1,516 research outputs found

    Mesenchymal stem cells and induced pluripotent stem cells as therapies for multiple sclerosis.

    Get PDF
    Multiple sclerosis (MS) is a chronic, autoimmune, inflammatory demyelinating disorder of the central nervous system that leads to permanent neurological deficits. Current MS treatment regimens are insufficient to treat the irreversible neurological disabilities. Tremendous progress in the experimental and clinical applications of cell-based therapies has recognized stem cells as potential candidates for regenerative therapy for many neurodegenerative disorders including MS. Mesenchymal stem cells (MSC) and induced pluripotent stem cell (iPSCs) derived precursor cells can modulate the autoimmune response in the central nervous system (CNS) and promote endogenous remyelination and repair process in animal models. This review highlights studies involving the immunomodulatory and regenerative effects of mesenchymal stem cells and iPSCs derived cells in animal models, and their translation into immunomodulatory and neuroregenerative treatment strategies for MS

    High efficient differentiation of functional hepatocytes from porcine induced pluripotent stem cells

    Get PDF
    Hepatocyte transplantation is considered to be a promising therapy for patients with liver diseases. Induced pluripotent stem cells (iPSCs) provide an unlimited source for the generation of functional hepatocytes. In this study, we generated iPSCs from porcine ear fibroblasts (PEFs) by overexpressing Sox2, Klf4, Oct4, and c-Myc (SKOM), and developed a novel strategy for the efficient differentiation of hepatocyte-like cells from porcine iPSCs by following the processes of early liver development. The differentiated cells displayed the phenotypes of hepatocytes, exhibited classic hepatocyte-associated bio-functions, such as LDL uptake, glycogen storage and urea secretion, as well as possessed the metabolic activities of cytochrome P-450 (CYP) 3A and 2C. Furthermore, we compared the hepatocyte differentiation efficacy of our protocol with another published method, and the results demonstrated that our differentiation strategy could significantly improve the generation of morphological and functional hepatocyte-like cells from porcine iPSCs. In conclusion, this study establishes an efficient method for in vitro generation of functional hepatocytes from porcine iPSCs, which could represent a promising cell source for preclinical testing of cell-based therapeutics for liver failure and for pharmacological applications. Β© 2014 Ao et al

    Cholangiocytes: Cell transplantation

    Get PDF
    Background:Due to significant limitations to the access to orthotropic liver transplantation, cell therapies forliver diseases have gained large interest worldwide.Scope of review:To revise current literature dealing with cell therapy for liver diseases. We discussed the ad-vantages and pitfalls of the different cell sources tested so far in clinical trials and the rationale underlying thepotential benefits of transplantation of human biliary tree stem cells (hBTSCs).Major conclusions:Transplantation of adult hepatocytes showed transient benefits but requires immune-sup-pression that is a major pitfall in patients with advanced liver diseases. Mesenchymal stem cells and hemato-poietic stem cells transplanted into patients with liver diseases are not able to replace resident hepatocytes butrather they target autoimmune or inflammatory processes into the liver. Stem cells isolated from fetal or adultliver have been recently proposed as alternative cell sources for advanced liver cirrhosis and metabolic liverdisease. We demonstrated the presence of multipotent cells expressing a variety of endodermal stem cell markersin (peri)-biliary glands of bile ducts in fetal or adult human tissues, and in crypts of gallbladder epithelium. Inthefirst cirrhotic patients treated in our center with biliary tree stem cell therapy, we registered no adverse eventbut significant benefits.General significance:The biliary tree stem cell could represent the ideal cell source for the cell therapy of liverdiseases. This article is part of a Special Issue entitled: Cholangiocytes in Health and Diseaseedited by JesusBanales, Marco Marzioni, Nicholas LaRusso and Peter Jansen

    Regenerative Medicine in Liver Cirrhosis: Promises and Pitfalls

    Get PDF
    Liver cirrhosis is irreversible and mostly ends up with complete loss of liver function/end‐stage liver failure, and the only proven treatment is liver transplantation. Scarcity of donor, high cost, lifelong immunosuppression, and surgical complications are the major issues associated with liver transplantation and these urge to look for alternate therapeutic approaches. Advancements in the field of regenerative medicine are arising hope for the treatment of liver cirrhosis. This chapter deals with the scope of liver regenerative medicine in the treatment of liver cirrhosis. Review of the literature showed that liver regenerative medicine no doubt holds great promises and added a lot of hope to the cure of liver diseases. Primarily, cell‐based therapies had shown great potential to treat liver cirrhosis. Successful clinical human trials further strengthen their significance in the field. However, recent trends in liver regenerative medicine are focusing on the development of tissue engineering leading to generation of the whole organ. Despite advantages, liver regenerative medicine has several limitations and sometimes been over‐optimistically interpreted. In conclusion, the current scenario advocates to conduct more preclinical and clinical trials to effectively replace liver transplantation with liver regenerative medicine to treat liver diseases

    Non-coding RNA analysis of iPSCs-derived hepatocyte-like cells

    Get PDF
    The liver is a crucial human organ with a complex architecture. Although the liver has great regeneration potential, deadly liver diseases are associated with irreversible hepatocytes damage. Currently, a liver transplant is the only treatment for liver failure. A shortage of donors forced extensive research for alternative treatments. The most promising hepatocyte source could be obtained from the differentiation of induced pluripotent stem cells (iPSCs). This technology can give us great amounts of pluripotent cells without ethical restrictions, which could be available in a variety of haplotypes to minimize the possibility of rejection. There are many reprogramming protocols available. However, there is still no standardised method to obtain clinical grade iPSCs. From those stem cells, it is possible to obtain hepatic-like cells (HLCs) by direct differentiation in vitro. HLCs express multiple hepatocyte-specific features, but their names signal that they still show fetal liver identity. A variety of hepatic differentiation protocols were described, although the process of hepatic differentiation must be improved in order to be translated into the clinic. Along with genes, microRNA (miRNA) is the well-known controller of cell fate. MiRNA is a type of non-coding RNA (ncRNA) which can influence gene transcription by inhibiting gene expression. In contrast to genes, many of the miRNA can affect up to thousands of genes simultaneously. Another group of ncRNA, which is a subject of potential differences are small nucleolar RNA (snoRNA). SnoRNA are involved in RNA chemical modifications by acting as a guide, mostly for ribosomal RNA (rRNA), but some of them have additional functions. In this study, a new iPSCs line was generated from skin fibroblasts using lipotransfection of episomal vectors. This method is free from exogene integration and shows low cytotoxicity. A pluripotency of generated cells was confirmed by morphological assessment, immunocytochemical staining, and spontaneous differentiation assay. To be sure that the genome of the cells was not changed, karyotype analysis was performed. Next, HLCs were derived from those iPSCs using a four-stage hepatic differentiation protocol. The obtained HLCs were characterised using, among others, a hepatic gene expression analysis. Cells after differentiation express mature and fetal hepatic markers, which is consistent with previous results. The attempt to improve differentiation using transient overexpression of master hepatic transcription factor – HNF4Ξ±, was not sufficient, as shown by gene expression analysis and whole slide scanning. Previous studies failed to point out the genetic inhibitors of hepatic maturation and non-coding RNA (ncRNA) profiles of iPSCs – derived HLCs were not investigated. In this study, the sequencing of ncRNA was performed in order to compare the expression profiles of HLCs on two stages of differentiation (Day 20 and 24) with mature hepatocytes. The obtained results indicate that HLCs express miRNA, which control hepatic differentiation and maintain their fetal liver character. In comparison to mature hepatocytes, differentially expressed miRNAs in HLCs control the pathways of fatty acid metabolism and synthesis, proteoglycan in cancer, the Hippo signaling pathway, ECM-receptor interaction and adherens junction. Some of those highly expressed miRNAs can potentially block maturation by inhibiting epithelial-mesenchymal transition (EMT) which has an impact that is essential during hepatic differentiation. However, this should be resolved in future research. In this work, differentially expressed snoRNA were also identified. A total of 68% of differentially expressed snoRNAs was C/D box class. This is interesting because this snoRNa class was previously indicated as capable to be processed by an miRNA processing pathway. Many of the differentially expressed snoRNAs belong to the imprinted loci, in which a different expression in a human were analysed before. In obteined dataset, copies of SNORD115 were upregulated in a liver, but not in HLCs, which is consistent with an earlier comparison of a liver and other endoderm organs. Additionally, an analysis of obtained sequencing data allowed for a discovery of 19 novel snoRNA genes. In summary, this work shows a new approach to the reprogramming of a fibroblast and investigates the involvement of miRNAs and snoRNAs in the dynamics of hepatic differentiation. This study has shed a light on the molecular and regulatory mechanisms that underlie the complex process of liver differentiation and will hopefully allow existing problems with the use of in vitro derived hepatocytes to be overcome. A dataset generated here can be the foundation for a hepatic-specialised rybosomes theory and enabled to discover novel snoRNA genes.:1. INTRODUCTION 11 1.1. PLURIPOTENT STEM CELLS 11 1.1.1. Pluripotency 11 1.1.2. IPSCs 13 1.1.3. Reprogramming methods 14 1.1.4. IPSCs as an alternative cell source for disease modelling and regenerative medicine 16 1.2. LIVER 18 1.2.1. Liver anatomy and function 18 1.2.2. Liver embryonal development 20 1.3. HEPATIC DIFFERENTIATION OF IPSCS IN VITRO 22 1.3.1. HLCs 22 1.3.2. Differentiation protocols into hepatocytes 24 1.4. NCRNA 25 1.4.1. MiRNA 26 1.4.2. SnoRNA 28 2. AIMS 31 3. MATERIALS 32 3.1. EQUIPMENT 32 3.2. SOFTWARE 32 3.3. ENZYMES, KITS AND TRANSFECTION REAGENTS 33 3.4. SOLUTIONS AND REAGENTS 33 3.5. CELL LINES 34 3.6. CELL CULTURE MEDIA AND CYTOKINES 34 3.7. PLASMIDS 35 3.8. PCR REAGENTS AND PRIMERS 35 3.8.1. PCR reagents 35 3.8.2. PCR primers 35 3.9. ANTIBODIES 36 4. METHODS 37 4.1. CELL BIOLOGY 37 4.1.1. Derivation and culture of primary human foreskin fibroblasts 37 4.1.2. Counting cells 37 4.1.3. Cryo-preservation of cells 37 4.1.4. Thawing of cryo-preserved cells 38 4.1.5. Cell reprogramming 38 4.1.6. Cultivation and expansion of iPSCs 39 4.2. IMMUNOCYTOCHEMISTRY 39 4.3. IN VITRO SPONTANEOUS DIFFERENTIATION 39 4.4. KARYOTYPE ANALYSIS 40 4.5. RNA ISOLATION 40 4.6. QUANTITATIVE PCR 40 4.7. PERIODIC ACID-SCHIFF (PAS) STAINING 41 4.8. INDOCYANINE GREEN UPTAKE AND RELEASE 41 4.9. PLASMID TRANSFECTION 42 4.10. HEPATIC DIFFERENTIATION 42 4.11. WHEAT GERM AGGLUTININ STAINING 42 4.12. VALIDATION OF HEPATIC DIFFERENTIATION EFFICIENCY 43 4.13. RNA ISOLATION AND SEQUENCING 43 4.14. BIOINFORMATIC ANALYSIS 44 4.14.1. Sequencing quality and mapping 44 4.14.2. Analysis of differential expressed ncRNAs 44 4.14.3. Target pathways prediction of differentially expressed miRNAs 44 4.14.4. Identification of novel ncRNAs candidates 45 5. RESULTS 46 5.1. GENERATION OF IPSCS USING EPISOMAL VECTORS 46 5.1.1. Cell transfection 46 5.1.2. Establishment of iPSCs line 48 5.2. PLURIPOTENCY CHARACTERISATION OF THE IPSCS 49 5.2.1. Pluripotency markers 49 5.2.2. Spontaneous differentiation assay 50 5.2.3. Karyotype 52 5.3. HEPATIC DIFFERENTIATION OF IPSCS AND HLCS CHARACTERISATION 53 5.3.1. iPSCs hepatic differentiation 53 5.3.2. Expression of hepatic markers 54 5.3.3. Hepatic gene expression in HLCs 56 5.3.4. Hepatic functions in HLCs 58 5.4. HNF4A OVEREXPRESSION DURING DIFFERENTIATION 59 5.4.1. Cell transfection during differentiation 59 5.4.2. Comparison of hepatic differentiation efficiency 60 5.4.3. Whole slide scanning 62 5.5. NON-CODING RNA ANALYSIS 64 5.5.1. Non-coding RNA sequencing quality 64 5.5.2. MicroRNA analysis 68 5.5.3. SnoRNA analysis 79 5.5.4. Short reads snoRNA analysis 84 5.5.5. New gene candidates 85 6. DISCUSSION 88 6.1. METHODICAL STRATEGY 88 6.2. CHARACTERISATION OF GENERATED IPSCS 89 6.3. HEPATIC DIFFERENTIATION OF IPSCS 89 6.3.1. Characterisation of HLCs 89 6.3.2. Protocol with HNF4a overexpression 90 6.3.3. Differentially expressed miRNA 90 6.3.4. Differentially expressed snoRNA 93 6.4. NOVEL SNORNA GENES 95 7. SUMMARY 96 8. REFERENCES 99 9. APPENDIX 118 ERKLΓ„RUNG ÜBER DIE EIGENSTΓ„NDIGE ABFASSUNG DER ARBEIT 122. ACKNOWLEDGEMENTS 12

    Hepatocyte-like cells differentiated from human induced pluripotent stem cells: Relevance to cellular therapies

    Get PDF
    AbstractMaturation of induced pluripotent stem cells (hiPSCs) to hepatocyte-like cells (HLCs) has been proposed to address the shortage of human hepatocytes for therapeutic applications. The purpose of this study was to evaluate hiPSCs, HLCs and hepatocytes, all of human origin, in terms of performance metrics of relevance to cell therapies. hiPSCs were differentiated to HLCs in vitro using an established four-stage approach. We observed that hiPSCs had low oxygen consumption and possessed small, immature mitochondria located around the nucleus. With maturation to HLCs, mitochondria showed characteristic changes in morphology, ultrastructure, and gene expression. These changes in mitochondria included elongated morphology, swollen cristae, dense matrices, cytoplasmic migration, increased expression of mitochondrial DNA transcription and replication-related genes, and increased oxygen consumption. Following differentiation, HLCs expressed characteristic hepatocyte proteins including albumin and hepatocyte nuclear factor 4-alpha, and intrinsic functions including cytochrome P450 metabolism. But HLCs also expressed high levels of alpha fetoprotein, suggesting a persistent immature phenotype or inability to turn off early stage genes. Furthermore, the levels of albumin production, urea production, cytochrome P450 activity, and mitochondrial function of HLCs were significantly lower than primary human hepatocytes.Conclusion- hiPSCs offer an unlimited source of human HLCs. However, reduced functionality of HLCs compared to primary human hepatocytes limits their usefulness in clinical practice. Novel techniques are needed to complete differentiation of hiPSCs to mature hepatocytes

    New Approaches in the Differentiation of Human Embryonic Stem Cells and Induced Pluripotent Stem Cells toward Hepatocytes

    Get PDF
    Orthotropic liver transplantation is the only established treatment for end-stage liver diseases. Utilization of hepatocyte transplantation and bio-artificial liver devices as alternative therapeutic approaches requires an unlimited source of hepatocytes. Stem cells, especially embryonic stem cells, possessing the ability to produce functional hepatocytes for clinical applications and drug development, may provide the answer to this problem. New discoveries in the mechanisms of liver development and the emergence of induced pluripotent stem cells in 2006 have provided novel insights into hepatocyte differentiation and the use of stem cells for therapeutic applications. This review is aimed towards providing scientists and physicians with the latest advancements in this rapidly progressing field

    Proof-of-concept gene editing for the murine model of inducible arginase-1 deficiency

    Get PDF
    Arginase-1 deficiency in humans is a rare genetic disorder of metabolism resulting from a loss of arginase-1, leading to impaired ureagenesis, hyperargininemia and neurological deficits. Previously, we generated a tamoxifen-inducible arginase-1 deficient mouse model harboring a deletion of Arg1 exons 7 and 8 that leads to similar biochemical defects, along with a wasting phenotype and death within two weeks. Here, we report a strategy utilizing the Clustered, Regularly Interspaced, Short Palindromic Repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system in conjunction with piggyBac technology to target and reincorporate exons 7 and 8 at the specific Arg1 locus in attempts to restore the function of arginase-1 in induced pluripotent stem cell (iPSC)-derived hepatocyte-like cells (iHLCs) and macrophages in vitro. While successful gene targeted repair was achieved, minimal urea cycle function was observed in the targeted iHLCs compared to adult hepatocytes likely due to inadequate maturation of the cells. On the other hand, iPSC-derived macrophages expressed substantial amounts of "repaired" arginase. Our studies provide proof-of-concept for gene-editing at the Arg1 locus and highlight the challenges that lie ahead to restore sufficient liver-based urea cycle function in patients with urea cycle disorders

    A New Induction Method for the Controlled Differentiation of Human-Induced Pluripotent Stem Cells Using Frozen Sections

    Get PDF
    Considering that every tissue/organ has the most suitable microenvironment for its functional cells, controlling induced pluripotent stem cell (iPSC) differentiation by culture on frozen sections having a suitable microenvironment is possible. Induced PSCs were cultured on frozen sections of the liver, the brain, the spinal cord, and cover glasses (control) for 9 days. The iPSCs cultured on the sections of the liver resembled hepatocytes, whereas those on sections of the brain and the spinal cord resembled neuronal cells. The percentage of hepatocytic marker-positive cells in the iPSCs cultured on the sections of the liver was statistically higher than that of those in the iPSCs cultured on the sections of the brain and the spinal cord or on cover glasses. In contrast, the iPSCs cultured on the sections of the brain and the spinal cord revealed a high percentage of neural marker-positive cells. Thus, iPSCs can be differentiated into a specific cell lineage in response to specific factors within frozen sections of tissues/organs. Differentiation efficacy of the frozen sections markedly differed between the iPSC clones. Therefore, our induction method could be simple and effective for evaluating the iPSC quality
    • …
    corecore