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Abstract—This paper presents an efficient method for estimat- future efforts within the SAA community [5]. More recently,
ing the probability of conflict between air traffic within a bl ock  Alpaker and Rahim have presented an up to date survey of
of airspace. Autonomous Sense-and-Avoid is an essentialfety CD&R methods for UAS[[9]. The work presented in this

feature to enable Unmanned Air Systems to operate alongside . . .
other (manned or unmanned) air trgffic. The abi?ity to estimgate paper can be categorized as a Conflict Detection method that

probability of conflict between traffic is an essential part ¢ Sense- aSSUmes non-cooperative sensor technology.
and-Avoid. Such probabilities are typically very low. Evaluating The CD&R methods are broadly categorized as cooperative
low probabilities using naive Direct Monte Carlo generatesa and non-cooperative. Cooperative methods assume théit traf
significant computational load. This paper applies a techmjue  gp4ra5 relevant information via radio, data link or by con-
called Subset Simulation. The small failure probabilities are .
computed as a product of larger conditional failure probabiities, tacting ground b_ased ATSU. These methods are deper!dent on
reducing the computational load whilst improving the accumcy —Cooperative equipment such as Transponders and/or Automat
of the probability estimates. The reduction in the number of Dependent Surveillance-Broadcast (ADS-B) that are aarrie
samples required can be one or more orders of magnitude. The gn-board the aircraft. This equipment declares the custaté
utility of the approach is demonstrated by modeling a series o the ajrcraft to nearby traffic. If the potential for a coafli
of conflicting and potentially conflicting scenarios based o the . . o . ; . .
standard Rules of the Air. is identified the situation will be resolved by coordinating
maneuvers between the traffic, often via two-way radio com-
munications. The maneuvers are dictated by following a set
of customary rules that determine the right-of-way for each
aircraft. These are based on existing Visual Flight RuldsRY
within the civil aviation domain[[10]. In VFR, it is the flight
. INTRODUCTION crew’s responsibility to maintain safe separation witHfira
UTURE autonomous operations of Unmanned Air Sysn the absence of visual information (due to limited vistil
tems (UAS) within densely populated airspace require araused by bad weather), the flight crew must rely on external
automated Sense-and-Avoid (SAA) systern [1]. A key elemeinformation. In such situations, Instrument Flight Ruld#sR)
within the Sense-and-Avoid (SAA) topic is Conflict Detectio are used with the ATSU monitoring traffic separation using
and Resolution (CD&R)[]1]. A conflict occurs when theRadar and then directing the flight crew so as to maintain
separation between any aircraft or obstacle reduces belowade separation. Alternatively, on larger aircraft, a ficailert
minimum distance. Such a situation could in the worst Collision Avoidance System (TCAS) [11] can be used. The
case— generate a collision between air vehicles but even TCAS system provides Resolution Advisories (RA) to flight
the absence of an actual collision it will violate the maedat crews of conflicting traffic in the form of maneuvers to be
Rules of the Air, and may give rise to an air incident. Sucfollowed to resolve the conflict. In each case, a potential
incidents must be reported as soon as possible to the local édnflict is resolved in accordance with the rules given by
Traffic Service Unit (ATSU)I[2]. the local aviation authority for the airspace within whidtet
Initial work on CD&R can be found in robotics whereaircraft are operating; such as the Federal Aviation Author
the collision avoidance problem has been treated as a p@fAA) in the US [12] or the Civil Aviation Authority (CAA) in
planning task [[B] and an early approach to the collisiothe UK [13]. The rules stated by most aviation authorities ar
avoidance problem involved using artificial potential fie[d]. based on the rules outlined by the International Civil Aaiat
Such methods are suitable for scenarios where movemenQofjanization (ICAO)[[14]. When a conflict type is identified
the vehicles may be relatively slow, restricted in space the appropriate resolution maneuver is executed. For ebeamp
in scope. However, over the following decades the increasetien aircraft are approaching each other head-on the rules
use of UAS has created demand for autonomous CD&RIlI say that both aircraft maneuver to their right. All tfiaf
solutions which are suitable for the more dynamic aerospaogolved with the conflict must cooperate for a successful
environment. A large number of CD&R methods have bearsolution[[15]. Each of these methods assumes that athétirc
proposed during this period and comprehensive surveys haweolved in the potential conflict are sharing informatiomda
been conducted by Kuchar and Yarg [5], Krozel et @l. [6hehaving in accordance with the accepted Rules of the Air.
Warren [7] and Zeghal [8]. Kuchar and Yang have proposed aln contrast, non-cooperative methods assume that no infor-
taxonomy of methods useful in identifying gaps and diregtinmation related to the current state or future intent of wdffis
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been shared (i.e. there is no flight plan exchange or rade/dthat the predicted trajectories are non-deterministid whte
link). This is a far more challenging problem since inforifoat probability of conflict being associated with outliers ineth
related to traffic state and intentions must be measured pyopagation, not outliers in the initial conditions. If,vaever,
inferred from the behavior of non-cooperative aircraft.rNothe trajectory is deterministic (or near-deterministibgn IPS
mally, this will be due to the lack of appropriate technologis unable to provide improved computational efficiencytieéa
on-board the aircraft: for example, a lightweight commalrcito direct (Monte Carlo) sampling. This paper proposes tlee us
of-the-shelf (COTS) UAS, obtained by the general public amaf the Subset Simulation method [33] to avoid this problem
used for recreational purposes. Problems occur when thasel allows the initial conditions to be adjusted as the ssbse
aircraft are operated within non-segregated airspace.ffpe are navigated. Subset Simulation approaches the problem of
of airspace contains aircraft (manned or unmanned) tharadhreducing the computational load associated with calauati
to the Rules of the Air and expect traffic to do so as wellow probabilities by focusing the simulation towards theera
The lack of cooperative technology on-board a lightweighégions of interest within the probability distributionnfction
UAS prevents awareness of traffic and increases the risk (pfif). The regions of interest correspond to the events kwhic
a midair collision. This problem needs to be addressed domy lead to conflict between traffic.
to the increased number of near miss incidents involving Originally, Au and Beck proposed Subset Simulation as a
such UAS operating within non-segregated airspace [16¢. Thethod for computing small failure probabilities as a resul
problem of the lack of information is addressed by using owf (larger) conditional failure probabilities [33]. The thed
board sensors. Information related to state of traffic isioleld was proposed in Civil Engineering to compute probabilités
from observations using sensors such as Radar, Lidar andfwuctural failure and identify associated failure scearsa[34].
cameras. For example, Mcfadyen et al. have considered usitige focus of their work was on understanding the risk to
visual predictive control with a spherical camera model tstructures posed by seismic activity. This paper modifies th
create a collision avoidance controller [17]. RecentlyhHat  methods developed by Au and Be€k][35] and demonstrates that
al. have proposed a vision based Sense-and-Avoid framewtitky can significantly reduce the computational load resgliir
that utilizes a camera to detect and avoid approachingmieboto estimate the value of?, for air traffic within a block
intruders [[18]. A collision avoidance system that uses @& airspace by reducing the number of samples required.
combination of Radar and electro-optical sensors have béeRme proposed method is applied to a set of conflicting and
prototyped and tested by Accardo et all[19]. Measuremambtentially conflicting test scenarios based on the Rulaghef
data obtained from sensors are inherently noisy. This givA# specified by aviation authorities. Since these scesatie
rise to uncertainties in the observed state and predicteéthmo standard engagements considered by aviation authothieg,
of the non-cooperative aircraft. In an environment whermuld also be used as a benchmark for comparison against
future trajectories are uncertain, the likelihood of a dohfl future methods. Thé, during some scenarios is low; despite
is an essential metric. Obtaining an accurate estimate this, it is essential to provide an approximation this needie
the Probability of Conflict P.), given the sensor data, is ato the catastrophic nature of a collision.
key parameter required to resolve traffic conflicts. Thisgpap The paper is structured as follows: sectigds I Il de-
provides a method to calculate the metric that is more scribe the Direct Monte Carlo (DMC) and Metropolis Hastings
efficient than the standard approach of using Direct Mon{#H) methods respectively. The Subset Simulation theory is
Carlo (DMC) methods. based on a combination of DMC and MH methods. Se¢fidn IV
Probabilistic methods for conflict resolution requiringeth describes Subset Simulation. Sectioh V then describes the
calculation of metrics like the Probability of Conflict’{) application of Subset Simulation to the estimation Bf
have been discussed il [5]. Nordlund and Gustafsson [88tween air traffic in non-cooperative scenarios. Sediidin V
noted the huge number of simulations required to get sufficigoresents simulation results of estimatiflg between air traf-
reliability for small risks and suggested an approach tkat ffic for conflicting and potentially conflicting non-coopévat
duced the three dimensional problem to a one dimensional eenarios. Sectidn VIl analyzes the efficiency and accupécy
tegral along piecewise straight pathsi[21],/[22]. More relge  estimating theP, using Subset Simulation and Direct Monte
Jilkov et al. have extended a method developed by Blo@arlo. Finally, sectiofi VIl concludes the paper.
and Bakker[[2B] and estimatefl. using multiple models for
aircraft trajectory predictiori [24]. Many probabilisticatinods
involve the use of Monte Carlo methods where uncertainties
exist and Monte Carlo methods can be found in existing The Direct Monte Carlo (DMC) method is a sampling
CD&R methods[[24]+[31]. Unfortunately, for scenarios wiermethod that can be used to characterize a distribution ef-int
the expectedP, is low, a Monte Carlo method will require est. The objective of this section is to estimate the prditabi
a very large number of simulations to estimdte with any of a type of event to occur. Therefore the DMC method is
accuracy. To reduce the computational cost associated witted as a ‘statistical averaging’ tool, where the probigil
Monte Carlo methods, Prandini et al. have estimated tfailure Pr is estimated as the ratio of failure responses to the
risk of conflict using the Interacting Particle System (IPSptal number of trials[[35].
method [32]. This method fixes a set of initial conditions A set of N independent identically distributed (i.i.d) in-
of the aircraft and alters reducing subsets of the propdgamuts {X,, : n = 1,..., N} are drawn from the proposal
trajectories to satisfy the intermediate thresholds; alssumes distribution ¢(X |u,o?) of the input parameter space. The

Il. DIRECTMONTE CARLO



Algorithm 1 Determine distance between samples X and C s

1: function H(X,C) ooy
2: V=X-C 4r

3: R=,/V2+V?

4: return R T

5. end function

Algorithm 2 Direct Monte Carlo
1: function DMC(N, C, r.)

2: D=0 = ok
3: forn=1:N do
4: z~ N(0,1) n
5: y~ N(0,1)
6: X, = [z,y]T 2l .
7: R, = H(X,, O)
8: if R, <r.then 3t c
9: D=D+1
10: end if 4t ——
11 end for
2 Pr=g S T L S e e E
13: return Pr x
14: end function (a) Direct Monte Carlo with 100 samples
5
proposal distribution can be any known distribution that ce | A ol

be sampled from. We choose a Normal distribution that
centered at the meam and has a variance af?. A set of
system responses are obsery&g = h(X,,):n=1,..., N},
whereh(...) is the system process. The occurrence of a failu
eventF is indicated when a scalar quantiiy (threshold) is
exceeded. The number of samples that exceed the threst
is Yr. Therefore the probability of failure is estimated a
Pp = PY > bp) = % Such an approach is suitable f0|>
large probabilities (such a8 > 0.1) where a small number of
samples can be used to estimate the probability. However
small probabilities (such as the tail region of the pdf, vehel
P < 1073) a significantly large number of samples must b
drawn to accurately estimate the probability. This is tased
by the following example.

N
T

A. Estimating probability of drawing samples from regifh A

Fig. [ shows al0 x 10 square centered a = [0, 0]7. .
The regionF is a circle with radiusr. = 1, centered at = 4 3 2 -1 0 1 2 3 4 5
C = [3,-3]T within this square. The objective is to estimate
the probability of drawing samples from this region. The ) bty of drew oo 1 A i estimated
probabilty distibution of the overall area is representey £, The Povery o o s o e vl esimaed
a Gaussian distribution centered@t= [0,0]". A set of N Fig TR estimates thé’s = 1.5 x 10~ with 10> samples.
samples{X,, : n = 1,..., N} are drawn where each sample
is a vector; X,, = [x,,y,]?. The x and y values of each
sample are the x-coordinate and y-coordinates of the pasiti Fig. [Id shows100 samples drawn from the distribution.
respectively. To clarifyX; = [z, 22]7 wherex; ~ A(0,1) Note no samples are drawn from the aféaThe probability
andy; ~ AN(0,1). The distance between the position of eacis estimated”» = 0. The number of samples are increased to
sample and center of circle' is {R, = H(X,,C) : n = N = 10°. Fig.[IB shows some samples are drawn from the
1,..N} as defined by Algorithni]1. To clarify, the distanceegion F' and the probability is estimateBr = 1.5 x 10~*
between sample; andC is Ry = H(X3,C). Algorithm[2 This illustrates that Direct Monte Carlo requires a sigaifity
is used to estimate the probability of drawing samples frotarge number of samples to estimate the probability of dngwi
the regionF'. samples from the regiof'.

(b) Direct Monte Carlo with10®> samples



This method estimateBr by attempting to realize the entire

pdf centered aO that includes the area F. As the aréa ’ samples
reduces the number of samples required to estinfaten- al F boundary
creases making such an approach computationally demand e
A different algorithm is needed. 3l
.
I1l. M ETROPOLISHASTINGS 2F - /'/ f

Metropolis-Hastings (MH) is a Markov Chain Monte Carlc Iy i
(MCMC) method used to characterize a distribution of inkere 1| ! S pn
by sampling from a known distribution. We refer to this distr ; 7 *,”\rr/,///* _,/*\\
bution of interest as the target distribution. The MH algori ™ °[ v/ ,‘,v’#‘f*-"’/?f,./'l ey
originates from the Metropolis algorithm first used in statal / f*é's(*\_ i M SN
Physics by Metropolis and co-workers (Metropolis et al,395 ™| / *ﬁﬁ?‘* ;\_‘;_u T
[36]. Hastings proposed a generalized form of this algorith Sl 7[ ‘\.\f A/ \,r
leading to the Metropolis Hastings (MH) algorithin [37]. + | T i

!

The MH method generates samples from the propos al + '
distribution ¢(X |z, 0?) by starting from a seed valug,. A
chain of n samples is then generated, starting with The n
samplezy 1 is generated from the current samplg using
the following steps[[35]: 5 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

1) Generate a candidate sample~ q(z* |z, a?). s 4 3 2 1012348

2) Calculate an acceptance ratio= % )

3) Draw a sample from a uniform dlstrlbutlon 0,1] Fig. 2. Drawing samples from the region F using Metropolisstitms

2 fe<a algorithm to generate chains of conditional samples. Thilisamples used
4) SEtIk+1 = as seeds are drawn using Direct Monte Carlo.

;. otherwise
5) Repeat steps 1 to 4 untilsamples have been generated.

The function f(...) defines the target density for the inpufAlgorithm 3 Generate conditional chains of samples using
sample. While;n — oo, this process is guaranteed to accepdietropolis Hastings algorithm

samples fromg that leads to the realization of the target 1: function MH(s, n, C, r.)

distribution [38]. To help ensure that all regions of thegttr 22 02 = r2lsx2

density are explored, multiple seeds can be used to generste  for j =1:|s| do > For each seed

multiple chains of samples in parallél [35]. 4: Xo = s; »Select seed sample
5: fork=0:n—1do
A. Drawing samples from the regiafi 1>Generajt\e Candidate sample*
The Metropolis Hastings method is defined in algorifiim 3 g v (0,1)
: X*=Xr+yg

and it is applied to the example of estimating the probabilit

. . : : >Calculate acceptance ratio
of drawing samples from regioA’ as shown in the previous b

a(X* | Xy,02) P(X*|Cy02 )

section. The covariance of the proposélis a2 x 2 identity 8 B = A(Xn1X*,02) p(X5]C.02.)

matrix I3x2 and the covariance of the distribution of interesto: a=min{l, B}

or =12 x I3xo Wherer, is the radius of the regiof’. For  10: e~ [0,1]

this example*C =1, thereforecf2 = Iryo. _ xO) _ X* ife<a
Fig. @ illustrates the chains of samples generated by the ML Xp ife>a

Metropolis Hastings algorithm. This figure shows 10 sample¥: end for

drawn from the proposal distribution using the DMC methodt3: ~ end for
These samples are seeds= {X,,..., X1p}. The MH algo- 14  return X
rithm is applied using the seedsEach seed generates a chaird5: end function
of 10 samples. Note that many sample chains do not reach
the regionF. It is clear that it might be more efficient to
generate more samples for chains with seeds that are ctosesid described in sectiofs Il afd]lll respectively. It caltzsa
the regionf’ since they have higher likelihood of generatinghe probability of rare events occurring as the product of
samples that are within the regidnor closer to the regio’. the probabilities of less-rare events. Such an approadss |
Subset Simulation achieves this and is described in the nesmputationally expensive than either DMC or MH alone. A
section. general outline of the SS method is presented in this paper
and the interested reader is referred[to [35] for more detalil
IV. SUBSET SIMULATION Subset Simulation generates a Complimentary Cumulative
Subset Simulation (SS) is based on a combination of Dirdotstribution Function (CCDF) of the response quantity of
Monte Carlo (DMC) and Metropolis Hastings (MH) methodénterest Y. The probability of failure P= can be directly




estimated from the CCDF. This CCDF is constructed by geof chains and number of samples per chain Aeand N,
erating samples that satisfy a series of intermediatetibtds respectively. They are determined as

by > by > bs > ... > b,_1 that divide the space into

m nested regions. These thresholds are adaptively defined as N. = poN 3)
the simulation progresses. This is described later on is thi
section. The threshold,,_; is the required failure threshold 1
br (by—1 = br). The intermediate thresholds allow the prob- Ns =po (4)

ability of failure to be estimated using a classical comditil Each level of subset simulation maintains samples { =
structure given by N.N,). The response values of conditional samples generated
for the current leveli must not exceed the intermediate
Pr =P <bp1|]Y <bm-2)P(Y <bn-2) (1) thresholdy; for this level. This threshold is determined by

Samples are generated to satisfy the threshold for each leve

The total number of levels: is dependent on the magnitude
of the _tgrget probabilityPr. Subset Slmulatlon uses Igvel-l-he intermediate threshold for levek 1 is b, — BE\%N; To

probability’ po € (0,1) to cor_ltrol how quickly the S|mu_lz_;1t|0n clarify the intermediate threshold is tH&v — N.)"" element
reaches the target event of interést/[35]. The target piitityab of the sorted set of response valuBY). The set of seeds

is used to approximate the number of leveisrequired by ;) are used o generate samoles for the current ek
evaluatingPr = (po)™. To clarify, if the target probability 5j 9 P

is P» = 10-5 andpy = 0.1 then the total number of IeVelssamples generated from the previous level (1) are defined

required will bem = 5. by

b; = B%:?,e 1 is the current subset level (5)

s = XD (6)

. . . . . <j< - <n< ] .
Subset Simulation begins at levek 0 with Direct Monte wherel < j < Ne, (N = Ne +1) <n < N andi = 0
: . . . The set of seeds used to generate conditional samples
Carlo (DMC) sampling from the entire region of interest, . . ~ (0 = (0
(0) for level i = 1 is s = {x© XY The N
A set of N samples{X;’ : n = 1,..,N} are drawn - ) N=NetD> 0 2N S
from a proposal distributiorq(X,SO)|u o2) (as described in conditional sampleX’,,’ are generated using the MH method.

" ; (1) ; 1 _
section[D). The set of output responsks” are evaluated The(%uantltles of interest fok,, * are Qeterm|nec{Yn N
{Y,SO) _ h(XfLO)) .n=1,..,N}. The functionh(...) defines h(Xn’):n=1,..,N} and are sorted in the same manner as

the system response to the input sample. In the context of §€ Previous leveB;.”. The setB;! and respective s%mples
the response¥;” are also known as the quantity of interestin ~aré concatenated with the probability intervats” as
The sety,?) is sorted in descending order to create the siistrated in ~t:(;10t))le[ll by tkle(o)column tiled ‘Levef. Note
(B :n =1,..,N}. The input samplest” are reordered (€ SamMple$Xy"y ,,,.... X'} shown in the column fitled
Xr(LO) and correspond to the sorted quantity of interBé?). Level 0’ are used as seeds to generate the conditional sampl

Tocry " s e putsample hat generates e ook K1) SO L
0utputB§O). A CCDF is generated by plottin@,(lo) against P 9 P

o ) o (0) (po)™ is reached at level= m — 1; as shown by the column
;hrz S;%be?glnlgg er?wg/?LseP ?ol.lowﬁgpézzzglohg intervals”. ™ itled “Level m — 1'. The samples used as seeds to generate

samples for the consecutive level are discarded and replace
_ N —n with the generated samples. This is illustrated in tdble II.
Pv(f) =) N n=1..N (2)  The column of probability intervalB,, are plotted against the
respective quantities of intereBt, to generate a CCDF.

The vector of probability interval®>”’ is concatenated with  This method is continued until the target level of probabil-

the sorted quantity ofintereﬁ,(lo) and their respective samplesity P, = (po)™ is reached. By generating and evaluating

X\? as illustrated in tablB | by the column titled ‘Level 0. conditional samples, the output samples tend towards the

The set of probability intervals?,go) are plotted agains%,(lo) target distribution with significantly less trials than areeded

to generate the CCDF. Level 0 makes it possible to accuratelien using the DMC method. The progressive nature of the

approximate CCDF values from— N1 to po. Typically the algorithm can be demonstrated in the example problem of

region of interest within the pdf is outside this range (8i%S estimating the probability of drawing samples from the oegi

is typically used to realize rare events). To explore prdiieds F.

below pg, further levels of simulation must be conducted.

A. Level O

C. Estimating Probability of drawing samples from region F

B. Leveli >0 The example of estimating the probability of drawing sam-
The subsequent levels of SS whete; 0 explore the rarer ples from the regiorf” shown in the previous sections is used
regions of the probability distribution. This is achievey bto illustrate the Subset Simulation method (using algan().
generating multiple chains of conditional samples using tfThe radius of the circle bounding the regiéhis r. = 1. The
MH method as discussed in the previous section. The numi&8$ parameters used for this example age= 0.1, N = 100,



Level O Levels Level m — 1
P w0 [ KT [ e [ ey [ AU [l e [ ey [ X0
P| BY X\
() ) )
I(Dé\)] = chﬁv — )((5\)] = Q) Q) Q)
s k2 K3 (2
PN7N0+1 BNfN(.Jrl XN7N1'+1 Pl Bl Xl
) ) 107 @) On 29
o Px ak: IjjffN" Biéf - XJ(VIT - m=T) m=T) m=T)
7 7 (2 m— m— = (m—
PNfN{'«s»l BNfN('+1 XNfN{.Jrl """ Pl Bl Xl
@ Q) O 1) ) ST
Py By Xy | e J?N_JIV)C ](BN_fYC )((N—{gc
m— m— o (m—
""" PN—NC+1 BN—NC+1 XN—NC+1
P(mfl) B(mfl) X(mfl)
TABLE | - - =
Algorithm 4 Generate conditional chains of samples of Subset P(vé) B(g) 3((5)
Simulation using Metropolis Hastings algorithm P By Xy
1: function MH_I(s, n, C, r.) : : : Level O
2: 072,6 =12I5%2 P}\?iNC B}\%NC X}\%NC samples retained
3 for j =1:|s| do > For each seed BY B X0
4: Xo = s; >Select seed sample . . . _
5 for k=0:n—1do - - o Leveli
>Generate Candidate samplé* PN N, By, XN"n, | samples retained
6: g~ N(0,1) : : :
. * — m—1 m—1 o (m—1
>Determine distance betweeXi* and C . : .
8: R* = H(X ’ C) P(’HL*].) B(rnfl) X('mfl)
>Determine distance betweexy, and C P e =y
o: Ry = H(X, C) Pyones1 | Byonog1 | XN-nNi41
>Indicator function for range : : : Levelm — 1
10 d— { 1 if R* <r. pyY B x b samples retained
. - H *
0 if R* > _ TABLE Il
>Calculate acceptance ratio
: _ (X7 Xy,0%) p(X"|C07 )
11: B = ixiIx 0T pKRICoE)
igz @ = %“1]{1’ B} as shown in Figl3a. The quantity of interesR!’ =
: e~ . .
) " X* fe<a H(X,SO),C’) :n = 1,..,100} is the distance between each
. J . ..
14: Xy = X, ife>a samplex” and th(()e center of the circl€ = [3, —3]7 (this is
) R ife<a the equivalent o,V used previously). This is determined by
15: R = Ry ife>a processH(...) as defined by algorithfal 1 in sectién Il. If the
16: end for condition R\ < r{¥ is satisfied then the:™h sampIeX,(IO)

17: end for
18:  return X R()
19: end function

is within the regionF'. This condition is used to determine
if a sample is within the regiorf’. The quantity of interest
R is sorted in descending orerB,(LO) :n = 1,..,100}.
This is because the samples with the lowest distances will
be closest to the regio® and have a higher likelihood of

N, = 10, N, = 10, m = 2. Subset Simulation is typically generating conditional samples closer to or within theaegi
used to realize rare events (fBf < 10~3 thereforem > 3). 85 o
However for the purpose of this example the number of levdRyvels ¢ > 0). The input samples(;,” are reordered,,” and

is kept low (n = 2).

F than other samples as the simulation progresses to higher

correspond to the sorted quantity of interﬁf); to clarify,

The simulation begins with level 0 Direct Monte Carldhe distance between the samptd” and C is B{”. The
where a set ofV = 100 samples{X\” : n = 1,...,100} are probability intervalsP\” are determined by equati@h 2. The
drawn from a Gaussian distribution centeredtat= [0, 0]

sorted quantity of interesB” and respective sampl@é,(lo)
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Fig. 3. Subset Simulation is applied to the problem of ediimyathe probability of drawing samples from the regibh Subset Simulation begins with level
0 by drawing N = 100 samples from a Gaussian distributioneredt atO = [0, 0] using the DMC method as shown in Fig] 3a. The quantity of @geis
the distance between each sample ghdrhese are plotted against probability intervals to geeaaCCDF as shown in Fif. Bb. No samples are within the
region F'. The SS method proceeds to level 1 and conditional sampéegearerated using the MH method. Thg level O samples are used to generate the
conditional samples shown in Fig.]3c. These conditionalptesnare drawn progressively closer to the region F untileseamples are drawn from the region
F. This is achieved by drawing samples from intermediatestholds closer to the boundary 81 The quantity of interest for the samples are determined
and plotted against the probability intervals for the cotievel. This CCDF is appended to the previous CCDF by répathe samples used as seeds from
the previous level as shown in Flg:]3d.

are concatenated with the probability intervald as shown P\ againsthlO). This CCDF shows that no samples have
in the column titled ‘Level O’ in tabléTlla. The CCDF showna distance less than the radigstherefore no samples have
in Fig. [3D is generated by plotting the probability intessalbeen drawn from the regiof.



Algorithm 5 Subset Simulation o L:{g; 0 TS '-;‘(’f)'l i
1: function SSC, N, po, m) n n n n
2: N, =pgN
3: N = pal : : :
4. i=0 Setcurrent level Py | BY | xD
>Direct Monte Carlo: Draw N samples and determine pY | B [ X0 P B T XY
guantity of interest : : : : : :
5: for n=1:N do
6: X%~ N(0,1)
>Quantity of interest: Determine distance between
samplesx'” and C

) o) o) Oy o)
Pl()() Bl()() Xl()() P()O BQO X()O

v R — XY, ) P | B X
g  end for @

9: BY « R Sort distances in descending order B B <

100 X« x” Reorder the input samples to correspond P(ﬁ) B(ﬁ) X(%)

to the sorted quantity of interegs’”
>Generate probability intervals; equatidn 2
11: for n=1:N do

12: R(lz) ZP%)% Pl(l) B%l) Xil)
13 end for : : :
>CCDF: Concatenate vectorB(f), Bff) and sample Péé) Bé(l)) Xéé)
X0 A B[R
w.  E, =[P, B, X N
>Begin lower levels of subset simulation PO | U | ¥
100 100 100

15: fori=1:m—1do

(b)
>Set threshold

. -1 TABLE Il
16: bi = By_ N,
>Set seeds using equatibh 6
17: for j =1: N, do
18: n=N-Nc+j . (0) .
19: OB (O the sorted distancgs3, ’ : n = 91, ..., 100} from the previous
20: end for level 0. The intermediate thresholg = ng> determined by
>Generate conditional samples using Metropoligguation[b is used to ensure the conditional sampiéy
Hastings algorithm generated by each seed satisfies the condiﬁi&ﬁ < b;. The
21 [X,(f), Rgf)] — MH_I(sgi), N, C, b;) respective sample distancﬁél)_fro_m C are less than or equ_al
. Bs) - RS) Sort distances in descending order to the level 1 t.hresholdn. This is to enable a progressive
23 Xff) - Xff) Reorder the input samples 1o Corre_nature of drawing samples that are closer to the redion

The conditional samples are genrated using algorithm 4s Thi
will eventually lead to samples being drawn from the region
F as SS proceeds to higher number of levels in the future.

spond to the sorted quantity of interegﬁf)
>Generate probability intervals; equatidn 2

zg for ]Z(Z:) 17: Jde_on The level 1 threshold is marked by the dotted arc in Eig. 3c.
' n = PoTN The figure shows chains of samples that lead to the region

26: end for
>CCDF: Discard all rows afterE; y_ )

>Concatenate”\”, B, XV and append tak

F. The distancesk!) of samplesX,(f) generated in level
1 are sorted in descending ord{anll) :n = 1,..,100}.
The input samples?(fll) are reorderedt\” and correspond

2 forn=1:N do ) o) o) to the sorted distanceB'”. The probability intervalsP."
28 Ei—Nom) = [Pn”, Bu”, X' are generated using equatibh 2 and concatenated with the
29: end for 9 . (1)g 4 . . (1)
_ sorted distance®,;’ and their corresponding samplég, .
30: end for : . .
a1- return E Table[llTd illustrates the conditional samples generatddvel

1 using samples from level 0. The seeds used to generate
samples in level 1 are discarded and replaced with the gen-
erated level 1 samples as illustrated in talblellllb. Note the
probability intervals{PﬁO) :m = 91,...,100}, sorted distances

The SS method continues to the next level< 1) and {B,(ll) :n =91,...,100} and the corresponding input samples
generatesV conditional samples using the MH method. ThQX,(f) :n = 91,...,100} from level O that were used as seeds
conditional sampleinll) :n = 1,..,100} are generated to generate the samples for level 1 are discarded and replace
from a set of seedsg.l) = {Xég), ...,ngg} that correspond to with level 1 samplest") and their respective distancé,"

32: end function




and probability intervalsP,El). This process is repeated untilor inference using sensors. In such a scenario, CD&R system
the maximum number of levels: is reached. This is when must allow for the possibility that the non-cooperativefica
1+ = m — 1. Fig.[3d shows the overall CCDF at level 1. Thenay take inappropriate actions or may not adhere to the Rules
overall CCDF is used to estimate the probability of drawingf the Air. This type of situation requires a UAS to react and
samples from the regioR’ as approximatelyPr = 0.02. take appropriate action to ensure safe separation. To\echie
This example demonstrates the progressive nature of Sulibét the P. needs to be continuously evaluated against the
Simulation when used to generate conditional samples liehavior of the observed traffic so that the likelihood of the
realize the rare ‘tail’ region of the pdf. This feature of S$raffic causing a conflict can be calculated. Hig. 5 illugsat
results in the empirical observation that SS requires fiignisome potentially conflicting scenarios based on [Big. 4. fyri
cantly less samples when compared to naive DMC to obtaome phases of the scenario, the expedtedcan be very
estimates with the same accuracy. Subset Simulation isilusééw; such as a magnitude ab—2 (this is demonstrated later
for generating samples that progress to the distribution iof this section). The previous sections have demonstraggd t
interest. estimating low probabilities using the Direct Monte Carlo
The next section applies the Subset Simulation method withethod is inefficient and this motivates the use of Subset
modifications to estimate the probability of conflict betweeSimulation (SS). Assessing the full pdf may not be feasibk a
air traffic. may not be required. Subset Simulation provides an efficient
method of determining the probability associated with all
V. APPLICATION OF SUBSET SIMULATION FOR AIRBORNE ~ Predicted conflicts thereby estimating. In applying SS to
CONELICT DETECTION this problem,P. plays the role of the threshold of failurex.

Th o fth bability of conflidt. b . The Subset Simulation method is used to estimate the prob-
€ estimation of the probability of confligt. between air ability of conflict P. during the simulation of the potentially

traffic is a useful metric for Conflict Detection & Resolution - . -
! - conflicting scenarios of the Observer and Intruder airaraft
(CD&R) methods. Such methods can be used in pilot g

; §fie Head-on and Overtaking situations as shown in figures 5a
?'rcrgg 83[?“ arlle tl:seful f(_)r gAS where ?n agtomated dn;eth. (flud respectively. Both scenarios show the Observer and
or I will be required as part of a Sense-and-AvoiGyger in a non-conflicting a state, where the Intruder is

system [5]. not within the Observer's protected zone. The Observer’s

| Acclorslling to C,lAA CAP 3.93 RUIeS. Ogt?)e Alr, the minimumprotected zone is marked as a circle around the Observer with
ateral (Horizontal) separation required between two oremoradiusm = 152.4m (500ft). Although the current state is non-

aircraft at any '”Star?ce IS 509ﬂ' A (.:Onﬂ'Ct gvent oceur onflicting there is a potential for future conflict. For exam
when two or more aircraft collide or if there is a loss o

hi ion b h thi block of ai rom the Observer’s perspective the Intruder could cortion
this separation between them within a block of airspacgy oo rse or turn right or turn left. The latter could caudess

The conflict type def’e’?ds on the geometry of the encounI)qrseparation or worse — a collision between the Observer and
petween tr_afﬂc_:, as defined iLJ13]. These conflict types Afte Intruder. Also in the situation when the lateral sepanat
illustrated in Figl# as: L, between the Observer and Intruder is lower than or equal
« A Head-on conflict scenario as shown in Higl 4a. In sual the radius of the Observer's protected zope(r; < L,) a
a case each aircraft must turn right to avoid the collisiogonflict occurs due to loss of separation or collision betwee
« An Overtaking conflict scenario is where the aircraffhe Observer and the Intruder. Therefore the likelihoocuehs
being overtaken has the right of way as shown in EigJ. 4Bgnflict needs to be realized by estimatifg
The overtaking aircraft must alter course right and keep The Subset Simulation method is used by the Observer to
clear of the overtaken aircraft. An overtaking conditiogetermine the probability of conflid®, between itself and the
exists while the overtaking aircraft is approaching thgpproaching Intruder for the potentially conflicting sceos
rear of another aircraft within an angle less that 79"0wn in F|gw However, since some parameters are not
degrees from the extended centreline of the aircraft beiggajlable this requires the method to be adapted. The order
overtaken. of magnitude for the target probability (conflict) regigm )™
« A Converging conflict scenario is where the aircraft ofy unknown. The solution to this problem is addressed later i
the right has the right of way as shown in Figl 4c. Thejs section. Therefore the number of subset levelequired
aircraft on the left must alter its course r|ght to reSOIVR) reach the target probabmty level with a f|ng|s unknown.
the conflict. The Intruder and Observer are simulatednasrly constant
If a conflict is detected, the conflict type needs to baccelerationpoint models([3B]. This is a simple model that
identified so that the appropriate resolution maneuver @an ik used to illustrate the use of Subset Simulation. It can
executed by the CD&R system to resolve the conflict. Thise augmented by more complex dynamic models such as
paper addresses a key component of a detection of a conf8ot-Degrees-of-Freedom (SixDoF) aircraft models as shown
by estimating the probability of conflid®.. in [40]. This would not affect the use of Subset Simulatiod an
We assume a non-cooperative scenario, where the traffie computational advantages that it provides. The dyramic
does not share information. This is a challenging situatiaf the Intruder and Observer are modeled in state space
since the information related to the state and intentiorthef form asU(K + 1) = AU(K) and O(K + 1) = AO(K)
traffic might be unknown or incorrect. The only informatiorrespectively in two-dimensional Cartesian space, whéris
available regarding the state of traffic is from measuremerthe time—step index. The Intruder and Observer stateeater
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Intruder (U)

i | Observer (0)

S
\%l

—_ /,/(f,,, Intruder (U)

| TN
{ / Ty \
ﬁ Intruder (U) (\ I

N /Observer(o)

~. ~ Observer (0)

(a) Head-on (b) Overtaking (c) Converging

Fig. 4. These figures illustrate the geometric configuratbrihe different conflicts that might be encountered withidblack of airspace. This includes
different maneuvers required to be executed by the respeptrities to resolve the conflict.

U(K) = [z,u,az,y,v,a,]7 andO(K) = [x,u, az,y,v,a,]”
respectively. The displacement, velocity and accelenatidghe
z-direction are represented hy « and a, respectively. The

; ‘ /rt
displacement, velocity and acceleration in gheirection are . I“““““‘"% rrrrrrrr % )
represented by, v and a, respectively. The state transition 1 \,

Observer (0)

matrix A is defined as g | g ‘
g | Lateral Separation (L) g | Lateral Separation (L,)
1 AT {AT? 0 0 0 § - b e:
0 1 AT 0 0 0 . .
0 0 1 0 0 0 I | K| . 3
T 0 1 AT 1AT? R N g 3
000 0 0 1 AT | (% 1 I — %
o0 0 0 0 1 NG | |

& —~ Observer (0) Intruder (U)
whereAT is the period of discretized time-step. The samplin :
frequencyf A: ﬁ The Observer estimates the state of (a) Head-on pass (b) Intruder overtaking Observer
the IntruderU (K) using a Kalman Filter'[41]. The periodiCrig 5. The potentially conflicting scenarios based on tifterdint conflicts
measurements of the Intruder’s positidn= [z, y] is defined shown in Fig[#

by the measurement equation as

7 = HU(K) + [wy, w,]' @ 2 Kalman Filter. The Intruder’s state estimaf¢x + 1) and
Ly covarianceS(K + 1) is predicted using equations
where H is the measurement matrix.

. 10000 0 o UK+1)=AU(K) (12)
000100
S(K+1)=ASK)AT +Q (13)
wy ~ N(0,04) (10)
The process noise covariancels This is thewhite-noise jerk
version of theWiener-Process Acceleratianodel [39].
wy ~ N(0,0y) (11)
0,2
The periodic position measurements are simulated by adding Q= Qo x5 0 , (14)
noise asw, and w, to thez andy directions respectively. 0 02:7“
The standard deviation of the of the measurement error in
the » and y directions ares, and o, respectively. For the LATS LAT* LIAT?
sake of simplicity the measurement noise is uncorrelatad. T Qo = 1AT4 §AT3 ?AT2 (15)

instantaneous state estimate of the Intruder is determisied i iaT? i IAT? AT
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The parameter92 and 02 are the variance of acceleratior

parameters in the andy d|rect|ons respectively. The Kalman

gain G is evaluated during the update stage:

G=S8K+1)H"(HS(K +1)HT) + R)™* (16)
where R is the measurement covariance.
a2 0
R = [ 0 05} a7

This is followed by updating the Intruder estimeﬁfeéK +1)
and error covariancé (K + 1) respectively.

UK+1)=U(K +1)+G{Z(K) — [HU(K +1)]} (18)

S(K+1)=[I —GH|S(K +1) (19)

Algorithm 6 Kalman Filter
1: function KF(U(K), S(K), Z, H, Q, R, M)

>Predict
2. UK +1)=AU(K)
3 S(K+1)=AS(K)AT +Q

>Update if new measurement is available

4: if M, = truethen

5: G=S(K+1)HT{{HS(K +1)HT] + R}

6: UK+1)=UK+1)+G{Z - [HU(K +1)]}
7 S(K+1)=[I-GH)S(K+1)

8: end if

o: retun U(K +1),S(K +1)
10: end function

A. Example

2500
=====: Observer protected zone
Observer and Intruder Tracks
2000
$Intruder
1500
B
g 1000
o
z
500
N
\ ? » Observer
\.L/
O |-
500 | | | | | |
-1000 -500 0 500 1000 1500 2000
East (m)

Fig. 6. Head-on pass scenario with 1000m Lateral Separation

can be estimated using the CCDF. This is assuming infinite
simulation resources are available. This is impractical fo
implementation since simulation capacity is limited duéne

ited resources available. Therefore the SS method implerden
requires a limited number of leV@l® be definedn.

Subset Simulation estimaté3 (K + 1) where K + 1 is the
time-step of an instance during the simulation as shown in
Fig.[d. Subset Simulation begins with level 0 Direct Monte
Carlo sampling. A set of 100 samplééf,(lo) :n=1,..,100}
representing the Intruder’s pdf are drawn from the distidyu

The Subset Simulation method is applied to the Head-timat is centered at the Intruder’'s meank +1) and covariance

pass scenario with lateral separatibn= 1000m and longitu-

S(K +1). The mean and covariance are obtained from the

dinal separatiorL, = 2000m. The duration of the simulation Kalman filter defined in algorithria 6.

t = 20s with sampling frequency = 20Hz and the mea-
surement frequency,; = 2Hz. The initial conditions of the
Intruder and Observer ar@(0) = [0,77.2ms*,0,0,0,0]%

and U(0) = [2000m, —77.2ms"*, 0,1000m, 0,0]". The Ob-
server’s protected zone radius= 152.4m.

Kalman Filter parameters:
o Oy — 0.1m

. O'y =0.1Im

e 02 =0.01m*s™*

Ay

. chy =0.0lm?s*

a

Subset Simulation parameters:

e N =100
op():O.l
e« N.=10
.stlo
e m=1717

Ideally the SS method should continue to higher levels C

simulation until conflicting samples are encountered @&hd

The set of sampleﬁ],(lo) and the intended vector of the
ObserverO(K) are propagated to generate trajector]xé%>
and Jo respectively. A trajectory/ is a set of consecutive
state vectors indexed by the time-stepvherek = 1,....tf =
1,..,400 and f 20Hz is the sampling frequency (as
defined in algorithni]7). For example the Observer trajectory
Jo = [0(1),...,0(tf)] = [0(1),...,0(400)], where O(1)
is the state vector of the Observer at time-step= 1.
The propagation time 20s. This is also the period of
the simulation. Fig["da shows the Intruder samples and the

1An alternative implementation: During the process of SShesing the
P.; the SS method continues to higher levels until conflictiagnples are
found. If new information is received (such as a new Intrush&rasurement
that updates the Intruder state estimate) and the SS meti®adt found
conflicting samples, then the calculation for the curremtetistep should be
abandoned and restarted with the new information. Resgait necessary
since the information used to calculafe. becomes obsolete once more
ent information is obtained. This approach would beuldef situations
ere real-time computation is enforced. Note that thispdpes not enforce
constraints associated with real-time computation.
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Algorithm 7 Propagate State to generate trajectory Algorithm 9 Estimating Probability of Conflict using Direct

1: function SAMPLETRAJECTORYUy, f,t, A) Monte Carlo

2. Jo="Uy 1: function PC_DMC(f,t, A,0,U, S, N,r,)

3 for k=0:tf do 2: D=0

4: Uk+1)=AU(k) >Propagate Observer fot seconds

5: Jk+1)=Uk+1) 3: Jo = SAMPLETRAJECTORYO, f, t, A)

6 end for 4: forn=1: N do

7 return J >Draw sample

8: end function 5: U, ~ N(U,S)

>Propagate Intruder Samples ferseconds
Algorithm 8 Determine miss-distanceand minimum points  6: Jn = SAMPLETRAJECTORYU,,, f,t, A)
Usy, Oy between observer trajectorfy and Intruder trajec- >Determine miss-distance between Observer and
tory J, Sample Trajectories
7 rn, = MINDISTANCE(Jo, J,,)

1: function MINDISTANCE(Jo, Ju)

>Difference between Observer and Intruder trajectory & if 7, <7, then
2: Jouv =Ju — Jo o D:D+1
10: end if

>Distance between each point on trajectories

11: end for
3: rouv = J(Q)U + J(Q)U . _ D
- Jw y 12: P. = N
>M|n|mum_d|stance 13: return P.,D.,U,, Jo, Jn,
4 TOUN, = Min(rou) 14: end function
>Index of minimum distance
k = {TOUn |n = rOUmin}
Jomil‘l = JO:Ly (k)
']Umin = JUacy (k)
return_ T 00w JOmin> S0
end function

Note the range of. in this equation is different to equatiéh 2.
This is due to the maximum number of levels limit In the
event that SS reaches the maximum number of levels without
encountering conflicting samples the probability of conflic
will be estimatedP, = P™™Y — Pfgg;” = 0 (the last

respective trajectories generated with the projectedtipasi probability interval in theP" ") vector that is generated by

of the Observer during level 0 for a Head-on pass scenafiguatiori?) and this does not reflect the low magnitude of the
with lateral separatiorL, = 1000m. No conflicting samples probability. In contrast, the probability interval gente by
have been encountered yet. A conflicting sample is an Intrucgluatior 2D allows the probability of conflict to be estindate
sampleU\” generated in level with a trajectory.J$) that Fe < Plgg s Plge " = 1 x 10~ This information means
has a miss-distance,(f) between the Observer trajectosy, that although no conflicting samples have been encountered
and satisfies the conflict conditimﬁf) < r,. The number of despite exhausting all levels of SS the expedtgeds estimated

conflicting samples encountered in a levells to be lower thar(po)™, the lowest probability level realizable
The quantities of interest are the miss—distanée@ . due to the maximum number of levels limit reached by SS.

n = 1,..,100}. These are the minimum distances betweep!Ch information is more useful than the estimaie = 0

the Intruder samples’ trajectorie{siéo) :n =1,..,100} and evaluatgd by equatlolﬁ]. 2 Th(%) Ievel- 0 C((:()I)DF 'S constrycted
the Observer trajectoryo. AIgorithmTE defines the procedureby plotting the prol:_)ablhtlesPn againstB,. " as Sh‘?W” n

to determine the miss-distances between the Observer rlr%‘[E No_confllctlng samp_les have bee_n drawr_l n level 0
Intruder trajectories. A conflict is projected to occur whefi"c& N0 miss-distances satisfy the conflict conditionhtf t
there is a loss of minimum separation between any sampleiimPer of conflicting sample(g) > N then the probability
setJy., and the Observer trajectody, at any instance. The setOf conflict is estimated®. = P . This also applies for

i i N—-D+1)
of miss-distances'® are sorted in descending ord{eB(O) ~ the situation where the maximum number of levels has been
n = 1,..,100}. The input sample&/\” are reordered’,"

reached = m — 1 and some conflicts have been encountered
to correspond to the sorted miss-distan(&g). To clarify,

where the number of conflicts encountered is less than or
~ . equal toN,.; (N, > D > 0). The DMC method estimates

the sampleUl(O) produces a trajectoryy; that has the largest d (Ne = )

miss-distanceB%O) between itself the trajectory produced b

the probability of conflictP,. = % as defined by algorithiil 9.
X ) . 9 DY However if the conditionD > N, is not satisfied and <

the Observedo. The s_ample_s W'th lower m|ss-d|§tanc§s in th?n—l; SS proceeds to the next levgl> 0) and continues until

current level havg ahigher “ke.“hOOd O.f_generatmg candal the condition is satisfied or if the maximum number of levels

;amples that satisfy the conflict condition than other S‘gmplis reached. This is because the conflict region of the pdf is

in the current level. The vector of probability mterva‘lé )

not represented accurately enough due to the lack of surficie
are generated by samples representing the conflict region in the currentl.leve
@ N—n Therefore it is necessary generate more conditional sample
K3

P =} N n=0,..,(NN-1) (20) at higher levels of SS to progress towards representing the

A
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2500 r Level 1 seed trajectories 2500 Level 1 seed trajectories
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(a) Level 0 DMC sample trajectories with highlighted tragetes of samples(b) Trajectories for Level 1 samples generated usiWigsamples from level O
used as seeds

Level 0 CCDF Level 1 CCDF
T 1000 / ........................................................................................
,I
800 800 |
€ E
[0 [
2 600 - Threshold 2 600 - Threshold
% Level 0 DMC samples miss-distance % Level 0 DMC samples miss-distance
o Level 1 seeds a Level 1 SS Sample miss-distance
8 8
= 400 F = 400
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0 I I I I I I I I I | 0 I I I I I I I I I |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Probability Intervals Probability Intervals
(c) Level 0 CCDF with miss-distance of Level 1 seeds highiégh (d) Level 1 CCDF

Fig. 7. These figures illustrate the application of SS tonestie theP.(K + 1) at the time-stepk’ + 1 during a Head-on pass between an Obse®€K)

and IntruderU (K') with lateral separation of 1000m. SS begins with level 0 (DM@ere N = 100 samples are drawn from a distribution centered at the
Intruder’s state estlmatU(K+ 1) with a covariance oS(K + 1) obtained from the Kalman Filter. Fif.17a shows trajectogeserated by level 0 samples,
no conflicting samples have been encountered. The simulptioceeds to level 1 where conditional samples are gedeusiag N. samples from level 0 as
seeds. The trajectories of the level 0 samples used as seedigghlighted in Fig[Zla. The MH method is applied to gerer@nditional samples from the
seeds. The trajectories of generated samples for level $hanen in Fig[7b. This process is continued to generates majectories as the number of levels
increase. The method continues until conflicting sampleseacountered at higher levels as shown in Elig. 8.

conflict region of the pdf more accurately.

The following subset level& > 0) generateV conditional s\ — -1 (21)
Intruder sampleg/,; @ using the Metropolis Hastings method
as defined in algorithrh_10. The set of see&% required to wherel < j < N, (N = N.+1) <n < N andi > 0.
generate the samples are selected from samples in the psevio Fig.[7a highlights the trajectories of level 0 samples gekbc
level using as seeds to generate level 1 conditional samples_Hig. Tissho
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(c) Level 4 CCDF

(d) Level 4 CCDF

Fig. 8. The above figures show trajectories of conditionahgas generated as the simulation continues to highersle@lbset Simulation continues until
the number of conflicting sample® found in a level is greater thav. within a level as shown in Fig_8b. The probability of conflist estimated as

P.(K + 1) =0.52 x 104 as shown in Fig8d.

the trajectories of the conditional samples generatedviel te.  maintained.

The Sel‘s;i) containsN, seeds; one for each chain. Each chain
generatesN, samples. This maintains the total number of

samples a@V for each level. The MH method uses an indicatot2MP

d (as shown in algorithin 10) to ensure the miss-distarige N

between the Observer's trajectosy, and Intruder trajectory The input samples/,

J(®* of the proposed sampléV* is less than the intermediateth

The miss-distance@y(ll) :n =1,...,,100} of the conditional
les7 generated in level 1 are determined and sorted
descending ordeBY” using the same method as level O.
M) are reordered’" to correspond to

e sorted miss-distanced" . The probability intervalsP,"

thresholdb, set by equatiofl5. If()* > b, then the proposed for the current level are generated and plotted agané%
sample is rejected and the current sample of the Intrudert@s construct a CCDF. Fid._¥d shows the CCDF generated
up to level 1. Note the miss-distances of the samples used
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Algorithm 10 Generate conditional samples using Metropolislgorithm 11 Estimate Probability of Conflict Using Subset

Hastings Simulation
1: function MH_CONFLICTSAMPLES(f, t, A, O, U, S, s;, ~ 1: function PC_SS(f, ¢, A, O, U, S, N, r¢, po, m)
NS, Tt) 2: Nc = pOJIV
2: aft =120 3 N, =py
3: Jo = SAMPLETRAJECTORYO, f,t, A) 4 i = 0 >Set current level
4 for j=1:N, do >Direct Monte Carlo
5: Uy = s; >Select seed sample 5. [D,UY, 7] = PC_DMC(f,t, 4,0,U,8,N,r,)
>For each seed generat¥, samples 6: 13(‘) — 7(1) Sort distances in descending order
6: fork=0:N,—-1do 7: U « UY Reorder the input samples to correspond
>Draw acceleration sample from mean to the sorted quantity of interesﬁ,(f)
7 ay ~ N(0,1) >Generate probability intervals; equatidn]20
8: GZNN(OU g forn=0:N-1do
o = [0,0,az,0,0,a;]" o Pl = piNen
>Generate Cand|date samplé* 10: end for . .
10: Ur=Ur+yg >CCDF: Concatenate vectorB!”, B{Y and samples
>Propagate Samples farseconds 7
11: Jiy = SAMPLETRAJECTORY(U™, f,t, A) 11 B — [Pr(f) Bff) ”7(11')]
12: Ju, = SAMPLETRAJECTORY Uy, f,t, A) 12- while D < N, and i < m do
>Determine minimum miss-distance apdy) 5. =il
coordlnat((ejssof m||n|_|rr_1um EJomts between Ob;,. b; = B](éj\), >Set threshold
server and Sample Trajectories Set seeds using equatich 6
13: (7%, JOmn, JUs, ] = MINDISTANCE(Jo, Ju,.) , > . g equatiph
min 3 ko k 15: for j =1: N, do
14: [, J5 L Ji Tz MINDISTANCE(Jo, Ji7) _ _ .
" Omin mind i : 16: n—N_Nc+j
>Indicator function for miss-distance 17 NONS G
1 ifr*<nr ) g n
15: d= 0 if > 18: end for
Wr=rn . >Metropolis Hastings to obtain conflicting samples
>Calculate acceptance ratio (i) ,0)
(T 17 02,)a(U"10,3) 19: ~ [Un”,rn’] = MH_CONFLICTSAMPLES(f, t, A,
16 EA VR FA T 0. U, S'(f)ﬂ’ N, bi)
17: o =min{l, 8} 20: « rp’ Sort distances in descending order
18: e~ [0,1] 21 U,(f « U” Reorder the input samples to corre-
>Accept candidate sample, trajectory and miss-  spond to the sorted quantity of interest,”
distance ife < a >Generate probability intervals; equatidn120
_ G _J U ife<a 22: forn;O:N_—ldo
19: Urpr = Uy ife>a 23: Pé:)_l = p} N&"
20 g if e <o 24 end for
' L7 g, ife>a >CCDF: Discard all rows afterf; )
21- NC) - r* ife<a >Concatenate”\”, B, U\ and append ta&
' ML, fe>a 25: forn=1:N do . o
22: end for 26 By Nosm) = [Péz)’BSZz)7 UT(IZ)]
23: endfor o 27 end for
24:  return UY), JU), 10 28: D = |BY) < ry| >Number of conflictD
25: end function 29: end while
30: if D>0 th(e)n
. L sl Pe=Piy_pi
as seeds from the previous level 0 (that are highlighted i#p: else
Fig.[7d) are discarded and replaced with the miss-distaoicesss: P = p](vi) >No conflicting samples were found

the conditional samples generated in level 1. This illdsga
that the samples used as seeds are discarded and repldcedsxit  end if

the conditional samples generated in the current levels This: return P., E
process is repeated as SS progresses to higher levelshatil 46: end function
condition D > N, is satisfied or the maximum number of
levels is reached as defined in algorithm 11. Fig. 8a shows the

trajectories of the conflicting samples encountered inll8ve

However the conditionD > N, had not been satisfied. ThisThe CCDF generated up to level 4 is shown in [Fig. 8c. The
required SS to proceed to level 4 and generate conditio®CDF is used to estimate thB.(K + 1) = 0.52 x 10~*
samples that satisfy the conditi@h > N, as shown in Fid.8b. as shown in Fig[(8d. This process is repeated through out

select lowest probability interval
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Algorlthm 12 Determine Probablllty of Conflict USing SS anqime_step vary depending on the magnnude@f Therefore

DM the total number of sampleSt required to realize a conflict
1: 0(0) rinitialize Observer at a given time-step varies as a function of time-step. In
2: U(0) vInitialize Intruder the interest of a fair comparison of the computational éffor
3: U(0) »Initialize Intruder Estimate between the two methods, an equal number of samples are
4: 5(0) pInitialize Intruder Covariance evaluated for both methods. The estimation using DMC is
5. M. = 0 >Measurement counter conducted withN,; samples, whereV; is the number of
6: for K=0:¢f do samples that are used in the SS method at the same time-
7. O(K +1) = AO(K) »Propagate Observer step. To clarify, if the SS method reaches leivel 4 to satisfy
8  U(K+1)=AU(K) »Propagate Intruder the conflict condition for estimating the!S (k) at time-step
o Mz= fCLlee >Flag to indicate new measurement g then N, = 100 x 5 = 500 samples have been used by the
10: if M. = 77 then >Conduct Intruder position mea- 55 method. Therefore DMC estimates &) (K) for the
surement same time-step with 500 samples only.
11: Z =HU(K + 1) + [wg,w,]"
12: Mz = truerSet flag to indicate that new measure-
ment is available for Kalman filter Update A. Estimation ofP, for Head-on Pass scenario
13: M. = 0 > Reset measurement counter The Intruder and Observer parameters used for the Head-
14:  end if on pass scenario are as follows: The Intruder and Observer

15: M. = M.+ 1 rIncrement measurement counteér  maintain a constant speed of 150 knots (77.17HhsThe
>Predict/Update estimate of Intruder with KalmanObserver maintains a constant heading06f the Intruder

filter X A A maintains a constant heading 880°. The Observer’s min-
16: U(K+1),S(K+1)] =KF(U(K),S(K),Z,H,Q,R, imum separation threshold is = 500ft = 152.4m. The
Mjz) Longitudinal separation i€, = 2000m
>Estimate Probability of Conflict using Subset Simu- Figures[9a[ 9b an@ Pc show the estimationRffor the
lation Head-on pass scenario using SS and DMC methods with
17: PLs9 (K+1) = lateral separations of Om, 100m and 152m respectively. The
PC_SS(f, t, A, O, U(K +1), S(K +1), N, r, py, Scenarios are conflicting because the geometric configarati
m) and initial conditions of both the Observer and Intruder are
>Estimate Probability of Conflict using Direct Monteconflicting and remain as such throughout the duration of
Carlo the simulation. Whert < 12s the Intruder and Observer are
18: p(OMO) (K +1) = approaching each other the estimatBd increases. This is
pC_DMC(f7t’A7O7U(K+ 1)’g(K+ 1), N,r) as expected because a conflict is imminent. Both estimation
19: end for methods show approximately the saifieas expected, since

the first level of the SS method is DMC sampling. At this stage
the conflict region of the pdf is large and the probability of
the duration of the simulation to determine the probabiity drawing a sample which leads to a conflict is high. The conflict
conflict for each time-step using samples from the predictimccurs att ~ 12.5s due to the loss of separation between
of the Intruder’s estimat& (K + 1) and covariancé (K +1). the Observer and Intruder. Fig-]9¢c shows the estimation of
P. with lateral separation., = 152.4m = r. This is
VI. RESULTS a conflicting scenario since the Intruder skims Observer’s
The Subset Simulation method has been tested and cagirptected boundary dt~ 12.5s as the Observer and Intruder
pared with the Direct Monte Carlo (DMC) method to estimatpass each other. The oscillations during< 12s are due to
the probability of conflict P. between the Observer andL, = r:. This is a borderline situation.
Intruder by simulating the scenarios shown in Higl. 5. The The Intruder and Observer pass each othet at 13s.
Observer and Intruder were modeled as points with nearly corhe P, estimated by both methods is still until ¢ > 14s
stant velocity in a geometric configuration based on theethrevhere the Intruder has exited the Observer’s protected.zone
different types of conflict shown in Fi§] 4. THe. metric was At this stage the Observer and Intruder have receding velati
estimated as an average of 50 Monte Carlo simulation duriaglocities and are moving away from each ott&ris expected
the Head-on and Overtaking conflicts as shown in figlirés &areduce at this stage as shown in the {oglot. The conflict
and[Eb respectively. The tests were repeated with varyinggion of the pdf reduces since both Intruder and Obsenreer ar
lateral separation&, = {0,100, 152,500, 1000, 1100} m. moving away from each other. The SS method estimates the
The following Subset Simulation parameters were usdd as being close to zero at an order of magnitude ®f”.
for all scenarios:N = 100; Level probability: py = 0.1; The lowest probability which can be realized & = 10~8.
N. =poN =10; Ny = io = 10; m = 7; Observer minimum This is due to a maximum level restriction imposed in the
separation threshold; = 500ft = 152.4m. Algorithm [1I2 simulation. In such instances the probability of conflichca
defines the simulation conducted. be considered to be less than the order16f®. At this
The number of samples used for each level of SS rematage the DMC method draws the same number of samples
constant. However the number of levels required at a givas SS but is unable to find conflicting samples and estimates
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Fig. 9. The estimated®. using the Subset Simulation and Direct Monte Carlo methading the Head-on pass as shown in [Eigl 5a with varying latera
separationL, = {0, 100, 152, 500, 1000, 1100 }m.

P. = 0. This is because the region of conflict within thesmaller than the previous scenarios. The SS estimationadeth
pdf has reduced and the probability of drawing a conflictinig able to estimate lowP, throughout the duration of the
sample is rare. This requires the DMC method to draw amsimulation, whereas with an equivalent number of samples th
evaluate a larger number of samples at this stage befor®8MC method is unable to find conflicting or near conflicting
conflicting sample is drawn from the rare region of conflickamples of the Intruder in most instances. Eid. 9d showspabru
within the pdf. The SS method is able to obtain the conflictingariations in the P, estimated by the DMC method when
samples from the rare region of the pdf by generating samptes. 1s where the estimate tends to zero. These are instances
conditionally in such a way that the samples satisfy thehere the DMC method is unable for find any conflicting
intermediate thresholds leading to the rare region usimg tkamples and estimatdd = 0.
MH method. Each subset level corresponds to an intermediatéigures. 10a anfl_10b show the trajectories of the samples
threshold. This progressive feature of the SS method allbwevaluated by SS and DMC methods at an instance before and
more efficient approach to reach the rare ‘tail’ region of thafter the Intruder and Observer pass each other respgctivel
pdf. The progressive nature of the SS method can be observed as a
As the lateral separation of the scenario is increased, ncentration of trajectories leading to the conflict tegey.
expected P, decreases. The scenario is simulated with I8 contrast the DMC method has drawn the same number of
lateral separation of 500m, 1000m and 1100m as shownSamples (most are overlapping) without realizing any cotsli
figures[Qt[ 9 and Bf respectively. These are non-conflicting
scenarios. The figures show abrupt variationsHn These
are caused by the Monte Carlo nature of our algorithm. Note
that, since the sampling frequency is high relative to the The scenario parameters used are as follows: The Intruder
thickness of the line in the figure, the variations i) are speed is300knots = 154.3ms™! and the Observer speed is
particularly readily perceived. The conflict region of thdf s 150knots= 77.17ms™!. Both Intruder and Observer maintain

Estimation ofP, for Intruder Overtaking Observer
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a constant heading of a constant headingl&d°. The lon-
gitudinal distanceL, between the Intruder and Observer is
L, =1000m.

Both SS and DMC methods have been applied to the Over-
taking scenario as shown in Fig.15b. Similar to the previous
scenario, the SS method is able to obtain samples from the
rare conflicting region of the pdf consistently throughdug t
duration of the simulation for this scenario. As the latesep-
aration increases, thB. decreases (as expected). Figured 11e
and[1If show the?, when the lateral separation is 1000m and
1100m respectively. The changem is less abrupt compared
to the 100m lateral separation after the Intruder as passed t
Observer whert > 13s. The P. is approximately the same
throughout the duration of the simulation. This is becahse t
increased lateral separation includes samples with low tur
rates in the conflict category and these are common enough to
be drawn by the DMC method and SS method. With low lateral
separation the conflicting samples will need high turn rates
These are rare and are realized by using SS method. In contras
the DMC method is unable to realize them. Also throughout
the simulation, the relative change in angle of the Intrdden
the Observer’s perspective reduces as the lateral separati
increased. The conflicting samples can have lower turn rates
despite the Intruder having passed the Observer. Such sampl
are common and can be realized by both methods.

VII. ACCURACY AND EFFICIENCY OF SUBSET
SIMULATION

A range of magnitudes of probabilities have been evaluated
within the simulated scenarios shown in the previous sectio
This section analyzes the accuracy and efficiency of usiag th
Subset Simulation and Direct Monte Carlo methods to esémat
probabilities at each of a number of orders of magnitude. In
order for a fair comparison to be conducted — a common
phase within a simulation scenario must be found where both
methods are able to realize conflicting samples and estimate
the probability of conflict.

The first order of magnitude considered for comparison is
P., ~ 1071, A suitable phase to conduct the comparison is
att = 1s during the Head-on scenario with lateral separation
L, = 152.4 and longitudinal separatioh, = 2000m where
a conflict is inevitable. At this phage < P., < 1 and both
methods estimate a similar probability of conflict. This & a
expected since the probability is large enough to geneudtie s
cient conflicting samples in the first level of Subset Simalat
and it does not progress to higher levels of Subset Simulatio
The first level of Subset Simulation is Direct Monte Carlo so
the performance is the same.

The second order of magnitude consideredPis. This
probability needs to be lower thah., whereP., < po. Such
phases occur frequently in the Head-on pass and Overtaking
scenarios, typically whert > 14s as shown in figureg] 9
and[I1 respectively. Note, during such phases the Subset
Simulation method is able to obtain conflicting samples and
provide a good estimate faP.. However, the Direct Monte
Carlo method fails to find conflicting samples and is unable to
estimate the probability of conflict accurately (other tham
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Fig. 11. TheP. is estimated using the SS and DMC methods during the IntrQdeertaking the Observer scenario as shown in [Eid. 5b withingrlateral
separationL, = {0, 100, 152, 500, 1000, 1100 }m.

trivial case,P. = 0 that is inaccurate). For example the Headabruptly. Fig[IP show#. estimated by Subset Simulation and
on pass scenarios in F[d. 9 shows abrupt chang&sin some Direct Monte Carlo methods during this scenario. Note, ryri
cases from a magnitude d0~! to 10~% at approximately the period80s < ¢ < 120s, there are frequent abrupt variations
13s as the Observer and Intruder pass each other. This chaimgéhe P. estimated by the Direct Monte Carlo method as
in magnitude of probability is very large and abrupt (steemero. These are phases where the method was unable to find
The magnitudel0—2 is very rare. For such probabilities thea conflicting sample and estimated the probability of conflic
Subset Simulation method is able to obtain conflicting sasplas zero. A suitable phase fdt., is att = 100s where the
and estimate thé’. but Direct Monte Carlo method fails to probability of conflict estimated by Subset Simulation has
obtain conflicting samples and results in estimatidig= 0. reduced to approximately0—2; (P., ~ 10~2). This satisfies
The Direct Monte Carlo method requires a large number tfe p, > P., criteria. Also, it is the last phase after which
samples to estimate probabilities of such magnitu=¥). the frequency of the Direct Monte Carlo method finding
This might not be practical due to limited simulation resms. conflicting samples to estimate the. diminishes. In other
Therefore, this order of magnitude of probability is imgreal words, it is the last phase where both methods are able to
for comparison since although the Subset Simulation mathodyenerate conflicting samples to estimate the probability of
able to find conflicting samples and estimate ifhethe Direct conflict for a comparison to be conducted.

M_onte Car_lo method is unable to find conflicting samples and The accuracy and efficiency are compared by calculating the
fails to estimate the". coefficient of variance (c.0.vd = Z for estimating the prob-

In order to find a phase wherE., can be evaluated by abilities of conflictP,, and P., using both Subset Simulation
both methods the simulation of the Head-on pass scenatio waind Direct Monte Carlo methods for varying samples sizes
lateral separation of 1000m was repeated once with inadea$é. The mearn. and standard deviation is calculated over 50
longitudinal separatiot, = 20000m for an increased period Monte Carlo runs. The sample intervals for Direct Monte Garl
of ¢ = 200s. This allowed the change iR. to occur less are Ngmc = {102,103, 104, 10°, 10°} and the sample intervals
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and potentially conflicting scenarios based on the Rulebef t
Air defined by the International Civil Aviation Organizatio
These scenarios can be used to conduct benchmarks for com-
paring future algorithms. The Subset Simulation method has
demonstrated the ability to seek samples from the rare confli
region of interest in an effort to estimate the probability o
conflict with lower computational effort than Direct Monte
Carlo method. For the equivalent number of samples, the
Direct Monte Carlo method fails to consistently obtain sésp
from the region of interest within the probability distrimn
function.

This paper has also demonstrated the ability of Subset
Simulation to estimate low probability of conflict (of magni
tude 10~2) approximately 10 times more accurately than the
Direct Monte Carlo method while using approximatel%g
of the total samples used by the Direct Monte Carlo method
to achieve the same level of accuracy as Subset Simulation.
This has been demonstrated at a phase during a potentially

o 20 40 60 80 100 120 140 160 180 200 conflicting. scgnario based on the Rules of the Ai_r. This

time (s) example situation has demonstrated that the Subset Siowlat

method is able to estimate low probabilities more accuwatel

Fig. 12. Head-on pass scenario with 1000m lateral separatiwl 20km than Direct Monte Carlo method while using less samples
longitudinal separation than the Direct Monte Carlo method. We conclude that Subset
Simulation method is more accurate and efficient than the

for Subset Simulation aréVss = {100n : n = 1,...,100}. Direct Monte Carlo method for estimating low probability of

Note, that Nss is the number of samples at each level ofonflict between air traffic. _ _ _
Subset Simulation. The total number of levels can vary for The Subset Simulation method is scalable to involve multi-
each Monte Carlo run of Subset Simulation. This causespg Intruders where th&,. is estimated for each Intruder. This

total number of samples to vary for each Monte Carlo rquouId be useful for the resolution stage, where Intruders ca

To allow a fair comparison an average of the total numbgf3 prioritized based on the respectif and an optimized

of samples for each Monte Carlo run of Subset Simulation rigsolutlon maneuver determined to minimize the néw

used after the resolution maneuver. A more efficient method of

The c.o.v. for estimating®., using Subset Simulation andestimating thel’. would be to modify the SS method further
Direct Monte Carlo method; at varying sample sizZésis to use Sequential Monte Carlo Samplers instead of Markov

shown by Fig[13a. Note both methods have similar ¢ Oghain Monte Carlo[[42]. This will allow the implementation
as the average sample size increases. This is expected smé_%e paralldellzec_i n tf;e ;?‘.ad sele\(/:\?onlstage_and W'” gsir
the probability is large enough to be realized in level 0 C}P improve stgnsftma € |C|ekncy. € plan to Investigate
Subset Simulation that is Direct Monte Carlo. In Fig_JL3B"Provements in future work.
the c.o.v. of Subset Simulation for the lower probability of
conflict P., becomes significantly lower than the c.o.v. of
DMC as the average number of samples is increased. A poinirhe authors would like to thank Matteo Fasiolo, Flavio De
of comparison between both methods can be made where Melo, Elias Griffith and James Wright for their contribution
number of samplesV = 10%. Note that the c.o.v for Direct This work was supported by the Engineering and Physical
Monte Carlo is approximatel§.48 and the c.o.v for Subset Sciences Research Council (EPSRC) Doctoral Training Grant
Simulation is approximately).04. Also note that in order
for the DMC method to achieve similar c.o.v as the Subset REFERENCES
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