

‘Show’ button that is positioned in the first panel, the case creation date and how 

many times the case was opened will be displayed in the first panel. In addition, 

all actions carried out on the case will be listed in the second panel. The list in the 

second panel will inform the investigator of all actions carried out on the case and 

identify which action is completed or which is under analysis in order to complete 

the investigation process. In addition to the list of actions, the log tab contains the 

results panel and the details panel. The investigator can select any action from 

the list by clicking on the ‘Select’ button, then the system will show the results 

obtained from this action (Search, Metadata Filtering, Object Matching, Text 

Similarity or Geo Tracking) in the results panel, and all details that demonstrate 

how these results are acquired will be displayed in the details panel. The 

identification number (ID) of any selected action will be stored in order to use it 

later in the following tabs. This ID will be used to specify the data to be refined. 

After selecting the desired data, the investigator can transfer to another tab to 

complete the analysis process for the selected data. 



 

195 

 

 

Figure 5.17: Log Tab 

5.5.3.8  Object Matching Tab 

In case, the investigator finds the images that contain the child with a car, he/she 

can select the interesting images and search the database for identical or similar 

images that contain the same car using the object recognition functionality 

(Object Matching tab).  

The Object Matching Tab is a key part of the case dashboard (as shown in    

Figure 5.18) that contributes to reducing the cognitive load on the investigator. 
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Incorporating this functionality allows investigators to find all images that are 

similar in content with the query image from the large selected data. 

 

Figure 5.18: Object Matching Tab 

This tab is also divided into three panels: Query, Results, and Great New 

Bookmarks. In the first panel, the investigator can select the query image from 

any drive of the computer and upload it in the query image box. The investigator 

can also choose the query image from the results panel in the search tab as 

aforementioned. After that, the investigator can click on the ‘Retrieve’ button to 
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retrieve all images that are similar in content with the query image and display the 

results in the results panel. 

5.5.4 Case History 

In order to get the full vision of the case from the moment a case is created to the 

moment the investigator works over it, the case history function is used.  

The ‘Case History’ is what the OM-FAT prototype’s dashboard is equipped with. 

As the name implies, the ‘Case History’ provides full vision about the case from 

creating the case action at the beginning until the last action carried out in the 

case. The page will display the list of the investigators' activities on the case with 

their details. Figure 5.19 illustrates what the ‘Case History’ page looks like on the 

OM-FAT prototype. The ‘Case History’ consists of five panels: the first two are 

main panels and the others are subpanels. The first main panel includes selecting 

the case name, the ‘Show’ button, ‘Created Date/Time’, and ‘Number of Opening 

Time’. Clicking the ‘Show’ button displays the create date/time of the case and 

how many times the case has been opened, as well as displays all actions carried 

out on the selected case in the ‘List of All Actions’ panel, which represents the 

main second panel. One of the three subpanels (Source Details, Search Details, 

and Forensic Analysis Details) are displayed depending on the selected action 

from the List of All Actions to show the details. 
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Figure 5.19: Case History  

The case filtering option shown on the left side of the dashboard page helps 

investigators find the requested case from the active or archive cases list. The 

case filtering option includes four filters: case status, investigator name, case 

type, and open time. The investigator can select the value of each filter from the 

dropdown menu without the need for inserting any value. The values of each 

dropdown menu come from the existing case's details to facilitate the choosing 

process. In both choices, for ‘Active’ or ‘Archive’, the system will read all filters’ 

values from the dashboard page in order to retrieve and list all cases that meet 

the filters’ values in their details. 

Each action carried out by the investigator leads to opening a new page. The 

system will pass two parameters, which include the name of the case and the 

investigator, to the new page in order to use them in documenting the actions’ 

details. Most of the options in the first bar are also available on the left side 

dummy headings of each page to meet the good usability requirement. 
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5.5.5 Account Management 

If the investigator would like to edit, delete, or even add a new investigator then 

he/she could click the Account Management option in the first bar or on the left-

hand side of the dashboard page, in the condition that he/she has permission to 

access to the Account Management page (Administrator). Using this page will 

provide the admin with a list of all investigators who are registered in the system 

and the details for each, as illustrated in Figure 5.20. The admin can edit 

investigators’ details or delete any investigator from the system through this page 

by clicking the ‘Edit’/’Delete’ buttons beside each record in the list. 

 

Figure 5.20: Account Management 

The ‘Add New Investigator’ option in the first bar (Figure 5.20) will open the ‘Add 

New User’ page, as displayed in Figure 5.21. To add a new investigator, the 

admin must complete the fields. The objective of using the role field is to prohibit 

access to all parts of the system by default for all investigators. Clicking the 

‘Confirm’ button after adding investigator details will save these details in the 
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system database and permit the new investigator to enter the system and work 

within the privileges specified in advance. The ‘Edit User’ option returns the 

investigator to the Account Management page. 

 

Figure 5.21: Adding New User Information 

The ‘Edit User’ option in the first bar of Figure 5.21 returns the admin to the 

Account Management page, whereas ‘Set Privileges’ directs him/her to the Set 

Privileges page as displayed in Figure 5.22. The system administrator, who has 

full system access, is responsible for redacting the privileges for each 

investigator.  This page illustrates the list of privileges specified for each role to 

maintain the system’s integrity. The system has four roles and each has a specific 

job in the system. Using the edit icon, the privilege for each role could be edited 

through selecting or unselecting the checkbox. The ‘delete’ icon is used to remove 

the selected privilege from the list. 
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Figure 5.22: Set Privileges 

5.5.6  Global Settings 

The Global Settings tab contains settings that apply to all pages, when the 

investigator clicks on the ‘Global Settings’ option in the dashboard page       

(Figure 5.3), the global settings page will be opened (Figure 5.23), revealing five 

options: external recognition systems, mapping API, website components’ colour, 

number of display images, and session time out. This page has been designed to 

enable the admin to review the primary setting values set as a default in the 

system and change these settings based on work requirements. For instance, the 

system sets Google Maps as a default value for mapping API and, at the same 

time, provides a list that includes another API map, Microsoft Bing Maps, 

OpenLayers, Foursquare and OpenStreetMap. The website components’ colour 

setting includes five parts responsible for what the website looks like and the 

colours surrounded by a bold box represent the default value of each part. 
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Regarding the session time out, it is considered a security setting that 

automatically logs investigators out of the system under pre-set time conditions. 

The system will use the session timeout to return the investigator to the login page 

in case he/she do not perform any action on a website during a certain period of 

inactivity (session timeout). 

 

Figure 5.23: Global Settings 

Regarding the Archive option in the active cases list, the case will be deleted and 

transferred from the active cases list to the archived cases list. The investigator 

could use this option when the case is closed or there is no need to work on the 

case.  

In the archived cases list, the investigator has two options for each case in the 

list: ‘promote to active’ and ‘backup’. The first option is responsible for removing 

the case from the list and returning it to the active cases list while the second 

option (backup) removes the case from the list and saves it in the external device. 
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5.6 Conclusion  

In this chapter, a novel OM-FAT prototype that provides a full case management 

system for forensic image analyses has been developed and the details of the 

prototype’s pages and their functionalities were also described. The OM-FAT 

prototype was developed as a web-based to address the requirement of the OM-

FAT architecture. Each case has its own requirements. Therefore, the tool is 

developed to deal with different types of evidence and large volumes of images. 

The prototype can analyse image content and its metadata and extract all 

valuable evidence by using a combination of image analysis techniques to 

enhance the power of final recognition and allow for more accurate results to be 

obtained. By recording all action that has been carried out on the case and the 

role that specified for each investigator, the administrator is capable of controlling 

all activities performed by each investigator. Further, the investigator could 

complete any uncompleted work performed by another investigator or return to 

the last stage of analysis that he/she performed because the system records 

details of each action including termination of work or not. Regarding the data 

selection before doing any forensic analyses process, this will help in the 

correlation between images by using different relationships to minimise the 

search domain and get evidence. Using the OM-FAT prototype will assist in the 

investigation process by offering functionalities, such as case management, 

image annotation, image analysis, displaying the results, and reporting, which 

contribute to reducing the investigation time. 
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6 The Evaluation 

6.1 Introduction 

The main area of research focused on understating the image content in order to 

extract the evidence through proposing a multi-algorithmic approach to improve 

the image annotation performance (make data searchable), in addition to how 

these information will be used in forensic context in order to allow examiner to 

ask complex questions of the data and receive the answers to the essential 

questions in the investigation in short time and effort through developing the 

architecture and prototype that help to pin in demonstrate how the tool will help 

the investigator to get timely response of the data. The tool aims to automate the 

process of identifying and extracting annotation-based evidence from multimedia 

content and perform a variety of forensic analyses to help investigators to 

understand the relationship between artefacts to reduce the time consumed and 

the burden of the investigation process.  

To make judgments about the efficacy of the proposed approach, architecture 

and prototype, and also determine their strengths and weaknesses points. With 

this intention, the evaluation stage of the research was undertaken, which 

involved the assessment of the research done by the academic experts within the 

field of digital forensics. The chapter begins with a description of the evaluation 

methodology followed by the feedback that comprised of the detailed answers 

provided by the experts, followed by a detailed discussion of the experts’ 

feedback and the conclusion. 
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6.2 Evaluation Methodology 

In order to conduct the evaluation stage of the research, it necessary to define 

the evaluation methodology before proceeding any further. The methodology will 

help better understand the steps needed to do a quality evaluation. The 

evaluation process was mainly divided into three phases- the preparation phase, 

the participant selection phase and the interviewees phase. The following 

sections describe the key phases (as shown in Figure 6.1) that will constitute the 

whole evaluation process: 

 

Figure 6.1: Phases of Evaluation 

6.2.1 Preparation Phase 

The preparation phase involve determining all objects that need to be prepared 

to start the evaluation stage.  This phase includes four objects- ethical approval, 

list of questions, video and list of participants as follows: 

Ethical Approval: it represent the first step in the evaluation stage, which was 

approved by the ethical approval committee. The accepted form is included within 

the appendix C.  

List of Questions: the questions aim to evaluate the novelty of the research 

contribution. Questions were asked about using commercial computer vision API 

to recognize objects inside the image. Also, the ability of the prototype to meet 
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the system requirements and the system workflow. Similarly, questions were 

asked about using different image analysis approaches to reduce the search 

domain and find the correlation between images. Then, the strengths and 

weaknesses points of the demonstrated tool and the possibility of further features 

that can improve retrieval performance are evaluated.  

A total of 10 questions were prepared for this evaluation task and the list of these 

questions is given as follows: 

1. What are your thoughts regarding the research problem? 

2. What are your thoughts about the using of commercial computer vision API 

systems? 

3. What are your thoughts about utilising a multi-algorithmic fusion approach 

to improve the annotation performance? 

4. With regard the following requirements, is the tool achieves these? 

 Reducing the investigator’s cognitive load to identify relevant evidence. 

 Ability to generate annotations for each image automatically to describe 

the visual content of the image. 

 Provide a range of forensic analyses and correlation capability to aid an 

investigator in querying the required images in a short time and less effort. 

 Provide case-based management infrastructure. 

 Maintain the chain of custody and meet privacy and security requirements 

through specifying the role of each investigator that includes a set of 

privileges, and also recording all actions accomplished on the case. 

5. What are your thoughts about the OM-FAT workflow? Is it logical? Am I 

missing anything else? 
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6. What are your thoughts about forensic images analyses that have been 

used to compare between images in order to reduce the search domain  

 Annotations 

 Metadata 

 Object matching 

 Text similarity  

 Geo tracking 

7. Are interfaces of the prototype satisfying, understandable, useful and easy 

to use? 

8. What are the strengths and weaknesses points of the demonstrated tool? 

9. Do you suggest any other feature(s) that the case dashboard could 

incorporate to improve the retrieval performance? 

10. Is there anything else you would like to add? 

Video: A demo of the research work has been presented by using slides in 

Microsoft PowerPoint and the audio content (i.e. the narrations) that were 

recorded separately. The PowerPoint file was then converted into a high-

definition resolution video and was uploaded to Vimeo (a popular online video 

sharing platform). To make sure that the safety of the unpublicised research 

information contained in the video, the uploaded video was set to ‘private’ and the 

video was password protected. The link and password to watch the video were 

given to the experts only prior to the interview. 

The video illustrates many points- research problem, use cases, Object-based 

Multimedia Forensic Analysis Tool (OM-FAT) requirements, OM-FAT 

architecture, multi-algorithmic approach and implementation of the prototype (live 

implementation). The main challenges in this step was inability to obtain real 
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crime case to run the prototype and show its effectiveness,  therefore the author 

collect simulated data and used it in prototype implementation. Another challenge 

was to present the entire work in a specific time (approximately 20 minutes). 

However, the video contained a live run of most prototype functionalities, multi-

algorithmic approach with its results and other subjects which meant that the 

timing, entirety and quality of the video had to be focused on at the same time 

which also lead to a lot of effort put in. In the end, the length of the video was a 

twenty-two and a half minutes long so that the participants watching it would not 

lose their interest and would continue with the process.  

6.2.2 Participants Selection  

The phase of identifying the ideal group of people that are eligible to participate 

in the evaluation includes looking for academics that are doctors and professors 

followed by selecting a sample group containing the potential participants. In the 

end 23 academics with different backgrounds and experiences were selected to 

help cover all dimensions of the offered transdisciplinary research. The invitation 

letters were sent to them asking if they would participate in the evaluation. 

However only one person accepted to participate in the evaluation leading to the 

rest apologizing for not having the time or not answering. The author waited more 

than one month to receive a replay and also send reminder, however she received 

only one acceptance from one person who was: 

• Robert Hegarty, PhD. Robert is a senior lecturer in cyber security and 

digital forensics at Manchester Metropolitan University (MMU), UK. Email: 

r.hegarty@mmu.ac.uk. Dr Robert delivers undergraduate, postgraduate 

and degree level apprenticeships units at MMU. He is a main research 

interests are in the areas of digital forensics in computer security, digital 
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forensics, cloud computing. Dr Robert has published multiple papers in 

conferences as well as journals. 

Due to the time limitation and the prototype took a large body of work, it was 

difficult to look for new participants for the evaluation and the decision was to 

close that work package down and introduce how the prototype works within the 

uses case (child abduction) that represented early in the thesis to show practice 

evaluation of how my tool could be used to fit that circumstance. 

6.2.3 Interviewees 

Interviewee represents last phase in the evaluation process that could be 

conducted by interviewing the academics by skype or answering the questions 

electronically. These two ways have been suggested to provide the participant 

the chance to select which way is more convenient. 

6.3 The Feedback 

The questions were designed in a manner that investigates the multi-algorithmic 

and the OM-FAT in terms of admissibility, efficiency, reliability and usability. Open 

question was raised in the end of the list of questions with the aim of appraising 

weaknesses as well as strengths of the proposed approach and tool. Because of 

the only participant participated in the evaluation, the following feedback is only 

from Dr Robert Hegarty who has answered the questions electronically (italic font 

represents his replay): 

1. What are your thoughts regarding the research problem? - The research 

problem tackles a relevant real world challenge, cognitive and 

psychological load are significant challenges in this domain.  

2. What are your thoughts about the using of commercial computer vision 

API systems? - The approach is appropriate, it saves re-inventing the wheel. 
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3. What are your thoughts about utilising a multi-algorithmic fusion 

approach to improve the annotation performance? - This approach 

appears to be the main contribution of the work, I would like to see more 

details on this. At present the presentation focuses on usability, which is 

appropriate given the goals of the project, however it does not highlight 

this important feature of your work. I would like to see comparison of the 

results from your MA fusion model other fusion models, and existing AIA 

systems for a variety of case studies. 

4. With regard the following requirements, is the tool achieves these? 

 Reducing the investigator’s cognitive load to identify relevant 

evidence. 

 To a large extent yes, however the reliance on uploading specific files, 

rather than forensic hard drive images introduces an additional 

burden. 

 Ability to generate annotations for each image automatically to 

describe the visual content of the image. 

 The tool appears to achieve this, but further statistical analysis and 

experiments are required to demonstrate this. 

 Provide a range of forensic analyses and correlation capability to aid 

an investigator in querying the required images in a short time and 

less effort. 

 Again from the demonstration this appears to be true, however 

further experiments and statistical analysis are required. 

 Provide case-based management infrastructure. 

 Yes, however I would like to see the focus shifted to analysis of the 

efficacy of the MA data fusion model, remember you are producing 

scientific research, rather than a product. 

 Maintain the chain of custody and meet privacy and security 

requirements through specifying the role of each investigator that 

includes a set of privileges, and also recording all actions 

accomplished on the case. 
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 Yes, however a more in-depth description of the access control model 

and specifications for how the data is protected during transit and at 

rest are required. 

5. What are your thoughts about the OM-FAT workflow? Is it logical? Am I 

missing anything else? The work flow is logical, however I would like to 

know more about how the MA data fusion process works, there is little 

information on this in your presentation. 

6. What are your thoughts about forensic images analyses that have been 

used to compare between images in order to reduce the search domain  

 Annotations 

 Metadata 

 Object matching 

 Text similarity  

 The above techniques are all appropriate and well implemented, 

however it is difficult to discern if they are novel contributions 

without more insight into you MA fusion system. 

 Geo tracking - I particularly like the journey planner functionality, this 

could be augmented by pulling in traffic data from the time the 

images was taken, to give a realistic reconstruction of the journey. 

7. Are interfaces of the prototype satisfying, understandable, useful and 

easy to use? - Yes. 

8. What are the strengths and weaknesses points of the demonstrated tool? 

- The tool is very polished, and easily accessible, however it does not 

provide any statistics on the confidence of images being a match for an 

annotation etc, this would likely be a requirement for use in a legal setting. 

It is also difficult to determine the performance and scalability of the 

system based on the limited data presented, some statistics on this would 

be beneficial. 

9. Do you suggest any other feature(s) that the case dashboard could 

incorporate to improve the retrieval performance?  Colour coding of 
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evidence flags in the geolocation section, to illustrate which sources the 

evidence came from. 

10. Is there anything else you would like to add? - Have you considered the 

challenges of explaining how the various data vision techniques work to a 

non-scientific audience (e.g. a Jury) 

6.4 Discussion  

In the discussion section, both answers and suggestions expressed by the 

experts that participated in the evaluation process are addressed here. 

Despite the fact that the majority of Dr Robert opinion was positive on the whole 

work via his answers to the asked questions, he had/raised, however, some 

concerns and recommendations that can be discussed including: 

 The opinion of Dr Robert regarding the research problem that the topic of 

research was a valid one and tackles a relevant real world challenge, cognitive 

and psychological load, which are significant challenges in the field of digital 

forensics. The using of commercial systems was also appreciated, and also it 

better than developing a new system in terms of performance and time. 

Dr Robert focused more on the multi-algorithmic approach and considered it the 

main contribution of the work. To some extent that right because the contribution 

of the research are two folds-proposing multi-algorithmic approach and the OM-

FAT. The comparison between the results from the multi-algorithmic approach 

and other fusion models and existing AIA systems for a variety of case studies 

was carried out.  However, due to the time-restricted in video creating, only the 

main results have been included. 

Regarding the strengths and weaknesses points of the OM-FAT, the tool does 

not provide any statistics on the confidence of images being a match for an 
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annotation. The proposed approach achieved 80% of annotation precision and 

the number of annotations was 20. This means that the confidence of the 

proposed approach in describing image content near to be 100% when the 

number of labels is 5. In addition, there is difficulty in determining the performance 

and scalability of the system because using the limited data, because of the 

difficulty to obtain real cases. 

During the evaluation session, a suggestion made by Dr Robert was to consider 

colour coding of evidence flags in the geolocation section to illustrate which 

sources the evidence came from. This suggestion is important in investigating 

and solving the crime, it has been mentioned in system architecture. 

Finally, Dr Robert points out whether potential challenges have been taken into 

account when explaining the work to an unscientific audience (such as a jury), 

the academic people have selected for evaluating the work because they are 

more rounded in full commentary of the nature system and understand what the 

research where going. 

6.5 Conclusion 

The chapter describes the entire process of the evaluation that aims to extract 

relevant information from an independent and unbiased group of academic 

experts, who are both eligible and willing to offer a fresh perspective on different 

aspects of the research. The evaluation process begins with preparing the list of 

questions, video and list of participants, in addition to Ethical approval and end 

with illustrating and discuss the feedback. The questions were designed in a 

manner that covers the main areas of the research and considerate the level of 
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the potential participants and their academic and professional knowledge and 

experience in the field of digital forensics. 

Expert assessment of the work is an essential and important stage of research 

without which research is incomplete. Unfortunately, only one person, Dr Robert, 

participated in the assessment stage of the evaluation process, on the other hand, 

the other 22 participants were busy or did not respond to the invitation letter. 

However, most of Dr Robert's comments were very positive and helpful to all 

questions. 

Dr Robert found that it is difficult to judge the performance and scalability of the 

system based on the limited data presented. Furthermore, his attention was as 

regards the analysis of the efficacy of the multi-algorithmic data fusion model and 

request more statistical analysis and experiments to show the efficiency of the 

proposed approach. However, due to the difficulties of finding real cases and the 

time-restricted of creating the video, the two points were not met completely. In 

addition, he suggested adding a color flag on the google map to illustrate which 

sources the evidence came from.  
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7 Conclusion and Future Work 

The research objective was to design and develop a novel framework for object-

based multimedia forensic analysis that annotates images automatically to allow 

for keyword and pattern-based searching and to develop a forensic analysis 

process that extracts multiple pieces of evidence from a heterogeneous forensic 

image database. This will permit investigators to ask complex high-level queries 

of the acquired data. In addition, the OM-FAT tool provides full case management 

functionality (from acquisition to reporting), which aids in reducing the 

investigator’s cognitive load and the time of the investigation. 

 This objective was achieved by generating image annotations through 

developing the multi-algorithmic approach that generates annotations based on 

merging multiple AIA systems’ results and by employing various image analysis 

approaches that aid in aggregation and correlation of the images. A path was set 

by beginning to learn about forensic image analysis and investigating image 

analysis studies in the digital forensics domain in order to define the research 

problem. Following the literature review of image-based retrieval methods, a 

novel solution to tackle the problem was hypothesised; this solution was tested 

for its feasibility. After proving the practicality of the hypothesis, the research went 

on to design a novel architecture that can solve crimes where a large number of 

images need to be analysed in an efficient and timely manner. In the final stage 

of the research, a functional prototype was developed. 

7.1 Achievements of the Research 

Overall, the research has achieved all objectives listed in Chapter 1 through 

conducting a critical review of the literature, developing a novel approach to 
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generate final image annotation, designing a novel architecture, implementing a 

prototype, and evaluating the research. The following are the main achievements 

of this research: 

1. The primary stage of the research was understanding the current 

state-of-the-art of forensic image analysis. Building on this, an 

exhaustive set of literature surrounding existing research in the 

domain of image analysis in digital forensic was addressed to 

identify the research problem. In addition, a comprehensive review 

of image-based retrieval techniques was also achieved to identify 

the best technique that could be employed on forensic images to 

retrieve specific evidence from a large number of images      

(Chapter 2).  

2. A series of experiments that evaluate commercial computer vision 

API systems to determine their accuracy and ability to 

comprehensively annotate images within a forensic context were 

conducted. In addition, the multi-algorithmic approach was 

proposed as a new approach that fused image annotation results 

from multiple commercial computer vision API systems to improve 

the annotation results and make them more reliable and robust. The 

annotation results will have an important effect on the overall 

system retrieval accuracy in the research’s later stages. 

Experimental results refer to the superiority of the proposed 

approach (Chapter 3). 

3. On proving the hypothesis (i.e., the multi-algorithmic approach), the 

next stage of the research was designing a novel architecture for 
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the proposed OM-FAT that can aid the investigation process in 

analysing, interpreting, and correlating the multimedia-based 

context. This achievement was made in the third stage of the 

research (Chapter 4).  

4. Developing and implementing the prototype based on the 

successful design of the architecture to ensure that the system 

works efficiently and can deal with different forensics cases related 

to image analysis (Chapter 5). 

5. Evaluation of the feasibility of the framework by seeking opinions 

and feedback has been collected from academic researchers 

(Chapter 6).  

7.2 Limitations of Research  

Despite the achievement of the research, certain limitations can be identified. 

These limitations are summarised below: 

1. Few studies are concerned with extracting evidence to solve criminal 

cases through forensic image analysis, considering the accuracy and 

speed requirements. Consequently, it is difficult to know what approaches 

were employed, as well as what were the shortcuts. 

2. Lack of availability of the public forensic image datasets containing 

heterogeneous and fully annotated images in order to evaluate the 

commercial systems and the proposed multi-algorithmic approach. To 

assess the performance of commercial systems and the proposed 

approach, the researcher had to use general datasets that contained 

various images to simulate the forensic images. Regarding evaluating the 
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implemented prototype, the researcher had to collect a new dataset for this 

purpose. 

3. Although the multi-algorithmic approach achieved a good performance, 

which was measured by average precision, average recall and f-measure, 

the subjective quality of images is important for improving the annotation 

performance of commercial systems, thereby improving the proposed 

approach’s performance. Some cases include images that may suffer from 

noise, poor contrast, or they may be blurry. In addition, some images come 

with small sizes that are unacceptable for some systems. All this 

decreases the performance of the multi-algorithmic approach, thereby 

decreasing the retrieval performance of evidence and losing some 

evidence. 

4. The number of digital images increases exponentially, and these image 

data have complex content, various formats, and require more developer 

effort to analyse them efficiently and effectively. This large volume of 

image data needs to be capable of being processed quickly (near real-

time) to meet the growing number requirements (time, burden, cost, etc.). 

5. The speedy advancement in image editing software makes modification 

and manipulation of digital visual data very easy. This advancement has 

reached a level such that image tampering can be done without changing 

its quality or leaving obvious traces. Consequently, it has become 

essential in the forensic scenario to ascertain the trustworthiness of 

images before using them as potential evidence. 
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6. Use of public annotation systems to process private data introduces the 

problem of submitting evidence to an external untrusted source for 

analysis. 

7.3 Future Work 

The research identified the challenges that face image analysis in the forensic 

domain and succeeded in proposing a novel tool that can analyse images and 

extract evidence efficiently (i.e., a novel framework for the Object-based 

Multimedia Forensic Analysis Tool) followed by the development and evaluation 

of the prototype. Nevertheless, there are several areas in which future work could 

be carried out to advance on what has been achieved in this research. These 

include: 

7.3.1 Evaluation of the Image Quality Criteria and Enhancement 

The acquired images that need to be investigated, suggesting that these images 

are usually large in number, vary in quality, have unconstrained illumination, and 

various orientations, object size, irregular background, and contain multiple 

objects. As a result, these images are large and need pre-processing often in 

near real-time to maintain the level of accuracy. Therefore, there is a need to 

develop an enhancement method to process images so the result will be more 

suitable than the original image. Image enhancement methods are based on 

subjective image quality criteria. Therefore, the enhancement method will 

improve the images’ visual appearance, thereby improving the annotation and 

forensic image analysis (regarding the object-matching and text similarity) 

performance. 
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7.3.2 Privacy  

The use of publicly available annotation systems introduces some operational 

limitations. Some of these systems, such as Microsoft Vision API, take a copy of 

the image to improve its system performance. Consequently, there is a need to 

explore and evaluate a range of pre-processing procedures to introduce the 

necessary privacy required. The aim of pre-processing is to detect if the image 

contains a person’s face or text that represents valuable details. The privacy pre-

processing is responsible for covering important content automatically by using a 

mask. Another solution is by isolating images that contain important details and 

then sending these details to private automatic annotation systems to annotate 

the images. 

7.3.3 Improving the Geo-Tracking System 

The geo-tracking approach provides an overview of what directions a person/ 

object utilized and, thereby, specifies their whereabouts. Because the Google 

Map Direction API shows the default route between two points, however, the 

suspect may use alternative routes. Therefore, there is a need to find more than 

one route between the origin and destination points and then calculate the 

distance for each route. After that is developing a method that uses the photo’s 

metadata (time created) to select the correct route based on the difference 

between the times created of the start and end points and comparing it with the 

distance for each route to find the right route. This will improve the tracking 

process performance and find the requested person/object easily and precisely. 
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7.3.4 Improving Image-Matching Based on Image Content 

There is a need to develop the object-matching algorithm, which operates on the 

web, to find visually similar images in a way in which it can deal with different 

styles of query image; input image, input painting, and input sketch. In addition, 

the investigator should be provided with a bounding box to specify the region of 

interest from the query then the results should be retrieved from large amounts of 

images in an efficient manner along with different matching approaches (exact 

matching, approximate matching, and cross-domain matching).  
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Appendix A: Centric and Non-Centric Single Object-Based 

Image Retrieval 

Wang et al. (2011) presented an image retrieval method based on texture 

features of the object region. The system started by converting a colour image 

from RGB colour to grey space. Thereafter, the Otsu algorithm, which is one of 

the most common methods of automatic threshold selection, was used to 

segment the grey image into the object region and the background region. 

Afterwards, texture features of the object region were extracted by using a Local 

Binary Pattern (LBP) algorithm. Finally, the Euclidean distance was calculated to 

find the similarity between extracted texture features for a query image and 

images from an image database. In order to verify the proposed method, the 

precision and recall were used to validate the retrieval performance of the 

proposed system. The proposed method was tested on the SIMPLIcity dataset, 

which consists of 1,000 images selected from the Corel image database in ten 

categories, with each category containing 100 images. Five images per category 

were randomly chosen from four categories (buildings, buses, flowers, and 

dragons) to use as query images. The experimental results showed that the 

proposed method achieved an average precision and average recall of 84.0% 

and 16.8%, respectively. The recall was very low because the images contained 

only one central object and the method succeeded to retrieve the images that 

contain the query object. The proposed system achieved good performance 

because it removed the image background, which in turn improved the retrieval 

accuracy. 
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Another new technique of object-based image retrieval was suggested by 

Lunshao Chai et al. (2011). The objective of this study was the quick extraction 

of the main image region and efficient extraction of shape and colour features. 

The system entailed two phases: main object region extraction and features 

extraction. In the first phase, several processes were implemented upon the 

image: edge detection (by using the canny edge operator), smoothing (Gaussian 

filter), binarization, and maximum connected domain detection. Then, an image 

mask was generated so as to extract the main image region. Figure A.1 illustrates 

the processing flow for the main object region extraction. This phase focused on 

neglecting the image background and any region unconnected with the main 

object region. 

 

Source: Lunshao Chai et al. (2011) 

Figure A.1: Processing Flow of Extraction the Main Object Region 

In the second phase, shape and colour features were extracted using Radial-

Harmonic-Fourier Moments (RHFMs) and the fuzzy histogram linking technique, 
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respectively. These features were then used to represent the region of the main 

object. Euclidean distance was utilised to measure the distance between the 

features of the query image and the database images. To evaluate the 

performance of the proposed system, 16 categories were selected for 

experiments from the Product Image Categorization Data Set, which contains 100 

categories (PI 100), each of which contains 100 images. Furthermore, 220 

images were used as a query image. The Averaged Normalised Modified 

Retrieval Rank (ANMRR) was used to assess the performance of the proposed 

system. Additionally, the Averaged Normalised Modified TOP-K Retrieval Rank 

(ANMTKRR) value was utilised to allow the user to determine how many results 

were displayed. The proposed system was compared with several other methods, 

including the Dominant Colour Descriptor (DCD), Local Binary Pattern (LBP) 

(Ojala, Pietikäinen and Harwood, 1996; Ojala, Pietikainen and Maenpaa, 2002), 

CEDD (Chatzichristofis and Boutalis 2008), and the fuzzy shape histogram 

(FSH). Experimental results showed that the proposed system demonstrated 

increased image retrieval accuracy, as shown in Figure A.2. 

 

Source: Lunshao Chai et al. (2011) 

Figure A.2: ANMRR and ANMTKRR of the Descriptors 
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An image retrieval method based on regional objects was proposed by Wu, Wang 

and Xing (2011). The aim of the study was to use semantic information within the 

user query concept. Their proposed system involved four main stages: a 

segmentation process, visual feature extraction, similarity measurement, and 

relevance feedback. In the first stage, the system did not use a segmented 

algorithm to extract the blob of interest but instead required the user to insert a 

query image. The cursor on the query image changes into a cross shape, and the 

user was able to select the regional object by dragging the mouse over the object, 

as shown in Figure A.3. Next, the spatial location information and the segmented 

fragment of the selected object were automatically saved for use in image 

retrieval. Thereafter, based on information that was saved before, all images in 

the dataset were segmented. 

 

Source: Wu, Wang and Xing, 2011 

Figure A.3: Segmentation of Regional Object: (a) flower; (b) horse; (c) elephant; (d)  

dinosaur 
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In the second stage, colour and texture features were used. The image was 

converted from RGB to HSV space, and then the correlation coefficient-based 

colour representation was applied in order to extract the colour feature. After 

applying the two-dimensional Harr transform on the whole image, the grey level 

histogram was implemented to extract the texture feature. In the third stage, the 

similarity between the query image and images in the dataset was measured by 

Euclidean distance. In addition, the similarity of two images was taken as the 

weighted sum of the similarities. Next, the top 24 images were retrieved as the 

initial retrieval, based on a ranking of the images’ similarity values. Finally, 

relevance feedback, which is an interactive learning method, was applied by 

using a one-class Support Vector Machine (SVM) on only positive samples. The 

aim of this stage was to get better retrieval performance and to use the semantic 

information provided by user queries. The user was asked in the feedback stage 

to determine ‘relevant’ or ‘irrelevant’ images from the initial retrieval results. The 

system used this feedback to retrieve a new result. This process was stopped 

when the user was satisfied with the result. Two experiments were conducted on 

1,000 images from the Corel dataset (10 categories). In the first experiment, the 

segmentation of the regional object method was compared with the no 

segmentation method. In the second experiment, the correlation coefficient-

based colour representation feature was compared with the typical global colour 

histogram feature. The F1-measure criterion was used to evaluate the system’s 

performance. The results showed that the F1-measure value increased with an 

increase in the number of images means that the overall system performance 

increased.  As can be seen from Figure A.4 and Figure A.5, incorporation of the 

methods of segmentation of the regional object and correlation coefficient-based 
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colour representation improves the retrieval performance, and it also obtains 

semantic information from the user's query.  

 

Source: Wu, Wang and Xing, 2011 

Figure A.4: Performance Comparison between Segmentation and No Segmentation 

Methods 

 

Source: Wu, Wang and Xing, 2011 

Figure A.5: Performance Comparison between Correlation Coefficient and No 

Correlation Coefficient Techniques 

In their follow-up paper, Huang, Han and Zhang (2012) introduced an Object-

Based Spatial-Colour Feature (OSCF) method for colour image retrieval, in which 

the main object in an image is the major concern. The proposed system had two 
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phases: object extraction and feature extraction. In the first phase, an RGB colour 

image was converted to HSV colour space. Then, an E-image, which is a 

greyscale image, was extracted from the HSV colour image using a criterion of 

homogeneity based on both the global and the local information for the HSV 

colour image. A threshold value was determined using both the global and local 

information, and all pixels in the E-image that were less than the threshold value 

were considered as a candidate seeded point (CSP). In so doing, a candidate 

object seed points set was achieved. In the second phase, the normalised 

quantized colour histogram and spatial-colour features were extracted from the 

objects region in order to represent objects. A distance metric was used to find 

the similarity between a query image and images in a dataset. In order to evaluate 

the system, 800 images (10 categories, each category contained 80 images) 

were selected from general-purpose image database including about 200,000 

images that include scenes (flowers, horses, fungi, elephants, etc.). Only five 

categories were used in the experiments. The accuracy of the retrieval results 

was measured by both precision and recall. The performance of the proposed 

system was then compared with the Colour histogram method combined with the 

Gabor wavelet texture descriptor (CGabor) (Manjunath and Ma 1996) and the 

integrating Edge and Edge-Spatial Feature of the image (EESF) technique 

(Huang and Liu 2006). The results showed that the proposed method achieved 

better retrieval results when used on an image with one central object. The best 

reported results using the average precision-recall for OSCF, CGabor, and EESF 

were 70%, 62%, and 60% when using image category “flower”, respectively. This 

approach fails, however, if implemented on complicated images in which the 



 

241 

 

objects are non-central or if there is more than one central object. Furthermore, it 

regards all central objects as one object.  

Another contribution to the study of centric object-based retrieval was published 

by Kavitha and Sudhamani (2014). The objective of this research was to suggest 

a CBIR system based on the combination of local and global features. The system 

included two phases: an offline phase and a real-time phase. The features were 

extracted by using the Bidirectional Empirical Mode Decomposition (BEMD) 

technique and the Harris Corner detector, which were considered as local 

features, while the HSV colour histogram feature was used as the global feature 

for all images in the database (offline phase). Query image processing served as 

the real-time phase. To retrieve relevant images, the three individual features of 

the query image were compared with the corresponding features of the database 

images. For experimental purposes, the Columbia Object Image Library (COIL-

100) dataset, which includes 7,200 colour images of 100 objects, was used. 

Figure A.6 shows ten samples of the COIL-100 dataset that were used in the 

experiments. The study showed that the combination of the HC, HSV colour 

histogram, and BEMD techniques resulted in substantially improved retrieval 

results of 83.23% and 69.36% for average precision and average recall, 

respectively.   
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Source: Kavitha and Sudhamani, 2014 

Figure A.6: Ten Samples of Columbia Object Image Library Dataset 

Gupta, Das and Chakraborti (2014) tackled the problem of object-centric CBIR by 

introducing a biologically inspired framework named WOW (“What” Object is 

“Where”). The aim of this work was to find the specified object and extract its 

features so as to retrieve all relevant images in an effective and automatic way. 

The sequence of steps for the proposed method was as follows; at the initial 

stage, a query image was passed through an initial localizer model in order to 

determine the region of interest using a combination of the existing methods 

GrabCut and Graph-Based Visual Saliency (GBVS). The second stage was a 

recognition stage (What), which proposed a hierarchy of visual features inspired 

by the Feature Integration Theory (FIT) for object recognition. Three types of 

features were used: a Histogram of Oriented Gradients (HOG) as the shape 

descriptor, a Bag of Features (BOF), and the local binary pattern (LBP) as the 

texture descriptor. BOF was extracted by using the dense SIFT and quantized 

into a visual word by using a K-mean algorithm and a histogram of the visual 

word. Third was the localisation stage (Where), which used the popular 

Deformable Part-Based Model (DPM). The goal of this stage was to determine 

the location of an object if it exists; otherwise, it produced a null output (no object). 
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Fourth was the iterative feedback stage, which helped in exchange of mutual 

information (iteratively) between the ‘What’ and ‘Where’ modules. In addition, this 

stage introduced termination criteria for the exchange of mutual information, 

which means that the iterative feedback mechanism stopped when the output of 

the identification stage was the same as that of the previous step. The final stage, 

the similarity stage, computed similarity based on the HOG features and rank-

ordered the images retrieved from a database. The performance of the proposed 

method was analysed by using a combination of three different datasets: the 

PASCAL dataset (9,963 images differing in pose, scale, and occlusion), the 

MSRC-v1 dataset (240 images), and a SLAR CBIR dataset containing six 

classes. The experimental results demonstrated that WOW improved results by 

filtering erroneous contents from the outputs of individual modules and showed 

superior performance when implemented on a complex database. The precision-

recall metric value of the proposed method for the PASCAL and MSRC-v1 and 

SLAR CBIR datasets were 34% and 46%, respectively. And also, the precision-

recall curve was above the other curves that refer to better performance level. 

The research study reported in Mohammadpour and Mozaffari (2015) was also 

concerned with the centric object. The authors introduced a method that 

determined the Region Of Interest (ROI) and extracted features from those 

regions for the retrieval process. The proposed system started with a detection 

saliency map from an image using methods from visual attention models such as 

the Itti-Koch model and Graph-Based Visual Saliency (GBVS). In some cases, 

two images may have the same saliency map, though the images are different; 

therefore, it is difficult to discriminate between them. To overcome this problem, 

a Histogram of Orientation Gradient (HOG), a texture histogram (Gabor filter), 
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and a colour histogram in HSV and SIFT descriptors were used to construct a 

feature vector that could easily differentiate between two images by their features. 

Afterwards, the similarity measure between features of a query image and 

features of target images in the database was calculated by using the Earth 

Mover’s Distance (EMD) and SIFT keypoint matching. The system was 

implemented on different datasets: Corel (8,000 images, though only 1,000 

images were used in the experiment), PASCAL VOC, Coil100, and Caltech 101. 

Figure A.7 illustrates examples of the images that were used in the experiments. 

 

Source: Mohammadpour and Mozaffari, 2015 

Figure A.7: Examples of Experiment Images 

The average precision for the Corel dataset and the Caltech 101 dataset were 

approximately 77% and 55%, respectively. As highlighted by the authors, the 

proposed system showed more efficiency compared with the proposed method 

without saliency and the SIMPLIcity method, because the proposed method used 

a saliency map to extract the object, in addition to using the colour histogram and 

HoG feature to capture an efficient feature vector. The main limitation of this 
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study, however, was that it examined a simple dataset with a simple background 

and a single centric object in the image. 

Chathurani et al. (2015) proposed a Rotation-Invariant Bag of Visual Words 

(RIBoW) system for object-based retrieval. This system worked on images in 

which objects only exist in the image centre. Circular image decomposition and a 

simple shifting operation method were used by the RIBoW system in order to 

achieve rotation invariance. Initially, the central object of the image was divided 

into eight similar parts, starting from the centre point, by implementing the circular 

image decomposition method shown in Figure A.8. 

 

Source: Chathurani et al. (2015) 

Figure A.8: Circular Image Decomposition Method 

For each part, seven different types of global image features were extracted. For 

the colour feature, colour coherence vector, colour histogram, and colour 

moments were used. The Gabor wavelet and edge histogram descriptor were 

used as texture descriptors, and invariant moments were utilised for shape 

retrieval, in addition to the GIST feature. Then, these features were clustered by 

the K-mean algorithm to generate vocabularies. For the clustering process, seven 

individual visual vocabularies were generated. After that, a signature for the full 

image was created based on the signatures that were generated for each sub-

image. Furthermore, rotation invariance was achieved through applying a shifting 
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operation. The authors evaluated the performance of the system by using two 

datasets: the Wang dataset and the Caltech 256 dataset. The Wang dataset 

contains 1,000 images selected manually from the Corel dataset; these images 

were divided into 10 classes, with 100 images in each class, namely, Africans, 

buildings, buses, dinosaurs, beaches, elephants, horses, flowers, mountains, and 

food. The Caltech 256 dataset contains 30,522 images which are separated into 

256 classes; the smallest class contains 80 images. Average Precision (AP) was 

used to evaluate the performance of the proposed system, and the results were 

AP=73% and AP=14.7% for the Wang dataset and the Caltech 256 dataset, 

respectively. The reason for the large difference between results is a nature of 

the images contained in the two different datasets. The results indicate that the 

proposed system showed great potential to retrieve the right images, especially 

for images that contain objects. In addition, RIBoW can be implemented on an 

expanded dataset because of its signature-based representation. 

Shivakumar et al. (2013) aimed to solve the challenge of differentiating between 

images that contain similar objects by using the semantic meaning of a search 

query. Initially, the image was processed through multiple stages: edge detection, 

segmentation (which determines objects inside the image), and feature extraction 

(by using the SIFT algorithm). With regard to finding semantic relationships 

between multiple objects in the image, Centroid Of Focus (COF) was used to 

identify the features that belonged to each object and to determine the 

orientations of objects in the image with respect to each other. In the comparison 

stage, Euclidean distance was calculated between the set of SIFT feature vectors 

for the query and target images. SVM was used as the classifier. The system was 

implemented on the Caltech 101 dataset and utilised 1,012 images: 840 were for 
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training and 172 were for testing. Images with person/car, person/motorcycle, and 

person/bicycle were used as tested samples. The results showed that the 

average precision and recall values for the proposed system were 83% and 75%, 

respectively. In addition, a comparison between the proposed semantic retrieval 

system and low-level retrieval (comparison of purely SIFT features without 

considering object positions), as shown in Figure A.9, revealed that the semantic 

system outperformed the other method, because the proposed method extracted 

features for each object in the image, while low-level retrieval (SIFT features) 

extracted features from the whole image. 

 

Source: Shivakumar et al., 2013 

Figure A.9: Accuracy Comparison of Retrieval Methods 

Mochizuki et al. (2013) suggested a new ‘visual-based and object-conscious’ 

technique. Their method was divided into two phases: calculating of image 

features and the retrieval process. The first phase determined the object region 

in the input image by dividing the input image into 4x4 blocks, which were split 

into the object region (OB-blocks) and the background region (BG-blocks), as 

shown in Figure A.10. OB-blocks were defined as blocks that were completely 

included in the ‘centre region’. The rest of the blocks were BG-blocs. Then, a 
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‘visual saliency map’ method was used to specify regions that received a high 

degree of visual attention, which was achieved by an integrative analysis of 

multiple image features involving colour. Furthermore, luminance and orientation 

contrast was used to identify object regions in an image. Then, all OB-blocks were 

shifted toward the centre of the object region in order to reflect the object, as 

shown in Figure A.11. Examples of block allocation are shown in Figure A.12. 

 

Source: Mochizuki et al., 2013 

Figure A.10: Block Distribution to BG-Blocks and OB-Blocks 

 

Source: Mochizuki et al., 2013 

Figure A.11: Setting of Blocks  
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Source: Mochizuki et al., 2013 

Figure A.12: Examples of Block Allocations 

Thereafter, the RGB average, hue histogram, fractal feature, and edge direction 

histogram were calculated for each OB-block as image features. Finally, the 

weight coefficient for each block was calculated depending on its salience level, 

and this was used in the image similarity calculations. The second phase 

calculated similarities between the query image and every image in the database 

by using the weight coefficients, and then displayed the retrieval results. The 

method was tested on 15,000 images which were randomly sampled from various 

nature TV programs. Sixty images were used as query images. The object region 

and background region were taken into consideration for each query image to 

build a correct answer for judging the image retrieval results, as shown in Figure 

A.13.  

Q06 O: sun or moon / B: dark sky 

Source: Mochizuki et al, 2013 

Figure A.13: Query Image and Correct Answer for Query Image  
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Source: Mochizuki et al, 2013 

Figure A.14: Example of Retrieval Results by the Proposed Method  

Images with a pink circle in Figure A.14 illustrate correct answers. The retrieval 

accuracy was computed by the inferred Average Precision (infAP), which 

estimates the expected average precision, and the result was 52%, which is 

higher than the results for comparable methods: the non-weighting-block, SURF-

BOVW, 1-to-1-block, and 1-to-N-block, at 6%, 19%, 11%, and 8%, respectively. 

In addition, ‘object-conscious’ image retrieval was achieved by the proposed 

system while maintaining visual similarity over the entire image. 

Shamsujjoha et al. (2014) presented a model that retrieves an unshaped image 

such as the sea, sky, sand, soil, grass, ice, and rock using the local region based 

on semantic modelling. The objective in using semantic modelling was to 

decrease the semantic gap between the image understanding capabilities of 

humans and computers. The proposed system was divided into five stages. 

Firstly, the RGB histogram was learned from stored and classified images. 

Secondly, the image was divided into an n*n regular grid, as shown in Figure 

A.15, and the RGB histogram dissimilarity factor was computed for each local 

image region corresponding to learned classified images in similar colours. 
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Source: Shamsujjoha et al., 2014 

Figure A.15: Image Representation through Semantic Modelling  

Thirdly, the overall dissimilarity factor was calculated with respect to the semantic 

concept. The purpose of the overall dissimilarity factor was to define the contrast 

between an image block and all trained image blocks of a particular category. 

Finally, the regional dissimilarity factor was computed for each image block. The 

regional dissimilarity factor showed the correspondence between the image’s 

overall dissimilarity factor and its neighbours’ overall dissimilarity factor and was 

used to determine the categories contained in the image. The overall accuracy 

results of the proposed semantic system (where number of experiment natural 

scene images equal 2,000) for unshaped objects utilising the RGB histogram and 

extracted local image regions on a regular grid is shown in Table A.1; the best 

result was 89.86% when the grid size was 6x6. This study considered the image 

as one object instead of using a segmentation algorithm; therefore, it was tested 

on images which had only one object. 
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Grid Size Accuracy 

4 x 4 50.43% 

5 x 5 62.37% 

6 x 6 89.86% 

7 x 7 85.34% 

8 x 8 81.43% 

9 x 9 80.23% 

10 x 10 78.96% 

 

Source: Shamsujjoha et al. 2014 

Table A.1: Overall Accuracy for Different Grid Size 

Another study, which identified and represented objects in a complex traffic scene 

based on colour features integrated with line detection techniques, was proposed 

by Wang, Mohamad and Ismail (2014). The proposed method was divided into 

two main stages: colour feature extraction and object identification and 

recognition. The aim of extracting the colour features from the image was for 

object recognition. Figure A.16 illustrates the five stages that were used to extract 

the colour features. 

 

Source: Wang, Mohamad and Ismail, 2014 

Figure A.16: Feature Extraction Process Data Flow 
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The final CCD image was used as input for the object identification and 

recognition stage. In order to extract the object of interest in the images, an object 

identification and recognition process was needed. The object identification and 

recognition process involved nine stages, as shown in Figure A.17. 

 

Source: Wang, Mohamad and Ismail, 2014 

Figure A.17: Object Identification and Recognition Process Data Flows 

The main concern of the experiment was to assess the accuracy and 

effectiveness of the proposed method in recognising the objects of interest 

(vehicles) in the complex traffic scene. To illustrate the result, tests involving 

single and multiple vehicle detection and recognition in complex and natural 

images were performed. The method achieved excellent results of accuracy for 

the detection of a single vehicle, detection of multiple vehicles, and a combination 

of single and multiple vehicles in the images, at 96%, 94%, and 93%, respectively. 

As a result, the average detection accuracy was 94.33%. In addition, the 

proposed vehicle detection method proved to be precise and robust under 

complex and natural backgrounds. Moreover, it worked well in detecting and 

recognising multiple vehicles. A key limitation of this research, however, was 
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some false detection because of noise created from the smoothing process and 

the diverse colour of the buildings and cars. 

Cedillo-Hernandez et al. (2015) suggested an effective and fast object matching 

operation in order to improve the search speed and retrieval accuracy of Mexican 

archaeological imaging. Their proposed method was implemented through a 

multi-step process: (1) Convert all RGB images in a database (DB) to the Quarter 

Common Intermediate Format (QCIF). (2) In order to reduce the time required for 

indexing by object matching, a frame having a width of ten pixels is built for each 

QCIF image. (3) Extract the SURF descriptor from each QCIF image and save it 

in the descriptor DB. All previous steps are performed in one pass for all images 

in the DB. (4) To retrieve images related to the content of a query image, the 

query image is passed through steps 1-3 to extract a feature descriptor. (5) The 

Euclidean distance is used to determine the similarity between the query image 

and each image in the DB. (6) Ten minimum Euclidean distances are chosen to 

determine which reference images are related to the content of the query image, 

then these values are compared with a threshold value, which is a pre-defined 

value. If any one of these Euclidean distances (Ed) is less than threshold value, 

then the image of this Ed is stored in an array (retrieval array); otherwise, the 

reference image is discarded. (7) Steps 5 and 6 are repeated eight times with all 

the descriptors in the DB. (8) Finally, the images in the retrieval array are 

displayed. Precision and recall were used to measure the performance of the 

proposed method. The proposed system demonstrated 90% accuracy in terms of 

precision when implemented on an image database consisting of 800 colour 

images extracted randomly from the Flickr photo sharing website. The proposed 

method can be used in applications that need to satisfy conditions such as good 
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precision, compact design, low computational complexity, and the use of images 

captured by different digital cameras with distinct geometric and photometric 

operations as well as varied environmental conditions. 

  



 

256 

 

Appendix B: Multiple Objects-Based Image Retrieval 

Among these studies, Kumar, Suneera and Kumar (2011) presented a new 

method of content-based image retrieval depending on objects of user interest. 

The initial step in their method was object selection, in which the user was 

provided with various tools, such as a rectangle, circle, and polygonal tool, to 

select an Object of User’s Interest (OUI). Two steps were then used to retrieve 

images from a database related to the query image. In the first step, integrated 

global colour and texture feature vectors were extracted by calculating the colour 

moments and sub-band statistics of the wavelet multiscale decomposition, 

respectively. Colour and texture were used in order to overcome the influence of 

irrelevant image areas (such as background areas). The second step for image 

retrieval was a combined shape feature using mathematical morphology 

operators with the colour and texture features of the OUI. Then, to fill any holes 

in the results, dilation and erosion operations were applied to find larger and 

smaller objects, respectively. The proposed method was implemented on 

different colour spaces, including RGB, HSV, and YCbCr. A variety of queries 

involving different feature combinations (colour, colour and texture, and colour, 

texture, and shape) were performed in the experiments. The performance was 

evaluated by calculating the average precision of the retrieval results for three 

different combinations. The proposed method was compared with traditional 

methods in different ways, as listed in Table B.1. The highest value was achieved 

in combining colour, texture, and shape features together in different numbers of 

images and colour spaces.  
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Average Precision (%) P (10) P (20) P (30) 

RGB:   g 18.31 15.75 11.48 

RGB:   g & t 41.26 32.17 21.34 

RGB:   g & t & s 53.74 40.12 31.54 

HSV:   g 19.33 17.57 13.61 

HSV:   g & t 43.25 34.43 24.92 

HSV:   g & t & s 55.25 41.43 32.36 

YCbCr:  g 22.50 17.52 12.67 

YCbCr:  g & t 44.11 42.87 22.54 

YCbCr:  g & t & s 54.84 42.87 32.23 

 

Source: Kumar, Suneera and Kumar, 2011 

Table B.1: Average precision of different methods 

Keys: g: global color moment; t: texture feature; s: integrating shape and size feature) 

The proposed method proved to be effective in different colour spaces and with 

non-homogenous regions. Although this method was better than the traditional 

methods it was compared with, the retrieval accuracy was nevertheless inefficient 

as compared to other studies. 

Hong Hanh and Ly Quoc Ngoc (2012) designed a new technique for multiple 

object simultaneous detection using Hmax features and colour clues in order to 

detect interesting objects with different shapes and textures in the streets. A 

robust Hmax model was used to extract feature vectors for the testing stage from 

Streetscene images. These features were passed through to the training stage 

and the detection stage. In the training stage, correlative SVM classifiers were 

combined to detect multiple objects on the same image with parameters set to fit 
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with each object. In the detection stage, the system resized an input image to a 

suitable size (256x256) in order to reduce the image detection time for large 

images. Then, the position and colour clue for each object in the image were 

obtained using the Hmax detector and filter colour, respectively. The proposed 

model was tested for objects of interest on the same image with different image 

sizes. The training and testing images database used in this study was selected 

from 3,547 labelled images from the Streetscene database. The results showed 

that the average result for the detection of presence and absence of 7 objects is 

89.79% that is slightly different from the result of Bileschi (2006), which was 88%.  

With the same objective, Chen, Zhang and Gao (2012) proposed another study 

concerned with Multiple Objects Image Retrieval (MOIR). The goal of this study 

was to build a framework that could retrieve multiple objects from an image in an 

efficient and effective way and to mitigate the problem of over-segmentation by 

introducing a hierarchical image representation. Initially, the user submits a query 

image. Then, the proposed Multi-Resolution Image Analysis (MRIA), which 

involves five main stages as shown in Figure B.1, was applied to the query image 

in order to perform image segmentation and create a hierarchical region tree. 
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Source: Chen, Zhang and Gao, 2012 

Figure B.1: The Proposed MRIA Framework for Hierarchical Image Representation 

Afterwards, the similarity between the query image and each image in the dataset 

was measured by the proposed MOIR framework that extracts multiple objects 

from the same image. Three types of comparison were used leaf to leaf (L-L), leaf 

to sub-tree or sub-tree to leaf (L-P/P-L), and sub-tree to sub-tree (P-P) in order to 
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compare the query image with the target image in the database (the tree of a 

query image with the tree of the target image), as shown in Figure B.2. 

 

Source: Chen, Zhang and Gao, 2012 

Figure B.2: Matching Two Hierarchical Region Trees 

Then, the target images (the top 20 images) were listed in descending order 

depending on their similarity to the query image. The user provided relevance 

feedback by giving either a positive or a negative label to the result. The goal of 

this process was to determine which objects were of interest to the user and to 

avoid additional comparisons during the feedback iteration. The proposed system 

was implemented on a Corel image database that contained 10,000 images, from 

which 50 objects were defined and manually annotated, such as blue sky, red 

car, and roadway, instead of using the Corel category label. Two experiments 

were carried out in order to evaluate the MRIA algorithm: an efficiency analysis 

and an efficacy analysis. The average segmentation efficiency was 98.26% and 

the segmentation quality was 73%. In addition, average precision (AP) and mean 

average precision (mAP) were utilised to assess the performance of the MOIR in 

both single object and multiple object retrieval.  In single object retrieval (560 

query images from 11 categories), the mAP value was 15.52%, which was higher 

than the IRM+SVM, FIRM, and DRM methods by 1%, 3.17%, and 6.1%, 

respectively. The MOIR method achieved a value of 17.58% for multiple object 
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retrieval (201 query images with different object combinations), which also was 

higher than the IRM+SVM, FIRM, and DRM methods, by 3.25%, 6.02%, and 

8.09%, respectively. The authors claimed that the results proved the superiority 

of the proposed method over the other methods. 

Dimitriou et al. (2013) aimed to build a complete system for multiple object 

detection and classification in three dimensions that could see and understand 

the objects in the same manner that humans do. To achieve this goal, they 

proposed a model using an RGB-D sensor such as the Microsoft Kinect sensor, 

which used a combination of an IR light projector and a simple camera to generate 

an RGB plus a depth image pair. The system then used the depth information of 

a scene (RGB plus depth image pair) to detect objects. Edge detection algorithms 

were used directly on the depth image to reveal sharp changes in depth instead 

of sharp changes in luminosity.  Consequently, different objects were detected in 

a scene, and the RGB image was segmented into several isolated object images. 

Next, the Linear Spatial Pyramid Matching (LSPM) classification algorithm was 

used to classify the object images more efficiently. In order to run the system 

properly, various thresholds were used in the detection and the classification 

algorithms. The proposed method was tested on a dataset that consisted of 100 

images from 10 different categories: spray cleaner, book, bottle, hard disk, box, 

can, pot, mug, shampoo, and shoe. It was found that the time required for 

detection was 0.3 seconds for each scene and the time for classification of each 

object was 5ms. The authors claimed that the system offered a fast, precise, and 

preferable classification of multiple objects from just one scene and had many 

advantages over traditional object detection methods. Though the mean 

classification percentage was 84.33%, there were no examples given of object 
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classification, and also the object detection algorithm was complicated. In 

addition, the number of images used in the study was small (i.e. 100 images).  

Pourian and Manjunath (2015) proposed a method for image searches using 

image patches and spatial configurations. The method’s objective was to search 

a database for images containing similar objects (image patches) as well as to 

comply with a set of requirements such as configuration, size, and position. A set 

of images/image patches along with their desired spatial configuration, size, 

and/or location in an image was used to define a query image, as illustrated in 

Figure B.3. 

 

Source: Pourian and Manjunath, 2015  

Figure B.3: An Example of User’s Requirements, (a) Example of Images (b) Graphical 

Query Representation and (c) Ideal Retrieved Image 

The proposed approach provided the ability to measure the object’s size and 

position accurately using the JSEG algorithm, which was followed by learning the 

image parts, which enabled the system to highlight the region associated with 

each object. For each of the training images, the method used an attributed graph 

based on segmented regions to capture the relative spatial information and select 

an algorithm that could collectively teach the image parts across all training 

images. A sub-graph matching approach could then be adopted to find images 

with the same configuration as the query image, as well as to retrieve images with 
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the highest matching score. Three challenging datasets, PASCAL VOC2007, 

ImageNet ILSVRC2010, and TREC, were used to carry out the experiments. 

These datasets have been released each year since 2006 through conducting an 

annual competition and workshop. There are two main challenges: classification—

“does the image contain any instances of a particular object class?” (where the 

object classes include cars, people, dogs, etc.), and detection— “where are the 

instances of a particular object class in the image (if any)?”. In addition, there are 

two subset challenges (“tasters”) on pixel-level segmentation—assign each pixel 

a class label, and “person layout”—localise the head, hands and feet of people in 

the image. Challenges are issued each year on deadlines, then the year result 

and methods are compared and discussed in the workshop held each year. The 

datasets and associated annotation and software are subsequently published 

and available for use at any time (Everingham et al., 2014). In order to evaluate 

the scalability of the method, a publicly available dataset containing 9,963 images 

and 20 object classes from PASCAL VOC2007, as well as a subset of almost one 

million images from ImageNet ILSVRC2010, were adopted.  The retrieval 

accuracy was calculated by using the mAP, and the results were 65% and 59%. 

These results proved that the proposed approach achieved higher retrieval 

accuracy than other methods by 11% and 15% for the VOC07 and TREC 

datasets, respectively. In addition, the retrieval of each query required 

approximately 0.1 seconds. The drawback of this method is that it lacks 

concentration on the effects of object size and position in the retrieval results. 

Another study focused on the extraction of multiple objects from a given image of 

a natural scene. Two different approaches for object extraction were used by 

Muralidharan et al. (2015). In the first approach, context-aware saliency detection 
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and superpixel over-segmentation were sequentially applied to an image to 

obtain objects. The values of the thresholds ( and ) used in this method were 

varied, depending on the scene. Both thresholds were lower when the image had 

a dense scene with close objects but were set higher when the image scene was 

sparse, with scattered objects. In the second method, multiple objects with an 

unlimited number of objects in the scene were extracted using active contour 

techniques on the saliency map. Consequently, the saliency map was used as a 

first step in both methods because it closely imitates the human visual system 

perception and reveals information relevant to the user. Figure B.4 illustrates the 

proposed approach framework. 

 

Source: Muralidharan et al., 2015 

Figure B.4: The Proposed Approach 

The accuracy results for each method depended on the type of image scene. 

When the image contained a large single object, active contour produced better 

results than the superpixel-based method. If the distance between salient objects 

was small or the object was occluded, the superpixel-based method produced 

better results than the active contour. Therefore, using these two methods 

together could improve the results in extracting the entire set of salient sub-
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regions from the image. The proposed system was applied to various complex 

scenes, such as kitchens, coasts, streets, and industry. In this study, the image 

size does not influence the complexity of the proposed method, making this 

method different from previous localisation algorithms. Moreover, potentially 

distinct salient objects were directly extracted and localised in an unsupervised 

framework. Also, the proposed approach showed the ability to extract objects in 

different locations because the saliency map assigned a bright intensity to the 

parts of an object. However, the proposed approach greatly relied on the output 

of the saliency map. Therefore, it fails when objects have the same colour as the 

background because the saliency map fails to detect these salient regions. In 

addition, it would be necessary to perform a comprehensive evaluation of the 

proposed method on more challenging datasets, and the threshold values for 

different scenes should be estimated automatically.  

Chamasemani et al. (2015) proposed a video indexing module that represents an 

important part of a video surveillance indexing and retrieval system. Seven stages 

comprised the proposed module, as shown in Figure B.5: background modelling, 

foreground extraction, blob detection, blob analysis, feature extraction, blob 

representation, and blob indexing. 
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Source: Chamasemani et al., 2015 

Figure B.5: Block Diagram of the Video Indexing Module 

An adapted Mixture of Gaussian (MoG) approach in HSV colour space was 

proposed as the background model for blob detection (in the foreground regions).  

This background module was employed to find foreground regions by considering 

each pixel that does not belong to the background model as a foreground pixel. 

Next, the connected component algorithm was applied to connect the foreground 

regions in order to extract blobs. Morphological operation was employed to select 

interesting blobs with a proper size and shape. Area, centroid, orientation, SIFT, 

colour histogram, entropy, homogeneity, and Hu moments were utilised to 

represent the global and local features of the selected objects. Then, these 

features were used to assign the blob and to save it for use in future processing. 

The PETS 2007 dataset was used for the proposed module experiment. The 

results showed that the proposed module achieved more precise results than two 

other approaches for background moduling (original MoG and temporal 

differencing) in extracting the foreground, memory consumption, shadow 

elimination (as shown in Figure B.6), and  illumination sensitivity in the scene. 

The drawback of this module was the existence of some residual blobs after 

extraction of the foreground that do not represent any useful objects. 



 

267 

 

  

 (a)                                                 (b) 

Source: Chamasemani et al., 2015 

Figure B.6: Results Comparison on Foreground Extraction by Using: (a) the Original 

and (b) the Proposed Mog In HSV Color Space  
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PLYMOUTH UNIVERSITY FACULTY OF SCIENCE AND  ENGINEERING 

 
Research Ethics Committee 

 
APPLICATION FOR ETHICAL APPROVAL OF RESEARCH INVOLVING 

HUMAN PARTICIPANTS 
 

All applicants should read the guidelines which are available via the following link:  
https://staff.plymouth.ac.uk//scienv/humanethics/intranet.htm  

 
This is a WORD document.  Please complete in WORD and extend space where necessary. 

All applications must be word processed. Handwritten applications will be returned. 
 
Please submit with interview schedules and/or questionnaires appropriately. 
 

Postgraduate and Staff must submit a signed copy to SciEngHumanEthics@plymouth.ac.uk  
 
Undergraduate students should contact their School Representative of the Science and 
Engineering Research Ethics Committee or dissertation advisor prior to completing this form to 
confirm the process within their School. 
 
School of Computing, Electronics and Mathematics undergraduate students – please submit 
to SciEngHumanEthics@plymouth.ac.uk with your project supervisor copied in.  
______________________________________________________________________________ 
 

1. TYPE OF PROJECT 
 
1.1   What is the type of project?  (Put an X next to one only) 
 
STAFF should put an X next to one of the three options below: 
 
Specific project  X 
 
Thematic programme of research         
 
Practical / Laboratory Class 
.        
1.2 Put an X next to one only 
 
POSTGRADUATE STUDENTS should put an X next to one of the options below: 
 
Taught Masters Project  
 
M.Phil / PhD by research X 
 
UNDERGRADUATE STUDENTS should put an X next to one of the options below: 
 
Student research project      
   
Practical / Laboratory class where you are acting as the experimenter     
          

2. APPLICATION 
 

2.1  TITLE of Research project 

An Object-based Multimedia Forensic Analysis Tool 

2.2  General summary of the proposed research for which ethical clearance is sought, briefly 
outlining the aims and objectives and providing details of interventions/procedures involving 
participants (no jargon) 

https://staff.plymouth.ac.uk/scienv/humanethics/intranet.htm
mailto:SciEngHumanEthics@plymouth.ac.uk
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The objective of the proposed system is to automate the identification and extraction of annotation-based 
evidence from multimedia content. In addition to making multimedia data searchable, the Object-based 
Multimedia Forensic Analysis Tool (OM-FAT) system will enable investigators to perform a variety of forensic 
analyses (Search Using Annotations, Metadata, Object Matching, Text Similarity and Geo Tracking) to help 
investigators to understand the relationship between artefacts and thus reduce the time taken to perform an 
investigation and the cognitive load of the investigator. It enables the investigator to ask higher-level and 
more abstract questions of the data, then finding answers to the essential questions in the investigation: 
what, who, why, how, when, and where. 
 
The purpose of the ethical approval is to permit an expert-based evaluation of the proposed system. The 
purpose of this evaluation is to validate the novelty of the research undertaken, review different aspects of 
the developed tool and identify its strengths, weaknesses and limitations using the experts’ knowledge and 
experience.  
 
Experts will be invited formally via e-mail on an individual basis and once the invitation is accepted (with a 
time-slot of their choice), the consent form will be sent to them to be read and signed. During the interview, 
experts will be requested to watch a video podcast that will brief them on how the system works and will 
include screenshots of interfaces of the developed prototype. Following this, a set of prepared interview 
questions will be asked to collect the feedback. All interview sessions will be recorded with the interviewees’ 
prior permission for later analysis.  
 

2.3  Physical site(s) where research will be carried out 

The experts will be interviewed over the Internet (via Skype, most likely). 
 

2.4 External Institutions involved in the research (e.g. other university, hospital, prison etc.) 

None. 
 

2.5  Name, telephone number, e-mail address and position of lead person for this project (plus full 
details of Project Supervisor if applicable)  

Mrs Shahlaa Mashhadani(Research student) – shahlaa.mashhadani@plymouth.ac.uk, +447438750742 
Prof Nathan Clarke (Director of studies) - N.Clarke@plymouth.ac.uk, +441752586218  
Dr Fudong Li (Second supervisor) - fudong.li@port.ac.uk,   
 

2.6  Start and end date for research for which ethical clearance is sought (NB maximum period is 3 
years) 

 
Start date: 1 April 2019      End date: 30 September 2019 
 

2.7 Has this same project received ethical approval from another Ethics Committee?  

 
Delete as applicable:  No           

2.8 If yes, do you want Chairman’s action? 

 
Delete as applicable:  No         Yes      
If yes, please include other application and approval letter and STOP HERE.  If no, please continue 

 
3. PROCEDURE 
 

3.1  Describe procedures that participants will engage in,  Please do not use jargon 

 At least 12 experts who have experience and qualifications related to the research project will be 
identified. Ideally this will include a mixture of practitioners and academics. 

 All identified experts will be formally invited via e-mail. 

 Once the invitation is accepted, consent form will be sent for their approval. 

 During the interview, the interviewee will first be requested to watch a video podcast (15 or 20 minutes 
long) that will provide brief how the system works. 

 Following the podcast, a set of questions will be asked to collect the experts’ feedback. 

 All interview sessions will be conducted in English and will be recorded (with prior permission) for later 
analysis. 

 The data from the interviews will be kept securely for 10 years. 
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 Finally, a copy of the transcribed interviews will be sent to the experts to confirm that they have been 
represented fairly and nothing critical has been missed out in terms of context. The document 
containing the transcribed interviews will be encrypted and password protected to maintain data 
confidentiality. Secure e-mail system will be used for the document transmission. 

 

3.2 How long will the procedures take? Give details 

The total amount of time needed for each expert participant will be around 30 minutes depending on the 
responses and resulting discussion. 
 

3.3 Does your research involve deception? 

 
Delete as applicable:  No           
3.4  If yes, please explain why the following conditions apply to your research: 

a)   Deception is completely unavoidable if the purpose of the research is to be met 

 
 

b)   The research objective has strong scientific merit 

 
 

c)   Any potential harm arising from the proposed deception can be effectively neutralised or 
reversed by the proposed debriefing procedures (see section below) 

 
 

3.5  Describe how you will debrief your participants 

The interview will begin by asking the interviewee to watch the video podcast which will explain how the 
system works and demonstrate the developed prototype. This will give the experts a better understanding 
of the research. Latter part of the interview will involve collecting their feedback by asking a set of questions 
about the research and the prototype.  
All sessions will be recorded with permission and a copy of the transcribed interviews will be sent to the 
experts to confirm that they have been represented fairly and nothing critical has been missed out in terms 
of context. 
 

3.6 Are there any ethical issues (e.g. sensitive material)? 

 
Delete as applicable:  No           
3.7 If yes, please explain.  You may be asked to provide ethically sensitive material. See also 
section 11 
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 4.  BREAKDOWN OF PARTICIPANTS 
 

4.1 Summary of participants 
 

Type of participant Number of participants 

 
Non-vulnerable Adults 

 

At least 12 

 
Minors (< 16 years) 

 

N/A 

 
Minors (16-18 years) 

 

N/A 

 
Vulnerable Participants 

(other than by virtue of being a 
minor) 

 

N/A 

 
Other (please specify) 

 

N/A 

 
TOTAL 

12 (at least) 

 

 
4.2 How were the sample sizes determined? 

A minimum of 12 experts in the field of digital forensics are considered to be a sufficient baseline to provide 
a solid base for evaluation.  
 

4.3 How will subjects be recruited? 

The experts - predominantly people with experience and knowledge in the field of digital forensics - will be 
recruited from outside University of Plymouth. They will be formally invited via e-mail. Professional contacts 
via the supervision team will provide a basis for the invitations. 
 

4.4 Will subjects be financially rewarded?  If yes, please give details. 

No.  
 

 
5. NON-VULNERABLE ADULTS 

 
5.1 Are some or all of the participants non-vulnerable adults? 

 
Delete as applicable:      Yes      
5.2  Inclusion / exclusion criteria 

Participants must: 
- Be 18 years old or above 
- Agree and understand the procedure 

 

5.3 How will participants give informed consent? 

Participants will be given the consent form at the beginning of the evaluation ensuring that they understand 
that they can withdraw from the evaluation at any time, if they wish to do so.  
 

5.4  Consent form(s) attached 

 
Delete as applicable:      Yes      
If no, why not? 

 
 

5.5  Information sheet(s) attached 
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Delete as applicable:      Yes      
If no, why not? 

 
 

5.6 How will participants be made aware of their right to withdraw at any time? 

Participant’s right to withdraw from the evaluation process at any point is stated in the consent form.  
 

5.7 How will confidentiality be maintained, including archiving / destruction of primary data where 
appropriate, and how will the security of the data be maintained? 

Recorded interview sessions will be stored in an external storage device to ensure security and 
confidentiality. On successful transcription of the results, the primary data (recordings) will be permanently 
deleted.  
Recording of interview sessions will not contain any identifying information. Also, none of the transcribed 
results of the evaluation will include any information that can identify any of the participants. 
 

 

6. MINORS <16 YEARS 
 

6.1  Are some or all of the participants under the age of 16? 

 
Delete as applicable:            No           
If yes, please consult special guidelines for working with minors.  If no, please continue. 

 
6.2  Age range(s) of minors 

N/A 
 

6.3  Inclusion / exclusion criteria 

N/A 
 

6.4  How will minors give informed consent? Please tick appropriate box and explain (See 
guidelines) 

 
Delete as applicable:                                     N/A 

6.5  Consent form(s) for minor attached 

 
Delete as applicable:                               N/A     

If no, why not? 

N/A 
 

6.6  Information sheet(s) for minor attached 

 
Delete as applicable:      N/A  

If no, why not? 

N/A 
 

6.7  Consent form(s) for parent / legal guardian attached 

 
Delete as applicable:      N/A 

If no, why not? 

N/A 
 

6.8  Information sheet(s) for parent / legal guardian attached 

 
Delete as applicable:      N/A 

If no, why not? 

N/A 
 

6.9  How will minors be made aware of their right to withdraw at any time? 

N/A 
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6.10  How will confidentiality be maintained, including archiving / destruction of primary data 
where appropriate, and how will the security of the data be maintained? 

N/A 
 

 
 
7. MINORS 16-18 YEARS OLD 

 
7.1  Are some or all of the participants between the ages of 16 and 18? 

 
Delete as applicable:  No           
If yes, please consult special guidelines for working with minors.  If no, please continue. 

7.2  Inclusion / exclusion criteria 

N/A 
 

7.3  How will minors give informed consent?  (See guidelines) 

N/A 
 

7.4  Consent form(s) for minor attached 

 
Delete as applicable:                       N/A 

If no, why not? 

N/A 
 

7.5  Information sheet(s) for minor attached 

 
Delete as applicable:      N/A 

If no, why not? 

N/A 
 

7.6  Consent form(s) for parent / legal guardian attached 

 
Delete as applicable:      N/A 

If no, why not? 

N/A 
 

7.7  Information sheet(s) for parent / legal guardian attached 

 
Delete as applicable:      N/A 

If no, why not? 

N/A 
 

7.8  How will minors be made aware of their right to withdraw at any time? 

N/A 
 

7.9  How will confidentiality be maintained, including archiving / destruction of primary data where 
appropriate, and how will the security of the data be maintained? 

N/A 
 

 
8. VULNERABLE GROUPS 
 

8.1  Are some or all of the participants vulnerable?  (See guidelines) 
 
 

Delete as applicable:  No           
If yes, please consult special guidelines for working with vulnerable groups.  If no, please 
continue. 

8.2  Describe vulnerability (apart from possibly being a minor) 

N/A 
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8.3  Inclusion / exclusion criteria 

N/A 
 

8.4  How will participants give informed consent? 

N/A 
 

8.5  Consent form(s) for vulnerable person attached 

 
Delete as applicable:      N/A 

If no, why not? 

N/A 
 

8.6  Information sheet(s) for vulnerable person attached 

 
Delete as applicable:      N/A 

If no, why not? 

N/A 
 

8.7  Consent form(s) for parent / legal guardian attached 

 
Delete as applicable:      N/A 

If no, why not? 

N/A 
 

8.8  Information sheet(s) for parent / legal guardian attached 

 
Delete as applicable:      N/A 

If no, why not? 

N/A 
 

8.9  How will participants be made aware of their right to withdraw at any time? 

N/A 
 

8.10  How will confidentiality be maintained, including archiving / destruction of primary data 
where appropriate, and how will the security of the data be maintained? 

N/A 
 

 
9. EXTERNAL CLEARANCES 
 
Investigators working with children and vulnerable adults legally require clearance from the 
Disclosure and Barring Service (DBS) 
 

9.1  Do ALL experimenters in contact with children and vulnerable adults have current DBS 
clearance?  Please include photocopies. 

 
Delete as applicable:                 N/A      
 If no, explain 

N/A 
 

9.2  If your research involves external institutions (school, social service, prison, hospital etc) 
please provide cover letter(s) from institutional heads permitting you to carry out research on their 
clients, and where applicable, on their site(s).  Are these included? 

 
Delete as applicable:                 N/A      
If not, why not? 

N/A 
 

 
10. PHYSICAL RISK ASSESSMENT 
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10.1  Will participants be at risk of physical harm (e.g. from electrodes, other equipment)?  (See 
guidelines) 

 
Delete as applicable:     No           
10.2  If yes, please describe 

N/A 
 

10.3  What measures have been taken to minimise risk? Include risk assessment proformas which 
has been signed by the Head of Department  

N/A 
 
 

10.4  How will you handle participants who appear to have been harmed? 

N/A 
 

 
11. PSYCHOLOGICAL RISK ASSESSMENT 

 
11.1  Will participants be at risk of psychological harm (e.g. viewing explicit or emotionally 
sensitive material, being stressed, recounting traumatic events)?  (See guidelines) 

 
Delete as applicable:  No           
11.2  If yes, please describe 

N/A 
 

11.3  What measures have been taken to minimise risk? 

N/A 
 

11.4  How will you handle participants who appear to have been harmed? 

N/A 
 

 
 12.  RESEARCH OVER THE INTERNET 

 
12.1  Will research be carried out over the internet? 

 
Delete as applicable:      Yes      
12.2  If yes, please explain protocol in detail, explaining how informed consent will be given, right 
to withdraw maintained, and confidentiality maintained.  Give details of how you will guard against 
abuse by participants or others (see guidelines) 

Participants will be provided with the consent form in the beginning, by signing which, they can agree to 
participate in the evaluation. It also gives them the right to withdraw from the process at any time. Also, all 
participants will be asked to confirm their age (18 years or above). Recording of interview sessions will not 
contain any identifying information. Also, none of the transcribed results of the evaluation will include any 
information that can identify any of the participants. 

 

 
13.  CONFLICTS OF INTEREST & THIRD PARTY INTERESTS 

 
13.1  Do any of the experimenters have a conflict of interest?  (See guidelines) 

 
Delete as applicable:  No           
13.2  If yes, please describe 

N/A 
 

13.3  Are there any third parties involved?   (See guidelines) 

 
Delete as applicable:  No           
13.4  If yes, please describe 
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N/A 
 

13.5  Do any of the third parties have a conflict of interest?   

 
Delete as applicable:      N/A 

13.6  If yes, please describe 

N/A 
 

 
14. ADDITIONAL INFORMATION 

 
14.1  [Optional] Give details of any professional bodies whose ethical policies apply to this 
research  

N/A 
 

14.2  [Optional] Please give any additional information that you wish to be considered in this 
application 

N/A 
 

 
15. ETHICAL PROTOCOL & DECLARATION 

 
To the best of our knowledge and belief, this research conforms to the ethical principles laid down by the 
University of Plymouth and by any professional body specified in section 14 above. 
 
This research conforms to the University’s Ethical Principles for Research Involving Human Participants with 
regard to openness and honesty, protection from harm, right to withdraw, debriefing, confidentiality, and 
informed consent 
 
Sign below where appropriate: 
 
STAFF / RESEARCH POSTGRADUATES 
 
     Print Name  Signature        Date 
 
Principal Investigator:      Shahlaa Mashhadani   Shahlaa Mashhadani              __________  
  
                      Prof. Nathan Clarke               ______________________ __________ 
 
           Fudong Li.                            ______________________ __________ 
      
      
 
 
Staff and Research Postgraduates should email the completed and signed copy of this form to Paula 
Simson. 
UG Students 
 
     Print Name   Signature   Date 
 
Student:      ______________________ _____________ 
 
Supervisor / Advisor:     ______________________ _____________ 
 
        ______________________ _____________ 
 
        ______________________ _____________ 
 
Undergraduate students should pass on the completed and signed copy of this form to their School 
Representative on the Science and Engineering Human Ethics Committee. 
 
        Signature   Date 
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School Representative on Science and 
Engineering Faculty Human Ethics Committee                ______________________ _____________ 

 
 

 
Faculty of Science and Engineering Research Ethics Committee List of School 
Representatives 
 
School of Geography, Earth and Environmental Sciences Dr Sanzidur Rahman 
     Dr Kim Ward 
 
School of Biological Sciences  Dr Victor Kuri  
 
School of Biomedical and Healthcare Sciences   Dr David J Price  
 
School of Marine Science & Engineering  Dr Gillian Glegg (Chair)  
     Dr Liz Hodgkinson  
 
School of Computing, Electronics & Mathematics   Dr Mark Dixon 
     Dr Yinghui Wei  
 
External Representative   Prof Linda La Velle 
          
Lay Member   Rev. David Evans 

 

Committee Secretary:  Mrs Paula Simson   

email: paula.simson@plymouth.ac.uk 

tel: 01752 584503 
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    SAMPLE SELF-CONSENT FORM  
 

 

PLYMOUTH UNIVERSITY 
 

FACULTY OF SCIENCE AND ENGINEERING  
 

Human Ethics Committee Sample Consent Form 
 

CONSENT TO PARICIPATE IN RESEARCH PROJECT / PRACTICAL STUDY 
 
 

________________________________________________________________________ 
Name of Principal Investigator 
 
Shahlaa Mashhadani 
________________________________________________________________________ 
Title of Research  
 
An Object-based Multimedia Forensic Analysis Tool 
________________________________________________________________________ 
Brief statement of purpose of work 
 
The purpose of the research is to automate the identification and extraction of annotation-
based evidence from multimedia content. In addition to making multimedia data searchable, 
the Object-based Multimedia Forensic Analysis Tool (OM-FAT) system will enable 
investigators to perform a variety of forensic analyses (Search Using Annotations, Metadata, 
Object Matching, Text Similarity and Geo Tracking) to help investigators to understand the 
relationship between artefacts and thus reduce the time taken to perform an investigation 
and the cognitive load of the investigator. It enables the investigator to ask higher-level and 
more abstract questions of the data, then finding answers to the essential questions in the 
investigation: what, who, why, how, when, and where. 
To achieve this aim, a Novel Framework for Object-based Multimedia Forensic Analysis Tool 
(OM-FAT) has been developed. The OM-FAT is a holistic system that able to extract, index, 
analyse the recovered images/videos and provide an investigator with an environment with 
which to ask more abstract and cognitively challenging questions of the data. In addition, the 
extracted evidence must be in a form that makes it more convenient and acceptable in a 
court of law. 
 
The developed system requires an evaluation from the stakeholder community (i.e. experts 
in the field of digital forensics) with the purpose to review the approach taken, the 
functionality and to identify its strengths, weaknesses and limitations.  As such, I would be 
grateful for your participation. This will involve watching a video of the prototype tool and 
then participating in a telephone or Skype interview to gather your feedback. 
 
You have the right to withdraw at any stage of this evaluation process. Should you wish to 
do so, please contact Shahlaa Mashhadani.  
 
For information regarding the study, please contact: 
Shahlaa Mashhadani – shahlaa.mashhadani@plymouth.ac.uk  
 

mailto:shahlaa.mashhadani@plymouth.ac.uk
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For any questions concerning the ethical status of this study, please contact the secretary 

of the Human Ethics Committee – paula.simson@plymouth.ac.uk  

 
________________________________________________________________________ 
 
 
The objectives of this research have been explained to me.   
 
I understand that I am free to withdraw from the research at any stage, and ask for my data 
to be destroyed if I wish.  
 
I understand that my anonymity is guaranteed, unless I expressly state otherwise.  
 
I understand that the Principal Investigator of this work will have attempted, as far as 
possible, to avoid any risks, and that safety and health risks will have been separately 
assessed by appropriate authorities (e.g. under COSHH regulations)   
 
Under these circumstances, I agree to participate in the research. 
 
 
 
Name:        ……………………………………….   
 
 
Signature:   .....................................……………..                    Date:   ................………….. 

mailto:paula.simson@plymouth.ac.uk
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SAMPLE INFORMATION SHEET FOR ADULT / CHILD 
 

PLYMOUTH UNIVERSITY 
 

FACULTY OF SCIENCE AND ENGINEERING 
 

RESEARCH INFORMATION SHEET 
 
 

________________________________________________________________________ 
Name of Principal Investigator 
 
Shahlaa Mashhadani 
________________________________________________________________________ 
Title of Research  
 
An Object-based Multimedia Forensic Analysis Tool 
_______________________________________________________________________ 
Aim of research 
 
The aim of the research is to automate the identification and extraction of annotation-based 
evidence from multimedia content. In addition to making multimedia data searchable, the 
Object-based Multimedia Forensic Analysis Tool (OM-FAT) system will enable investigators 
to perform a variety of forensic analyses (Search Using Annotations, Metadata, Object 
Matching, Text Similarity and Geo Tracking) to help investigators to understand the 
relationship between artefacts and thus reduce the time taken to perform an investigation 
and the cognitive load of the investigator. It enables the investigator to ask higher-level and 
more abstract questions of the data, then finding answers to the essential questions in the 
investigation: what, who, why, how, when, and where. 
 
To achieve this aim, a Novel Framework for Object-based Multimedia Forensic Analysis Tool 
(OM-FAT) has been developed. The OM-FAT is a holistic system that able to extract, index, 
analyse the recovered images/videos and provide an investigator with an environment with 
which to ask more abstract and cognitively challenging questions of the data. In addition, the 
extracted evidence must be in a form that makes it more convenient and acceptable in a 
court of law. 
 
Description of procedure 
 
During the interview, the experts will be requested to watch a video podcast that will brief 
them on how the system works and will include screenshots of interfaces of the developed 
prototype. Following this, prepared interview questions will be asked to collect the feedback.  
 
All interview sessions will be conducted over the Internet (preferably using Skype) and the 
medium of communication will be English. Total amount of time needed for each session 
will vary between 30 and 40 minutes depending on the questions and discussion. All 
sessions will be recorded with the interviewee’s prior permission for later analysis. Records 
will be deleted once the feedback is transcribed.  
 
 
Description of risks 
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All of the information will be treated confidentially and data will be anonymous during the 
collection, storage and publication of research material. 
 
Benefits of proposed research 
 
The objective of this research is to automate the identification and extraction of annotation-
based evidence from multimedia content. In addition to making multimedia data searchable, 
the Object-based Multimedia Forensic Analysis Tool (OM-FAT) system will enable 
investigators to perform a variety of forensic analyses (Search Using Annotations, Metadata, 
Object Matching, Text Similarity and Geo Tracking) to help investigators to understand the 
relationship between artefacts and thus reduce the time taken to perform an investigation 
and the cognitive load of the investigator. It enables the investigator to ask higher-level and 
more abstract questions of the data, then finding answers to the essential questions in the 
investigation: what, who, why, how, when, and where. 
 
Right to withdraw 
 
You have the right to withdraw at any time during the interview session.  
 
If you are dissatisfied with the way the research is conducted, please contact the principal 
investigator in the first instance: telephone number [07438750742].  If you feel the problem 
has not been resolved please contact the secretary to the Faculty of Science and 
Engineering Human Ethics Committee:  Mrs Paula Simson 01752 584503. 
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SAMPLE CONSENT FORM FOR PARENT/LEGAL GUARDIAN 
 

 

PLYMOUTH UNIVERSITY 
 

FACULTY OF SCIENCE AND ENGINEERING 
 

Human Ethics Committee Sample Consent Form 
 

CONSENT TO PARTICIPATE IN RESEARCH PROJECT / PRACTICAL STUDY 
 
 

________________________________________________________________________ 
Name of Principal Investigator 
 
 
________________________________________________________________________ 
Title of Research  
 
 
________________________________________________________________________ 
Brief statement of purpose of work 
 
 
 
 
 
 
 
________________________________________________________________________ 
 
 
I am the *parent /legal guardian of ________________________________________ 
 
The objectives of this research have been explained to me.   
 
I understand that *she/he is free to withdraw from the research at any stage, and ask for 
*his/her data to be destroyed if I wish.  
 
I understand that *his/her anonymity is guaranteed, unless I expressly state otherwise.  
 
I understand that the Principal Investigator of this work will have attempted, as far 
as possible, to avoid any risks, and that safety and health risks will have been  
separately assessed by appropriate authorities (e.g. under COSSH regulations)   
 
Under these circumstances, I agree for him/her to participate in the research. 
 
      * delete as appropriate 
Name:        ……………………………………….   
 
 
Signature:   .....................................……………..                    Date:   ................…………. 
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