4 research outputs found

    Efficient Feed-Forward Volume Rendering Techniques for Vector and Parallel Processors

    No full text
    this paper we investigate efficient techniques for rendering semi-transparent volumes on vector and parallel processors. Parallelism inherent in a regular grid is obtained by decomposing the volume into geometric primitives called beams, slices and slabs of voxels. By using the adjacency properties of voxels in beams and slices, efficient incremental transformation schemes are developed. These schemes are shown to be very suitable for fast execution on vector and pipelined processors. The slab decomposition of the volume allows the implementation of an efficient parallel feed-forward renderer which includes the splatting technique for image reconstruction and a back-to-front method for creating images. We report the implementation of this feed-forward volume renderer on a hierarchical shared memory machine, the IBM Power Visualization System (PVS). Experimental results are included to show the efficacy of the incremental transformation schemes and the performance of the parallel renderer on the IBM PVS.

    High performance computer simulated bronchoscopy with interactive navigation.

    Get PDF
    by Ping-Fu Fung.Thesis (M.Phil.)--Chinese University of Hong Kong, 1998.Includes bibliographical references (leaves 98-102).Abstract also in Chinese.Abstract --- p.ivAcknowledgements --- p.viChapter 1 --- Introduction --- p.1Chapter 1.1 --- Medical Visualization System --- p.4Chapter 1.1.1 --- Data Acquisition --- p.4Chapter 1.1.2 --- Computer-aided Medical Visualization --- p.5Chapter 1.1.3 --- Existing Systems --- p.6Chapter 1.2 --- Research Goal --- p.8Chapter 1.2.1 --- System Architecture --- p.9Chapter 1.3 --- Organization of this Thesis --- p.10Chapter 2 --- Volume Visualization --- p.11Chapter 2.1 --- Sampling Grid and Volume Representation --- p.11Chapter 2.2 --- Priori Work in Volume Rendering --- p.13Chapter 2.2.1 --- Surface VS Direct --- p.14Chapter 2.2.2 --- Image-order VS Object-order --- p.18Chapter 2.2.3 --- Orthogonal VS Perspective --- p.22Chapter 2.2.4 --- Hardware Acceleration VS Software Acceleration --- p.23Chapter 2.3 --- Chapter Summary --- p.29Chapter 3 --- IsoRegion Leaping Technique for Perspective Volume Rendering --- p.30Chapter 3.1 --- Compositing Projection in Direct Volume Rendering --- p.31Chapter 3.2 --- IsoRegion Leaping Acceleration --- p.34Chapter 3.2.1 --- IsoRegion Definition --- p.35Chapter 3.2.2 --- IsoRegion Construction --- p.37Chapter 3.2.3 --- IsoRegion Step Table --- p.38Chapter 3.2.4 --- Ray Traversal Scheme --- p.41Chapter 3.3 --- Experiment Result --- p.43Chapter 3.4 --- Improvement --- p.47Chapter 3.5 --- Chapter Summary --- p.48Chapter 4 --- Parallel Volume Rendering by Distributed Processing --- p.50Chapter 4.1 --- Multi-platform Loosely-coupled Parallel Environment Shell --- p.51Chapter 4.2 --- Distributed Rendering Pipeline (DRP) --- p.55Chapter 4.2.1 --- Network Architecture of a Loosely-Coupled System --- p.55Chapter 4.2.2 --- Data and Task Partitioning --- p.58Chapter 4.2.3 --- Communication Pattern and Analysis --- p.59Chapter 4.3 --- Load Balancing --- p.69Chapter 4.4 --- Heterogeneous Rendering --- p.72Chapter 4.5 --- Chapter Summary --- p.73Chapter 5 --- User Interface --- p.74Chapter 5.1 --- System Design --- p.75Chapter 5.2 --- 3D Pen Input Device --- p.76Chapter 5.3 --- Visualization Environment Integration --- p.77Chapter 5.4 --- User Interaction: Interactive Navigation --- p.78Chapter 5.4.1 --- Camera Model --- p.79Chapter 5.4.2 --- Zooming --- p.81Chapter 5.4.3 --- Image View --- p.82Chapter 5.4.4 --- User Control --- p.83Chapter 5.5 --- Chapter Summary --- p.87Chapter 6 --- Conclusion --- p.88Chapter 6.1 --- Final Summary --- p.88Chapter 6.2 --- Deficiency and Improvement --- p.89Chapter 6.3 --- Future Research Aspect --- p.91Appendix --- p.93Chapter A --- Common Error in Pre-multiplying Color and Opacity --- p.94Chapter B --- Binary Factorization of the Sample Composition Equation --- p.9

    Segmentação e visualização tridimensional interativa de imagens de ressonancia magnetica

    Get PDF
    Orientadores: Roberto de Alencar Lotufo, Alexandre Xavier FalcãoDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de ComputaçãoMestradoEngenharia de ComputaçãoMestre em Engenharia Elétric
    corecore