8,783 research outputs found

    Efficient estimation of probability of conflict between air traffic using Subset Simulation

    Get PDF
    This paper presents an efficient method for estimating the probability of conflict between air traffic within a block of airspace. Autonomous Sense-and-Avoid is an essential safety feature to enable Unmanned Air Systems to operate alongside other (manned or unmanned) air traffic. The ability to estimate probability of conflict between traffic is an essential part of Sense-and-Avoid. Such probabilities are typically very low. Evaluating low probabilities using naive Direct Monte Carlo generates a significant computational load. This paper applies a technique called Subset Simulation. The small failure probabilities are computed as a product of larger conditional failure probabilities, reducing the computational load whilst improving the accuracy of the probability estimates. The reduction in the number of samples required can be one or more orders of magnitude. The utility of the approach is demonstrated by modeling a series of conflicting and potentially conflicting scenarios based on the standard Rules of the Air

    Efficient Estimation of Probability of Conflict Between Air Traffic Using Subset Simulation

    Get PDF
    This paper presents an efficient method for estimating the probability of conflict between air traffic within a block of airspace. Autonomous Sense-and-Avoid is an essential safety feature to enable Unmanned Air Systems to operate alongside other (manned or unmanned) air traffic. The ability to estimate probability of conflict between traffic is an essential part of Sense-and-Avoid. Such probabilities are typically very low. Evaluating low probabilities using naive Direct Monte Carlo generates a significant computational load. This paper applies a technique called Subset Simulation. The small failure probabilities are computed as a product of larger conditional failure probabilities, reducing the computational load whilst improving the accuracy of the probability estimates. The reduction in the number of samples required can be one or more orders of magnitude. The utility of the approach is demonstrated by modeling a series of conflicting and potentially conflicting scenarios based on the standard Rules of the Air

    A Simulation Framework for Fast Design Space Exploration of Unmanned Air System Traffic Management Policies

    Full text link
    The number of daily small Unmanned Aircraft Systems (sUAS) operations in uncontrolled low altitude airspace is expected to reach into the millions. UAS Traffic Management (UTM) is an emerging concept aiming at the safe and efficient management of such very dense traffic, but few studies are addressing the policies to accommodate such demand and the required ground infrastructure in suburban or urban environments. Searching for the optimal air traffic management policy is a combinatorial optimization problem with intractable complexity when the number of sUAS and the constraints increases. As the demands on the airspace increase and traffic patterns get complicated, it is difficult to forecast the potential low altitude airspace hotspots and the corresponding ground resource requirements. This work presents a Multi-agent Air Traffic and Resource Usage Simulation (MATRUS) framework that aims for fast evaluation of different air traffic management policies and the relationship between policy, environment and resulting traffic patterns. It can also be used as a tool to decide the resource distribution and launch site location in the planning of a next-generation smart city. As a case study, detailed comparisons are provided for the sUAS flight time, conflict ratio, cellular communication resource usage, for a managed (centrally coordinated) and unmanaged (free flight) traffic scenario.Comment: The Integrated Communications Navigation and Surveillance (ICNS) Conference in 201

    Probabilistic Reachability Analysis for Large Scale Stochastic Hybrid Systems

    Get PDF
    This paper studies probabilistic reachability analysis for large scale stochastic hybrid systems (SHS) as a problem of rare event estimation. In literature, advanced rare event estimation theory has recently been embedded within a stochastic analysis framework, and this has led to significant novel results in rare event estimation for a diffusion process using sequential MC simulation. This paper presents this rare event estimation theory directly in terms of probabilistic reachability analysis of an SHS, and develops novel theory which allows to extend the novel results for application to a large scale SHS where a very huge number of rare discrete modes may contribute significantly to the reach probability. Essentially, the approach taken is to introduce an aggregation of the discrete modes, and to develop importance sampling relative to the rare switching between the aggregation modes. The practical working of this approach is demonstrated for the safety verification of an advanced air traffic control example

    Air Traffic Complexity as a Source of Risk in ATM

    Get PDF
    In this chapter the connection between air traffic complexity and risks in air traffic management system will be explored. Air traffic complexity is often defined as difficulty of controlling a traffic situation, and it is therefore one of the drivers for air traffic controller’s workload. With more workload, the probability of air traffic controller committing an error increases, so it is necessary to be able to assess and manage air traffic complexity. Here, we will give a brief overview of air traffic complexity assessment methods, and we will put the traffic complexity assessment problem into a broader context of decision complexity. Human reliability assessment methods relevant to air traffic management will be presented and used to assess the risk of loss of separation in traffic situations with different levels of complexity. To determine the validity of the human reliability assessment method, an analysis of conflict risk will be made based on the real-time human-in-the-loop (HITL) simulations

    A Performance-Based Framework for Guiding Enroute Air Traffic Control Sector Design

    Get PDF
    Sectors are small regions of airspace through which aircraft fly and air traffic controllers are required to manage while considering notions like safety, efficiency, and effectiveness. Interestingly, we do not know how to design, i.e. make considerations surrounding airspace, air traffic, controller, and technology factors, such that sectors generate specific levels of performance. Rather, sectors have always been designed in an artistic fashion where the focus is on human operator workload, which is fairly subjective. This research leverages the fact that many aspects of performance are objective and so are many aspects of design. A framework is proposed such that the sector design problem is abstracted in a generalizable way where performance is the focus. The framework consists of a series of natural questions which aim to set up a decision variable representative of all aspects of underlying performance we choose to care about. The decision variable is a normalized-weighted-summed-modeled-performance-loss function. A specific instance of the performance-based sector design problem was successfully demonstrated in the context of the framework. Results showed that the derived composite performance score was useful for inferring design heuristics and optimally selecting among competing design configurations. Simulation and modeling was key to this work

    A Novel Multiobjective Cell Switch-Off Framework for Cellular Networks

    Get PDF
    Cell Switch-Off (CSO) is recognized as a promising approach to reduce the energy consumption in next-generation cellular networks. However, CSO poses serious challenges not only from the resource allocation perspective but also from the implementation point of view. Indeed, CSO represents a difficult optimization problem due to its NP-complete nature. Moreover, there are a number of important practical limitations in the implementation of CSO schemes, such as the need for minimizing the real-time complexity and the number of on-off/off-on transitions and CSO-induced handovers. This article introduces a novel approach to CSO based on multiobjective optimization that makes use of the statistical description of the service demand (known by operators). In addition, downlink and uplink coverage criteria are included and a comparative analysis between different models to characterize intercell interference is also presented to shed light on their impact on CSO. The framework distinguishes itself from other proposals in two ways: 1) The number of on-off/off-on transitions as well as handovers are minimized, and 2) the computationally-heavy part of the algorithm is executed offline, which makes its implementation feasible. The results show that the proposed scheme achieves substantial energy savings in small cell deployments where service demand is not uniformly distributed, without compromising the Quality-of-Service (QoS) or requiring heavy real-time processing
    • …
    corecore