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Abstract—This paper presents an efficient method for estimat-
ing the probability of conflict between air traffic within a bl ock
of airspace. Autonomous Sense-and-Avoid is an essential safety
feature to enable Unmanned Air Systems to operate alongside
other (manned or unmanned) air traffic. The ability to estimate
probability of conflict between traffic is an essential part of Sense-
and-Avoid. Such probabilities are typically very low. Evaluating
low probabilities using naive Direct Monte Carlo generatesa
significant computational load. This paper applies a technique
called Subset Simulation. The small failure probabilities are
computed as a product of larger conditional failure probabilities,
reducing the computational load whilst improving the accuracy
of the probability estimates. The reduction in the number of
samples required can be one or more orders of magnitude. The
utility of the approach is demonstrated by modeling a series
of conflicting and potentially conflicting scenarios based on the
standard Rules of the Air.

Index Terms—Probability of conflict, air traffic, Subset Simula-
tion, Direct Monte Carlo, Metropolis Hastings, Sense-and-Avoid

I. I NTRODUCTION

FUTURE autonomous operations of Unmanned Air Sys-
tems (UAS) within densely populated airspace require an

automated Sense-and-Avoid (SAA) system [1]. A key element
within the Sense-and-Avoid (SAA) topic is Conflict Detection
and Resolution (CD&R) [1]. A conflict occurs when the
separation between any aircraft or obstacle reduces below a
minimum distance. Such a situation could− in the worst
case− generate a collision between air vehicles but even in
the absence of an actual collision it will violate the mandated
Rules of the Air, and may give rise to an air incident. Such
incidents must be reported as soon as possible to the local Air
Traffic Service Unit (ATSU) [2].

Initial work on CD&R can be found in robotics where
the collision avoidance problem has been treated as a path
planning task [3] and an early approach to the collision
avoidance problem involved using artificial potential fields [4].
Such methods are suitable for scenarios where movement of
the vehicles may be relatively slow, restricted in space or
in scope. However, over the following decades the increased
use of UAS has created demand for autonomous CD&R
solutions which are suitable for the more dynamic aerospace
environment. A large number of CD&R methods have been
proposed during this period and comprehensive surveys have
been conducted by Kuchar and Yang [5], Krozel et al. [6],
Warren [7] and Zeghal [8]. Kuchar and Yang have proposed a
taxonomy of methods useful in identifying gaps and directing

future efforts within the SAA community [5]. More recently,
Albaker and Rahim have presented an up to date survey of
CD&R methods for UAS [9]. The work presented in this
paper can be categorized as a Conflict Detection method that
assumes non-cooperative sensor technology.

The CD&R methods are broadly categorized as cooperative
and non-cooperative. Cooperative methods assume that traffic
shares relevant information via radio, data link or by con-
tacting ground based ATSU. These methods are dependent on
cooperative equipment such as Transponders and/or Automatic
Dependent Surveillance-Broadcast (ADS-B) that are carried
on-board the aircraft. This equipment declares the currentstate
of the aircraft to nearby traffic. If the potential for a conflict
is identified the situation will be resolved by coordinating
maneuvers between the traffic, often via two-way radio com-
munications. The maneuvers are dictated by following a set
of customary rules that determine the right-of-way for each
aircraft. These are based on existing Visual Flight Rules (VFR)
within the civil aviation domain [10]. In VFR, it is the flight
crew’s responsibility to maintain safe separation with traffic.
In the absence of visual information (due to limited visibility
caused by bad weather), the flight crew must rely on external
information. In such situations, Instrument Flight Rules (IFR)
are used with the ATSU monitoring traffic separation using
Radar and then directing the flight crew so as to maintain
safe separation. Alternatively, on larger aircraft, a Traffic Alert
Collision Avoidance System (TCAS) [11] can be used. The
TCAS system provides Resolution Advisories (RA) to flight
crews of conflicting traffic in the form of maneuvers to be
followed to resolve the conflict. In each case, a potential
conflict is resolved in accordance with the rules given by
the local aviation authority for the airspace within which the
aircraft are operating; such as the Federal Aviation Authority
(FAA) in the US [12] or the Civil Aviation Authority (CAA) in
the UK [13]. The rules stated by most aviation authorities are
based on the rules outlined by the International Civil Aviation
Organization (ICAO) [14]. When a conflict type is identified
the appropriate resolution maneuver is executed. For example,
when aircraft are approaching each other head-on the rules
will say that both aircraft maneuver to their right. All traffic
involved with the conflict must cooperate for a successful
resolution [15]. Each of these methods assumes that all aircraft
involved in the potential conflict are sharing information and
behaving in accordance with the accepted Rules of the Air.

In contrast, non-cooperative methods assume that no infor-
mation related to the current state or future intent of traffic has
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been shared (i.e. there is no flight plan exchange or radio/data
link). This is a far more challenging problem since information
related to traffic state and intentions must be measured or
inferred from the behavior of non-cooperative aircraft. Nor-
mally, this will be due to the lack of appropriate technology
on-board the aircraft: for example, a lightweight commercial
of-the-shelf (COTS) UAS, obtained by the general public and
used for recreational purposes. Problems occur when these
aircraft are operated within non-segregated airspace. This type
of airspace contains aircraft (manned or unmanned) that adhere
to the Rules of the Air and expect traffic to do so as well.
The lack of cooperative technology on-board a lightweight
UAS prevents awareness of traffic and increases the risk of
a midair collision. This problem needs to be addressed due
to the increased number of near miss incidents involving
such UAS operating within non-segregated airspace [16]. The
problem of the lack of information is addressed by using on-
board sensors. Information related to state of traffic is obtained
from observations using sensors such as Radar, Lidar and/or
cameras. For example, Mcfadyen et al. have considered using
visual predictive control with a spherical camera model to
create a collision avoidance controller [17]. Recently, Huh et
al. have proposed a vision based Sense-and-Avoid framework
that utilizes a camera to detect and avoid approaching airborne
intruders [18]. A collision avoidance system that uses a
combination of Radar and electro-optical sensors have been
prototyped and tested by Accardo et al [19]. Measurement
data obtained from sensors are inherently noisy. This gives
rise to uncertainties in the observed state and predicted motion
of the non-cooperative aircraft. In an environment where
future trajectories are uncertain, the likelihood of a conflict
is an essential metric. Obtaining an accurate estimate for
the Probability of Conflict (Pc), given the sensor data, is a
key parameter required to resolve traffic conflicts. This paper
provides a method to calculate thePc metric that is more
efficient than the standard approach of using Direct Monte
Carlo (DMC) methods.

Probabilistic methods for conflict resolution requiring the
calculation of metrics like the Probability of Conflict (Pc)
have been discussed in [5]. Nordlund and Gustafsson [20]
noted the huge number of simulations required to get sufficient
reliability for small risks and suggested an approach that re-
duced the three dimensional problem to a one dimensional in-
tegral along piecewise straight paths [21], [22]. More recently,
Jilkov et al. have extended a method developed by Blom
and Bakker [23] and estimatedPc using multiple models for
aircraft trajectory prediction [24]. Many probabilistic methods
involve the use of Monte Carlo methods where uncertainties
exist and Monte Carlo methods can be found in existing
CD&R methods [24]–[31]. Unfortunately, for scenarios where
the expectedPc is low, a Monte Carlo method will require
a very large number of simulations to estimatePc with any
accuracy. To reduce the computational cost associated with
Monte Carlo methods, Prandini et al. have estimated the
risk of conflict using the Interacting Particle System (IPS)
method [32]. This method fixes a set of initial conditions
of the aircraft and alters reducing subsets of the propagated
trajectories to satisfy the intermediate thresholds; thisassumes

that the predicted trajectories are non-deterministic with the
probability of conflict being associated with outliers in the
propagation, not outliers in the initial conditions. If, however,
the trajectory is deterministic (or near-deterministic),then IPS
is unable to provide improved computational efficiency relative
to direct (Monte Carlo) sampling. This paper proposes the use
of the Subset Simulation method [33] to avoid this problem
and allows the initial conditions to be adjusted as the subsets
are navigated. Subset Simulation approaches the problem of
reducing the computational load associated with calculating
low probabilities by focusing the simulation towards the rare
regions of interest within the probability distribution function
(pdf). The regions of interest correspond to the events which
may lead to conflict between traffic.

Originally, Au and Beck proposed Subset Simulation as a
method for computing small failure probabilities as a result
of (larger) conditional failure probabilities [33]. The method
was proposed in Civil Engineering to compute probabilitiesof
structural failure and identify associated failure scenarios [34].
The focus of their work was on understanding the risk to
structures posed by seismic activity. This paper modifies the
methods developed by Au and Beck [35] and demonstrates that
they can significantly reduce the computational load required
to estimate the value ofPc for air traffic within a block
of airspace by reducing the number of samples required.
The proposed method is applied to a set of conflicting and
potentially conflicting test scenarios based on the Rules ofthe
Air specified by aviation authorities. Since these scenarios are
standard engagements considered by aviation authorities,they
could also be used as a benchmark for comparison against
future methods. ThePc during some scenarios is low; despite
this, it is essential to provide an approximation this metric due
to the catastrophic nature of a collision.

The paper is structured as follows: sections II and III de-
scribe the Direct Monte Carlo (DMC) and Metropolis Hastings
(MH) methods respectively. The Subset Simulation theory is
based on a combination of DMC and MH methods. Section IV
describes Subset Simulation. Section V then describes the
application of Subset Simulation to the estimation ofPc

between air traffic in non-cooperative scenarios. Section VI
presents simulation results of estimatingPc between air traf-
fic for conflicting and potentially conflicting non-cooperative
scenarios. Section VII analyzes the efficiency and accuracyof
estimating thePc using Subset Simulation and Direct Monte
Carlo. Finally, section VIII concludes the paper.

II. D IRECT MONTE CARLO

The Direct Monte Carlo (DMC) method is a sampling
method that can be used to characterize a distribution of inter-
est. The objective of this section is to estimate the probability
of a type of event to occur. Therefore the DMC method is
used as a ‘statistical averaging’ tool, where the probability of
failure PF is estimated as the ratio of failure responses to the
total number of trials [35].

A set of N independent identically distributed (i.i.d) in-
puts {Xn : n = 1, ..., N} are drawn from the proposal
distribution q(X |µ, σ2) of the input parameter space. The
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Algorithm 1 Determine distance between samples X and C
1: function H(X ,C)
2: V = X − C

3: R =
√

V 2
x + V 2

y

4: return R

5: end function

Algorithm 2 Direct Monte Carlo
1: function DMC(N , C, rc)
2: D = 0
3: for n = 1 : N do
4: x ∼ N (0, 1)
5: y ∼ N (0, 1)
6: Xn = [x, y]T

7: Rn = H(Xn, C)
8: if Rn ≤ rc then
9: D = D + 1

10: end if
11: end for
12: PF = D

N

13: return PF

14: end function

proposal distribution can be any known distribution that can
be sampled from. We choose a Normal distribution that is
centered at the meanµ and has a variance ofσ2. A set of
system responses are observed{Yn = h(Xn) : n = 1, ..., N},
whereh(...) is the system process. The occurrence of a failure
eventF is indicated when a scalar quantitybF (threshold) is
exceeded. The number of samples that exceed the threshold
is YF . Therefore the probability of failure is estimated as
PF = P (Y ≥ bF ) = YF

N
. Such an approach is suitable for

large probabilities (such asP > 0.1) where a small number of
samples can be used to estimate the probability. However for
small probabilities (such as the tail region of the pdf, where
P ≤ 10−3) a significantly large number of samples must be
drawn to accurately estimate the probability. This is illustrated
by the following example.

A. Estimating probability of drawing samples from regionF

Fig. 1 shows a10 × 10 square centered atO = [0, 0]T .
The regionF is a circle with radiusrc = 1, centered at
C = [3,−3]T within this square. The objective is to estimate
the probability of drawing samples from this region. The
probability distribution of the overall area is represented by
a Gaussian distribution centered atO = [0, 0]T . A set ofN
samples{Xn : n = 1, ..., N} are drawn where each sample
is a vector;Xn = [xn, yn]

T . The x and y values of each
sample are the x-coordinate and y-coordinates of the position
respectively. To clarify,X1 = [x1, x2]

T wherex1 ∼ N (0, 1)
andy1 ∼ N (0, 1). The distance between the position of each
sample and center of circleC is {Rn = H(Xn, C) : n =
1, ...N} as defined by Algorithm 1. To clarify, the distance
between sampleX1 andC is R1 = H(X1, C). Algorithm 2
is used to estimate the probability of drawing samples from
the regionF .
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(a) Direct Monte Carlo with 100 samples

(b) Direct Monte Carlo with105 samples

Fig. 1. The probability of drawing samples from the regionF is estimated
using Direct Monte Carlo. Fig. 1a estimates thePF = 0 with 100 samples.
Fig. 1b estimates thePF = 1.5× 10−4 with 105 samples.

Fig. 1a shows100 samples drawn from the distribution.
Note no samples are drawn from the areaF . The probability
is estimatedPF = 0. The number of samples are increased to
N = 105. Fig. 1b shows some samples are drawn from the
regionF and the probability is estimatedPF = 1.5 × 10−4

This illustrates that Direct Monte Carlo requires a significantly
large number of samples to estimate the probability of drawing
samples from the regionF .
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This method estimatesPF by attempting to realize the entire
pdf centered atO that includes the area F. As the areaF
reduces the number of samples required to estimatePF in-
creases making such an approach computationally demanding.
A different algorithm is needed.

III. M ETROPOLISHASTINGS

Metropolis-Hastings (MH) is a Markov Chain Monte Carlo
(MCMC) method used to characterize a distribution of interest
by sampling from a known distribution. We refer to this distri-
bution of interest as the target distribution. The MH algorithm
originates from the Metropolis algorithm first used in statistical
Physics by Metropolis and co-workers (Metropolis et al, 1953)
[36]. Hastings proposed a generalized form of this algorithm
leading to the Metropolis Hastings (MH) algorithm [37].

The MH method generates samples from the proposal
distributionq(X |x0, σ

2) by starting from a seed valuex0. A
chain of n samples is then generated, starting withx0. The
samplexk+1 is generated from the current samplexk using
the following steps [35]:

1) Generate a candidate samplex∗ ∼ q(x∗|xk, σ
2).

2) Calculate an acceptance ratio:α = q(xk|x
∗,σ2)f(x∗)

q(x∗|xk,σ2)f(xk)
3) Draw a samplee from a uniform distribution [0,1]

4) Setxk+1 =

{

x∗ if e < α

xk otherwise
5) Repeat steps 1 to 4 untiln samples have been generated.

The functionf(...) defines the target density for the input
sample. While,n → ∞, this process is guaranteed to accept
samples fromq that leads to the realization of the target
distribution [38]. To help ensure that all regions of the target
density are explored, multiple seeds can be used to generate
multiple chains of samples in parallel [35].

A. Drawing samples from the regionF

The Metropolis Hastings method is defined in algorithm 3
and it is applied to the example of estimating the probability
of drawing samples from regionF as shown in the previous
section. The covariance of the proposalσ2 is a 2× 2 identity
matrix I2×2 and the covariance of the distribution of interest
σ2
rc

= r2c × I2×2 whererc is the radius of the regionF . For
this examplerc = 1, thereforeσ2

rc
= I2×2.

Fig. 2 illustrates the chains of samples generated by the
Metropolis Hastings algorithm. This figure shows 10 samples
drawn from the proposal distribution using the DMC method.
These samples are seedss = {X1, ..., X10}. The MH algo-
rithm is applied using the seedss. Each seed generates a chain
of 10 samples. Note that many sample chains do not reach
the regionF . It is clear that it might be more efficient to
generate more samples for chains with seeds that are closer to
the regionF since they have higher likelihood of generating
samples that are within the regionF or closer to the regionF .
Subset Simulation achieves this and is described in the next
section.

IV. SUBSET SIMULATION

Subset Simulation (SS) is based on a combination of Direct
Monte Carlo (DMC) and Metropolis Hastings (MH) methods
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Fig. 2. Drawing samples from the region F using Metropolis Hastings
algorithm to generate chains of conditional samples. The initial samples used
as seeds are drawn using Direct Monte Carlo.

Algorithm 3 Generate conditional chains of samples using
Metropolis Hastings algorithm

1: function MH(s, n, C, rc)
2: σ2

rc
= r2cI2×2

3: for j = 1 : |s| do ⊲ For each seed
4: X0 = sj ⊲Select seed sample
5: for k = 0 : n− 1 do

⊲Generate Candidate sampleX∗

6: g ∼ N (0, 1)
7: X∗ = Xk + g

⊲Calculate acceptance ratio

8: β = q(X∗|Xk,σ
2)

q(Xk|X∗,σ2)

p(X∗|C,σ2

rc
)

p(Xk|C,σ2
rc

)

9: α = min {1, β}
10: e ∼ [0, 1]

11: X
(j)
k+1 =

{

X∗ if e < α

Xk if e ≥ α
12: end for
13: end for
14: return X(j)

15: end function

as described in sections II and III respectively. It calculates
the probability of rare events occurring as the product of
the probabilities of less-rare events. Such an approach is less
computationally expensive than either DMC or MH alone. A
general outline of the SS method is presented in this paper
and the interested reader is referred to [35] for more details.

Subset Simulation generates a Complimentary Cumulative
Distribution Function (CCDF) of the response quantity of
interest Y . The probability of failurePF can be directly
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estimated from the CCDF. This CCDF is constructed by gen-
erating samples that satisfy a series of intermediate thresholds
b1 > b2 > b3 > ... > bm−1 that divide the space into
m nested regions. These thresholds are adaptively defined as
the simulation progresses. This is described later on in this
section. The thresholdbm−1 is the required failure threshold
bF (bm−1 = bF ). The intermediate thresholds allow the prob-
ability of failure to be estimated using a classical conditional
structure given by

PF = P (Y < bm−1|Y < bm−2)P (Y < bm−2) (1)

Samples are generated to satisfy the threshold for each level.
The total number of levelsm is dependent on the magnitude
of the target probabilityPF . Subset Simulation uses ‘level
probability’ p0 ∈ (0, 1) to control how quickly the simulation
reaches the target event of interest [35]. The target probability
is used to approximate the number of levelsm required by
evaluatingPF = (p0)

m. To clarify, if the target probability
is PF = 10−5 and p0 = 0.1 then the total number of levels
required will bem = 5.

A. Level 0

Subset Simulation begins at leveli = 0 with Direct Monte
Carlo (DMC) sampling from the entire region of interest.
A set of N samples{X(0)

n : n = 1, ..., N} are drawn
from a proposal distributionq(X(0)

n |µ, σ2) (as described in
section II). The set of output responsesY (0)

n are evaluated
{Y

(0)
n = h(X

(0)
n ) : n = 1, ..., N}. The functionh(...) defines

the system response to the input sample. In the context of SS,
the responsesY (0)

n are also known as the quantity of interest.
The setY (0)

n is sorted in descending order to create the set
{B

(0)
n : n = 1, ..., N}. The input samplesX(0)

n are reordered
X̃

(0)
n and correspond to the sorted quantity of interestB

(0)
n .

To clarify, X̃(0)
1 is the input sample that generates the largest

outputB(0)
1 . A CCDF is generated by plottingB(0)

n against
the probability intervalsP (0)

n . The probability intervalsP (0)
n

are generated using the following equation:

P (i)
n = pi0

N − n

N
n = 1......N (2)

The vector of probability intervalsP (0)
n is concatenated with

the sorted quantity of interestB(0)
n and their respective samples

X̃
(0)
n as illustrated in table I by the column titled ‘Level 0’.
The set of probability intervalsP (0)

n are plotted againstB(0)
n

to generate the CCDF. Level 0 makes it possible to accurately
approximate CCDF values from1−N−1 to p0. Typically the
region of interest within the pdf is outside this range (since SS
is typically used to realize rare events). To explore probabilities
below p0, further levels of simulation must be conducted.

B. Leveli > 0

The subsequent levels of SS where,i > 0 explore the rarer
regions of the probability distribution. This is achieved by
generating multiple chains of conditional samples using the
MH method as discussed in the previous section. The number

of chains and number of samples per chain areNc and Ns

respectively. They are determined as

Nc = p0N (3)

Ns = p−1
0 (4)

Each level of subset simulation maintainsN samples (N =
NcNs). The response values of conditional samples generated
for the current leveli must not exceed the intermediate
thresholdbi for this level. This threshold is determined by

bi = B
(i−1)
N−Nc

i is the current subset level (5)

The intermediate threshold for leveli = 1 is b1 = B
(0)
N−Nc

. To
clarify the intermediate threshold is the(N − Nc)

th element
of the sorted set of response valuesB

(0)
n . The set of seeds

s
(i)
j are used to generate samples for the current leveli are

samples generated from the previous level (i− 1) are defined
by

s
(i)
j = X̃(i−1)

n (6)

where1 ≤ j ≤ Nc, (N −Nc + 1) ≤ n ≤ N and i > 0.
The set of seeds used to generate conditional samples

for level i = 1 is s(1) = {X̃
(0)
N−Nc+1, ..., X̃

(0)
N }. The N

conditional samplesX(1)
n are generated using the MH method.

The quantities of interest forX(1)
n are determined{Y (1)

n =

h(X
(1)
n ) : n = 1, ..., N} and are sorted in the same manner as

the previous levelB(1)
n . The setB(1)

n and respective samples
X̃

(1)
n are concatenated with the probability intervalsP

(1)
n as

illustrated in table I by the column titled ‘Leveli’. Note
the samples{X̃(0)

N−Nc+1, ..., X̃
(0)
N } shown in the column titled

‘Level 0’ are used as seeds to generate the conditional samples
{X̃

(i)
1 , ..., X̃

(i)
N } in column titled ‘Leveli’.

This process is continued until the target level of probability
(p0)

m is reached at leveli = m− 1; as shown by the column
titled ‘Level m − 1’. The samples used as seeds to generate
samples for the consecutive level are discarded and replaced
with the generated samples. This is illustrated in table II.
The column of probability intervalsPn are plotted against the
respective quantities of interestBn to generate a CCDF.

This method is continued until the target level of probabil-
ity PF = (p0)

m is reached. By generating and evaluating
conditional samples, the output samples tend towards the
target distribution with significantly less trials than areneeded
when using the DMC method. The progressive nature of the
algorithm can be demonstrated in the example problem of
estimating the probability of drawing samples from the region
F .

C. Estimating Probability of drawing samples from region F

The example of estimating the probability of drawing sam-
ples from the regionF shown in the previous sections is used
to illustrate the Subset Simulation method (using algorithm 5).
The radius of the circle bounding the regionF is rc = 1. The
SS parameters used for this example are:p0 = 0.1, N = 100,
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Level 0 Leveli Level m− 1

P(0)
n B(0)

n X̃
(0)
n P(i)

n B(i)
n X̃

(i)
n ..... P(m−1)

n B(m−1)
n X̃

(m−1)
n

P
(0)
1 B

(0)
1 X̃

(0)
1

...
...

...

P
(0)
N−Nc

B
(0)
N−Nc

X̃
(0)
N−Nc

P
(0)
N−Nc+1 B

(0)
N−Nc+1 X̃

(0)
N−Nc+1 P

(i)
1 B

(i)
1 X̃

(i)
1

...
...

...
...

...
...

P
(0)
N

B
(0)
N

X̃
(0)
N

P
(i)
N−Nc

B
(i)
N−Nc

X̃
(i)
N−Nc

P
(i)
N−Nc+1 B

(i)
N−Nc+1 X̃

(i)
N−Nc+1 ..... P

(m−1)
1 B

(m−1)
1 X̃

(m−1)
1

...
...

... .....
...

...
...

P
(i)
N

B
(i)
N

X̃
(i)
N

..... P
(m−1)
N−Nc

B
(m−1)
N−Nc

X̃
(m−1)
N−Nc

..... P
(m−1)
N−Nc+1 B

(m−1)
N−Nc+1 X̃

(m−1)
N−Nc+1

...
...

...

P
(m−1)
N

B
(m−1)
N

X̃
(m−1)
N

TABLE I

Algorithm 4 Generate conditional chains of samples of Subset
Simulation using Metropolis Hastings algorithm

1: function MH I(s, n, C, rc)
2: σ2

rc
= r2cI2×2

3: for j = 1 : |s| do ⊲ For each seed
4: X0 = sj ⊲Select seed sample
5: for k = 0 : n− 1 do

⊲Generate Candidate sampleX∗

6: g ∼ N (0, 1)
7: X∗ = Xk + g

⊲Determine distance betweenX∗ and C
8: R∗ = H(X∗, C)

⊲Determine distance betweenXk and C
9: Rk = H(Xk, C)

⊲Indicator function for range

10: d =

{

1 if R∗ ≤ rc
0 if R∗ > rc

⊲Calculate acceptance ratio

11: β = q(X∗|Xk,σ
2)

q(Xk|X∗,σ2)

p(X∗|C,σ2

rc
)

p(Xk|C,σ2
rc

)

12: α = min {1, β}
13: e ∼ [0, 1]

14: X
(j)
k+1 =

{

X∗ if e < α

Xk if e ≥ α

15: R
(j)
k+1 =

{

R∗ if e < α

Rk if e ≥ α
16: end for
17: end for
18: return X(j), R(j)

19: end function

Ns = 10, Nc = 10, m = 2. Subset Simulation is typically
used to realize rare events (forPF ≤ 10−3 thereforem > 3).
However for the purpose of this example the number of levels
is kept low (m = 2).

The simulation begins with level 0 Direct Monte Carlo
where a set ofN = 100 samples{X(0)

n : n = 1, ..., 100} are
drawn from a Gaussian distribution centered atO = [0, 0]T

Pn Bn X̃n

P
(0)
1 B

(0)
1 X̃

(0)
1

...
...

... Level 0

P
(0)
N−Nc

B
(0)
N−Nc

X̃
(0)
N−Nc

samples retained

P
(i)
1 B

(i)
1 X̃

(i)
1

...
...

... Level i

P
(i)
N−Nc

B
(i)
N−Nc

X̃
(i)
N−Nc

samples retained
...

...
...

P
(m−1)
1 B

(m−1)
1 X̃

(m−1)
1

...
...

...

P
(m−1)
N−Nc

B
(m−1)
N−Nc

X̃
(m−1)
N−Nc

P
(m−1)
N−Nc+1 B

(m−1)
N−Nc+1 X̃

(m−1)
N−Nc+1

...
...

... Levelm− 1

P
(m−1)
N

B
(m−1)
N

X̃
(m−1)
N

samples retained

TABLE II

as shown in Fig. 3a. The quantity of interest{R(0)
n =

H(X
(0)
n , C) : n = 1, ..., 100} is the distance between each

sampleX(0)
n and the center of the circleC = [3,−3]T (this is

the equivalent ofY (0)
n used previously). This is determined by

processH(...) as defined by algorithm 1 in section II. If the
conditionR

(0)
n ≤ r

(0)
c is satisfied then thenth sampleX(0)

n

is within the regionF . This condition is used to determine
if a sample is within the regionF . The quantity of interest
R

(0)
n is sorted in descending order{B(0)

n : n = 1, ..., 100}.
This is because the samples with the lowest distances will
be closest to the regionF and have a higher likelihood of
generating conditional samples closer to or within the region
F than other samples as the simulation progresses to higher
levels (i > 0). The input samplesX(0)

n are reordered̃X(0)
n and

correspond to the sorted quantity of interestB
(0)
n ; to clarify,

the distance between the samplẽX(0)
1 and C is B

(0)
1 . The

probability intervalsP (0)
n are determined by equation 2. The

sorted quantity of interestB(0)
n and respective samples̃X(0)

n
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(c) Subset Simulation Level 1
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(d) Subset Simulation Level 1 CCDF

Fig. 3. Subset Simulation is applied to the problem of estimating the probability of drawing samples from the regionF . Subset Simulation begins with level
0 by drawing N = 100 samples from a Gaussian distribution centered atO = [0, 0] using the DMC method as shown in Fig. 3a. The quantity of interest is
the distance between each sample andC. These are plotted against probability intervals to generate a CCDF as shown in Fig. 3b. No samples are within the
regionF . The SS method proceeds to level 1 and conditional samples are generated using the MH method. TheNc level 0 samples are used to generate the
conditional samples shown in Fig. 3c. These conditional samples are drawn progressively closer to the region F until some samples are drawn from the region
F. This is achieved by drawing samples from intermediate thresholds closer to the boundary ofF . The quantity of interest for the samples are determined
and plotted against the probability intervals for the current level. This CCDF is appended to the previous CCDF by replacing the samples used as seeds from
the previous level as shown in Fig. 3d.

are concatenated with the probability intervalsP
(0)
n as shown

in the column titled ‘Level 0’ in table IIIa. The CCDF shown
in Fig. 3b is generated by plotting the probability intervals

P
(0)
n againstB(0)

n . This CCDF shows that no samples have
a distance less than the radiusrc therefore no samples have
been drawn from the regionF .
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Algorithm 5 Subset Simulation
1: function SS(C, N , p0, m)
2: Nc = p0N

3: Ns = p−1
0

4: i = 0 Set current level
⊲Direct Monte Carlo: Draw N samples and determine
quantity of interest

5: for n = 1 : N do
6: X

(i)
n ∼ N (0, 1)

⊲Quantity of interest: Determine distance between
samplesX(i)

n andC

7: R
(i)
n = H(X(i)

n , C)
8: end for
9: B

(i)
n ← R

(i)
n Sort distances in descending order

10: X̃
(i)
n ← X

(i)
n Reorder the input samples to correspond

to the sorted quantity of interestB(i)
n

⊲Generate probability intervals; equation 2
11: for n = 1 : N do
12: P

(i)
n = pi0

N−n
N

13: end for
⊲CCDF: Concatenate vectorsP (i)

n , B(i)
n and sample

X̃
(i)
n

14: En = [P
(i)
n , B

(i)
n , X̃

(i)
n ]

⊲Begin lower levels of subset simulation
15: for i = 1 : m− 1 do

⊲Set threshold

16: bi = B
(i−1)
N−Nc

⊲Set seeds using equation 6
17: for j = 1 : Nc do
18: n = N −Nc + j

19: s
(i)
j = X̃

(i−1)
n

20: end for
⊲Generate conditional samples using Metropolis
Hastings algorithm

21: [X
(i)
n , R

(i)
n ] = MH I(s(i)j , Ns, C, bi)

22: B
(i)
n ← R

(i)
n Sort distances in descending order

23: X̃
(i)
n ← X

(i)
n Reorder the input samples to corre-

spond to the sorted quantity of interestB
(i)
n

⊲Generate probability intervals; equation 2
24: for n = 1 : N do
25: P

(i)
n = pi0

N−n
N

26: end for
⊲CCDF: Discard all rows afterEi(N−Nc)

⊲ConcatenateP (i)
n , B(i)

n , X̃(i)
n and append toE

27: for n = 1 : N do
28: Ei(N−Nc+n) = [P

(i)
n , B

(i)
n , X̃

(i)
n ]

29: end for
30: end for
31: return E

32: end function

The SS method continues to the next level (i = 1) and
generatesN conditional samples using the MH method. The
conditional samples{X(1)

n : n = 1, ..., 100} are generated
from a set of seedss(1)j = {X̃

(0)
91 , ..., X̃

(0)
100} that correspond to

Level 0 Level1

P(0)
n B(0)

n X̃
(0)
n P(1)

n B(1)
n X̃

(1)
n

P
(0)
1 B

(0)
1 X̃

(0)
1

...
...

...

P
(0)
90 B

(0)
90 X̃

(0)
90

P
(0)
91 B

(0)
91 X̃

(0)
91 P

(1)
1 B

(1)
1 X̃

(1)
1

...
...

...
...

...
...

P
(0)
100 B

(0)
100 X̃

(0)
100 P

(1)
90 B

(1)
90 X̃

(1)
90

P
(1)
91 B

(1)
91 X̃

(1)
91

...
...

...

P
(1)
100 B

(1)
100 X̃

(1)
100

(a)

Pn Bn X̃n

P
(0)
1 B

(0)
1 X̃

(0)
1

...
...

...

P
(0)
90 B

(0)
90 X̃

(0)
90

P
(1)
1 B

(1)
1 X̃

(1)
1

...
...

...

P
(1)
90 B

(1)
90 X̃

(1)
90

P
(1)
91 B

(1)
91 X̃

(1)
91

...
...

...

P
(1)
100 B

(1)
100 X̃

(1)
100

(b)

TABLE III

the sorted distances{B(0)
n : n = 91, ..., 100} from the previous

level 0. The intermediate thresholdb1 = B
(0)
90 determined by

equation 5 is used to ensure the conditional samplesX
(1)
n

generated by each seed satisfies the conditionR
(1)
n ≤ b1. The

respective sample distancesR
(1)
n from C are less than or equal

to the level 1 thresholdb1. This is to enable a progressive
nature of drawing samples that are closer to the regionF .
The conditional samples are genrated using algorithm 4. This
will eventually lead to samples being drawn from the region
F as SS proceeds to higher number of levels in the future.
The level 1 threshold is marked by the dotted arc in Fig. 3c.
The figure shows chains of samples that lead to the region
F . The distancesR(1)

n of samplesX(1)
n generated in level

1 are sorted in descending order{B(1)
n : n = 1, ..., 100}.

The input samplesX(1)
n are reorderedX̃(1)

n and correspond
to the sorted distancesB(1)

n . The probability intervalsP (1)
n

are generated using equation 2 and concatenated with the
sorted distancesB(1)

n and their corresponding samples̃X(1)
n .

Table IIIa illustrates the conditional samples generated in level
1 using samples from level 0. The seeds used to generate
samples in level 1 are discarded and replaced with the gen-
erated level 1 samples as illustrated in table IIIb. Note the
probability intervals{P (0)

n : n = 91, ..., 100}, sorted distances
{B

(1)
n : n = 91, ..., 100} and the corresponding input samples

{X̃
(1)
n : n = 91, ..., 100} from level 0 that were used as seeds

to generate the samples for level 1 are discarded and replaced
with level 1 samplesX̃(1)

n and their respective distancesB(1)
n
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and probability intervalsP (1)
n . This process is repeated until

the maximum number of levelsm is reached. This is when
i = m − 1. Fig. 3d shows the overall CCDF at level 1. The
overall CCDF is used to estimate the probability of drawing
samples from the regionF as approximatelyPF = 0.02.

This example demonstrates the progressive nature of Subset
Simulation when used to generate conditional samples to
realize the rare ‘tail’ region of the pdf. This feature of SS
results in the empirical observation that SS requires signifi-
cantly less samples when compared to naive DMC to obtain
estimates with the same accuracy. Subset Simulation is useful
for generating samples that progress to the distribution of
interest.

The next section applies the Subset Simulation method with
modifications to estimate the probability of conflict between
air traffic.

V. A PPLICATION OFSUBSET SIMULATION FOR A IRBORNE

CONFLICT DETECTION

The estimation of the probability of conflictPc between air
traffic is a useful metric for Conflict Detection & Resolution
(CD&R) methods. Such methods can be used in piloted
aircraft but are useful for UAS where an automated method
for CD&R will be required as part of a Sense-and-Avoid
system [5].

According to CAA CAP 393 Rules of the Air, the minimum
lateral (Horizontal) separation required between two or more
aircraft at any instance is 500ft. A conflict event occurs
when two or more aircraft collide or if there is a loss of
this separation between them within a block of airspace.
The conflict type depends on the geometry of the encounter
between traffic, as defined in [13]. These conflict types are
illustrated in Fig. 4 as:

• A Head-on conflict scenario as shown in Fig. 4a. In such
a case each aircraft must turn right to avoid the collision.

• An Overtaking conflict scenario is where the aircraft
being overtaken has the right of way as shown in Fig. 4b.
The overtaking aircraft must alter course right and keep
clear of the overtaken aircraft. An overtaking condition
exists while the overtaking aircraft is approaching the
rear of another aircraft within an angle less that 70
degrees from the extended centreline of the aircraft being
overtaken.

• A Converging conflict scenario is where the aircraft on
the right has the right of way as shown in Fig. 4c. The
aircraft on the left must alter its course right to resolve
the conflict.

If a conflict is detected, the conflict type needs to be
identified so that the appropriate resolution maneuver can be
executed by the CD&R system to resolve the conflict. This
paper addresses a key component of a detection of a conflict
by estimating the probability of conflictPc.

We assume a non-cooperative scenario, where the traffic
does not share information. This is a challenging situation
since the information related to the state and intentions ofthe
traffic might be unknown or incorrect. The only information
available regarding the state of traffic is from measurements

or inference using sensors. In such a scenario, CD&R system
must allow for the possibility that the non-cooperative traffic
may take inappropriate actions or may not adhere to the Rules
of the Air. This type of situation requires a UAS to react and
take appropriate action to ensure safe separation. To achieve
this the Pc needs to be continuously evaluated against the
behavior of the observed traffic so that the likelihood of the
traffic causing a conflict can be calculated. Fig. 5 illustrates
some potentially conflicting scenarios based on Fig. 4. During
some phases of the scenario, the expectedPc can be very
low; such as a magnitude of10−8 (this is demonstrated later
in this section). The previous sections have demonstrated that
estimating low probabilities using the Direct Monte Carlo
method is inefficient and this motivates the use of Subset
Simulation (SS). Assessing the full pdf may not be feasible and
may not be required. Subset Simulation provides an efficient
method of determining the probability associated with all
predicted conflicts thereby estimatingPc. In applying SS to
this problem,Pc plays the role of the threshold of failurePF .

The Subset Simulation method is used to estimate the prob-
ability of conflict Pc during the simulation of the potentially
conflicting scenarios of the Observer and Intruder aircraftin
the Head-on and Overtaking situations as shown in figures 5a
and 5b respectively. Both scenarios show the Observer and
Intruder in a non-conflicting a state, where the Intruder is
not within the Observer’s protected zone. The Observer’s
protected zone is marked as a circle around the Observer with
radiusrt = 152.4m (500ft). Although the current state is non-
conflicting there is a potential for future conflict. For example
from the Observer’s perspective the Intruder could continue on
its course or turn right or turn left. The latter could cause aloss
of separation or worse – a collision between the Observer and
the Intruder. Also in the situation when the lateral separation
La between the Observer and Intruder is lower than or equal
to the radius of the Observer’s protected zonert; (rt ≤ La) a
conflict occurs due to loss of separation or collision between
the Observer and the Intruder. Therefore the likelihood of such
conflict needs to be realized by estimatingPc.

The Subset Simulation method is used by the Observer to
determine the probability of conflictPc between itself and the
approaching Intruder for the potentially conflicting scenarios
shown in Fig. 5. However, since some parameters are not
available this requires the method to be adapted. The order
of magnitude for the target probability (conflict) region(p0)m

is unknown. The solution to this problem is addressed later in
this section. Therefore the number of subset levelsm required
to reach the target probability level with a fixedp0 is unknown.
The Intruder and Observer are simulated asnearly constant
accelerationpoint models [39]. This is a simple model that
is used to illustrate the use of Subset Simulation. It can
be augmented by more complex dynamic models such as
Six-Degrees-of-Freedom (SixDoF) aircraft models as shown
in [40]. This would not affect the use of Subset Simulation and
the computational advantages that it provides. The dynamics
of the Intruder and Observer are modeled in state space
form as U(K + 1) = AU(K) and O(K + 1) = AO(K)
respectively in two-dimensional Cartesian space, whereK is
the time–step index. The Intruder and Observer statevectors are
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rt

Observer(O)

Intruder(U)

(a) Head-on

Observer(O)

rt

Intruder(U)

(b) Overtaking

Intruder(U)

Observer(O)

rt

(c) Converging

Fig. 4. These figures illustrate the geometric configurationof the different conflicts that might be encountered within ablock of airspace. This includes
different maneuvers required to be executed by the respective parities to resolve the conflict.

U(K) = [x, u, ax, y, v, ay]
T andO(K) = [x, u, ax, y, v, ay]

T

respectively. The displacement, velocity and acceleration in the
x-direction are represented byx, u and ax respectively. The
displacement, velocity and acceleration in they direction are
represented byy, v and ay respectively. The state transition
matrix A is defined as

A =

















1 ∆T 1
2∆T 2 0 0 0

0 1 ∆T 0 0 0
0 0 1 0 0 0
0 0 0 1 ∆T 1

2∆T 2

0 0 0 0 1 ∆T

0 0 0 0 0 1

















(7)

where∆T is the period of discretized time-step. The sampling
frequencyf = 1

∆T
. The Observer estimates the state of

the IntruderÛ(K) using a Kalman Filter [41]. The periodic
measurements of the Intruder’s positionZ = [x, y] is defined
by the measurement equation as

Z = HU(K) + [wx, wy]
′ (8)

whereH is the measurement matrix.

H =

[

1 0 0 0 0 0
0 0 0 1 0 0

]

(9)

wx ∼ N (0, σx) (10)

wy ∼ N (0, σy) (11)

The periodic position measurements are simulated by adding
noise aswx and wy to the x and y directions respectively.
The standard deviation of the of the measurement error in
the x and y directions areσx and σy respectively. For the
sake of simplicity the measurement noise is uncorrelated. The
instantaneous state estimate of the Intruder is determinedusing
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(b) Intruder overtaking Observer

Fig. 5. The potentially conflicting scenarios based on the different conflicts
shown in Fig. 4

a Kalman Filter. The Intruder’s state estimateÛ(K + 1) and
covarianceŜ(K + 1) is predicted using equations

Û(K + 1) = AÛ(K) (12)

Ŝ(K + 1) = AŜ(K)AT +Q (13)

The process noise covariance isQ. This is thewhite-noise jerk
version of theWiener-Process Accelerationmodel [39].

Q =

[

Qσ
σ2

ax

∆T
0

0 Qσ

σ2

ay

∆T

]

(14)

Qσ =





1
20∆T 5 1

8∆T 4 1
6∆T 3

1
8∆T 4 1

3∆T 3 1
2∆T 2

1
6∆T 3 1

2∆T 2 ∆T



 (15)
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The parametersσ2
ax

andσ2
ay

are the variance of acceleration
parameters in thex andy directions respectively. The Kalman
gainG is evaluated during the update stage:

G = Ŝ(K + 1)HT ([HŜ(K + 1)HT ] +R)−1 (16)

whereR is the measurement covariance.

R =

[

σ2
x 0
0 σ2

y

]

(17)

This is followed by updating the Intruder estimateÛ(K + 1)
and error covariancêS(K + 1) respectively.

Û(K + 1) = Û(K + 1) +G{Z(K)− [HÛ(K + 1)]} (18)

Ŝ(K + 1) = [I −GH ]Ŝ(K + 1) (19)

Algorithm 6 Kalman Filter

1: function KF(Û(K), Ŝ(K), Z, H , Q, R, MZ)
⊲Predict

2: Û(K + 1) = AÛ(K)
3: Ŝ(K + 1) = AŜ(K)AT +Q

⊲Update if new measurement is available
4: if MZ = true then
5: G = Ŝ(K + 1)HT {[HŜ(K + 1)HT ] +R}−1

6: Û(K + 1) = Û(K + 1) +G{Z − [HÛ(K + 1)]}
7: Ŝ(K + 1) = [I −GH ]Ŝ(K + 1)
8: end if
9: return Û(K + 1), Ŝ(K + 1)

10: end function

A. Example

The Subset Simulation method is applied to the Head-on
pass scenario with lateral separationLa = 1000m and longitu-
dinal separationLo = 2000m. The duration of the simulation
t = 20s with sampling frequencyf = 20Hz and the mea-
surement frequencyfM = 2Hz. The initial conditions of the
Intruder and Observer areO(0) = [0, 77.2ms−1, 0, 0, 0, 0]T

and U(0) = [2000m,−77.2ms−1, 0, 1000m, 0, 0]T . The Ob-
server’s protected zone radiusrt = 152.4m.

Kalman Filter parameters:
• σx = 0.1m
• σy = 0.1m
• σ2

ax
= 0.01m2s−4

• σ2
ay

= 0.01m2s−4

Subset Simulation parameters:
• N = 100
• p0 = 0.1
• Nc = 10
• Ns = 10
• m = 7

Ideally the SS method should continue to higher levels of
simulation until conflicting samples are encountered andPc
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Observer protected zone
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Fig. 6. Head-on pass scenario with 1000m Lateral Separation

can be estimated using the CCDF. This is assuming infinite
simulation resources are available. This is impractical for
implementation since simulation capacity is limited due tolim-
ited resources available. Therefore the SS method implemented
requires a limited number of levels1 to be definedm.

Subset Simulation estimatesPc(K +1) whereK +1 is the
time-step of an instance during the simulation as shown in
Fig. 6. Subset Simulation begins with level 0 Direct Monte
Carlo sampling. A set of 100 samples{U (0)

n : n = 1, ..., 100}
representing the Intruder’s pdf are drawn from the distribution
that is centered at the Intruder’s meanÛ(K+1) and covariance
Ŝ(K + 1). The mean and covariance are obtained from the
Kalman filter defined in algorithm 6.

The set of samplesU (0)
n and the intended vector of the

ObserverO(K) are propagated to generate trajectoriesJ
(0)
Un

and JO respectively. A trajectoryJ is a set of consecutive
state vectors indexed by the time-stepk wherek = 1, ..., tf =
1, ..., 400 and f = 20Hz is the sampling frequency (as
defined in algorithm 7). For example the Observer trajectory
JO = [O(1), ..., O(tf)] = [O(1), ..., O(400)], whereO(1)
is the state vector of the Observer at time-stepk = 1.
The propagation timet = 20s. This is also the period of
the simulation. Fig. 7a shows the Intruder samples and the

1An alternative implementation: During the process of SS estimating the
Pc; the SS method continues to higher levels until conflicting samples are
found. If new information is received (such as a new Intrudermeasurement
that updates the Intruder state estimate) and the SS method has not found
conflicting samples, then the calculation for the current time-step should be
abandoned and restarted with the new information. Restarting is necessary
since the information used to calculatePc becomes obsolete once more
recent information is obtained. This approach would be useful for situations
where real-time computation is enforced. Note that this paper does not enforce
constraints associated with real-time computation.
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Algorithm 7 Propagate State to generate trajectory
1: function SAMPLETRAJECTORY(U0, f, t, A)
2: J0 = U0

3: for k = 0 : tf do
4: U(k + 1) = AU(k)
5: J(k + 1) = U(k + 1)
6: end for
7: return J

8: end function

Algorithm 8 Determine miss-distancer and minimum points
Ûxy, Oxy between observer trajectoryJO and Intruder trajec-
tory J

Û

1: function M INDISTANCE(JO, JU )
⊲Difference between Observer and Intruder trajectory

2: JOU = JU − JO
⊲Distance between each point on trajectories

3: rOU =
√

J2
OUx

+ J2
OUy

⊲Minimum distance
4: rOUmin = min(rOU )

⊲Index of minimum distance
5: k = {rOUn

|n = rOUmin}
6: JOmin = JOxy

(k)
7: JUmin = JUxy

(k)
8: return r

OÛmin
, JOmin , JÛmin

9: end function

respective trajectories generated with the projected position
of the Observer during level 0 for a Head-on pass scenario
with lateral separationLa = 1000m. No conflicting samples
have been encountered yet. A conflicting sample is an Intruder
sampleU (i)

n generated in leveli with a trajectoryJ (i)
n that

has a miss-distancer(i)n between the Observer trajectoryJO
and satisfies the conflict conditionr(i)n ≤ rt. The number of
conflicting samples encountered in a level isD.

The quantities of interest are the miss-distances{r(0)n :
n = 1, ..., 100}. These are the minimum distances between
the Intruder samples’ trajectories{J (0)

Un
: n = 1, ..., 100} and

the Observer trajectoryJO. Algorithm 8 defines the procedure
to determine the miss-distances between the Observer and
Intruder trajectories. A conflict is projected to occur when
there is a loss of minimum separation between any sample in
setJUn

and the Observer trajectoryJO at any instance. The set
of miss-distancesr(0)n are sorted in descending order{B(0)

n :

n = 1, ..., 100}. The input samplesU (0)
n are reordered̃U (0)

n

to correspond to the sorted miss-distancesB
(0)
n . To clarify,

the samplẽU (0)
1 produces a trajectoryJŨ1

that has the largest

miss-distanceB(0)
1 between itself the trajectory produced by

the ObserverJO. The samples with lower miss-distances in the
current level have a higher likelihood of generating conditional
samples that satisfy the conflict condition than other samples
in the current level. The vector of probability intervalsP (0)

n

are generated by

P
(i)
n+1 = pi0

N − n

N
n = 0, ..., (N − 1) (20)

Algorithm 9 Estimating Probability of Conflict using Direct
Monte Carlo

1: function PC DMC(f, t, A,O, Û , Ŝ, N, rt)
2: D = 0

⊲Propagate Observer fort seconds
3: JO = SAMPLETRAJECTORY(O, f , t, A)
4: for n = 1 : N do

⊲Draw sample
5: Un ∼ N (Û , Ŝ)

⊲Propagate Intruder Samples fort seconds
6: Jn = SAMPLETRAJECTORY(Un, f, t, A)

⊲Determine miss-distance between Observer and
Sample Trajectories

7: rn = M INDISTANCE(JO, Jn)
8: if rn ≤ rs then
9: D = D + 1

10: end if
11: end for
12: Pc =

D
N

13: return Pc, D, Un, JO, Jn, rn
14: end function

Note the range ofn in this equation is different to equation 2.
This is due to the maximum number of levels limitm. In the
event that SS reaches the maximum number of levels without
encountering conflicting samples the probability of conflict
will be estimatedPc = P

(m−1)
N = P

(m−1)
100 = 0 (the last

probability interval in theP (m−1)
n vector that is generated by

equation 2) and this does not reflect the low magnitude of the
probability. In contrast, the probability interval generated by
equation 20 allows the probability of conflict to be estimated
Pc < P

(m−1)
100 ; P (m−1)

100 = 1 × 10−8. This information means
that although no conflicting samples have been encountered
despite exhausting all levels of SS the expectedPc is estimated
to be lower than(p0)m, the lowest probability level realizable
due to the maximum number of levels limit reached by SS.
Such information is more useful than the estimatePc = 0
evaluated by equation 2. The level 0 CCDF is constructed
by plotting the probabilitiesP (0)

n againstB(0)
n as shown in

Fig. 7c. No conflicting samples have been drawn in level 0
since no miss-distances satisfy the conflict condition. If the
number of conflicting samplesD > Nc then the probability
of conflict is estimatedPc = P

(i)
(N−D+1). This also applies for

the situation where the maximum number of levels has been
reachedi = m− 1 and some conflicts have been encountered
where the number of conflicts encountered is less than or
equal toNc; (Nc ≥ D > 0). The DMC method estimates
the probability of conflictPc =

D
N

as defined by algorithm 9.

However if the conditionD > Nc is not satisfied andi <
m−1; SS proceeds to the next level(i > 0) and continues until
the condition is satisfied or if the maximum number of levels
is reached. This is because the conflict region of the pdf is
not represented accurately enough due to the lack of sufficient
samples representing the conflict region in the current level.
Therefore it is necessary generate more conditional samples
at higher levels of SS to progress towards representing the
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Fig. 7. These figures illustrate the application of SS to estimate thePc(K + 1) at the time-stepK + 1 during a Head-on pass between an ObserverO(K)
and IntruderU(K) with lateral separation of 1000m. SS begins with level 0 (DMC) whereN = 100 samples are drawn from a distribution centered at the
Intruder’s state estimatêU(K +1) with a covariance of̂S(K +1) obtained from the Kalman Filter. Fig. 7a shows trajectoriesgenerated by level 0 samples,
no conflicting samples have been encountered. The simulation proceeds to level 1 where conditional samples are generated usingNc samples from level 0 as
seeds. The trajectories of the level 0 samples used as seeds are highlighted in Fig. 7a. The MH method is applied to generate conditional samples from the
seeds. The trajectories of generated samples for level 1 areshown in Fig. 7b. This process is continued to generates moretrajectories as the number of levels
increase. The method continues until conflicting samples are encountered at higher levels as shown in Fig. 8.

conflict region of the pdf more accurately.
The following subset levels(i > 0) generateN conditional

Intruder samples̃U (i)
n using the Metropolis Hastings method

as defined in algorithm 10. The set of seedss
(i)
j required to

generate the samples are selected from samples in the previous
level using

s
(i)
j = Ũ (i−1)

n (21)

where1 ≤ j ≤ Nc, (N −Nc + 1) ≤ n ≤ N and i > 0.
Fig. 7a highlights the trajectories of level 0 samples selected

as seeds to generate level 1 conditional samples. Fig. 7b shows
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Fig. 8. The above figures show trajectories of conditional samples generated as the simulation continues to higher levels. Subset Simulation continues until
the number of conflicting samplesD found in a level is greater thanNc within a level as shown in Fig. 8b. The probability of conflictis estimated as
Pc(K + 1) = 0.52 × 10−4 as shown in Fig. 8d.

the trajectories of the conditional samples generated in level 1.
The sets(i)j containsNc seeds; one for each chain. Each chain
generatesNs samples. This maintains the total number of
samples asN for each level. The MH method uses an indicator
d (as shown in algorithm 10) to ensure the miss-distancer(i)∗

between the Observer’s trajectoryJO and Intruder trajectory
J (i)∗ of the proposed sampleU (i)∗ is less than the intermediate
thresholdbi set by equation 5. Ifr(i)∗ > bi then the proposed
sample is rejected and the current sample of the Intruder is

maintained.

The miss-distances{r(1)n : n = 1, ..., 100} of the conditional
samplesU (1)

n generated in level 1 are determined and sorted
in descending orderB(1)

n using the same method as level 0.
The input samplesU (1)

n are reordered̃U (1)
n to correspond to

the sorted miss-distancesB(1)
n . The probability intervalsP (1)

n

for the current level are generated and plotted againstB
(1)
n

to construct a CCDF. Fig. 7d shows the CCDF generated
up to level 1. Note the miss-distances of the samples used
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Algorithm 10 Generate conditional samples using Metropolis
Hastings

1: function MH CONFLICTSAMPLES(f , t, A, O, Û , Ŝ, sj,
Ns, rt)

2: σ2
rt

= r2t I2×2

3: JO = SAMPLETRAJECTORY(O, f, t, A)
4: for j = 1 : Nc do
5: U0 = sj ⊲Select seed sample

⊲For each seed generateNs samples
6: for k = 0 : Ns − 1 do

⊲Draw acceleration sample from mean
7: a∗x ∼ N (0, 1)
8: a∗y ∼ N (0, 1)
9: g = [0, 0, a∗x, 0, 0, a

∗
y]

T

⊲Generate Candidate sampleU∗

10: U∗ = Uk + g

⊲Propagate Samples fort seconds
11: J∗

U = SAMPLETRAJECTORY(U∗, f, t, A)
12: JUk

= SAMPLETRAJECTORY(Uk, f, t, A)
⊲Determine minimum miss-distance and(x, y)
coordinates of minimum points between Ob-
server and Sample Trajectories

13: [rk, JOmin, JUkmin
] = M INDISTANCE(JO, JUk

)
14: [r∗, J∗

Omin
, J∗

Umin
] = M INDISTANCE(JO, J∗

U )
⊲Indicator function for miss-distance

15: d =

{

1 if r∗ < rt
0 if r∗ ≥ rt

⊲Calculate acceptance ratio

16: β =
p(J∗

Ûmin
|J∗

Omin
,σ2

rt
)q(U∗|Û ,Ŝ)

p(JUkmin
|JOmin ,σ

2
rt

)q(Uk|Û,Ŝ)
d

17: α = min{1, β}
18: e ∼ [0, 1]

⊲Accept candidate sample, trajectory and miss-
distance ife < a

19: U
(j)
k+1 =

{

U∗ if e < α

Uk if e ≥ α

20: J
(j)
k+1 =

{

J∗ if e < α

Jk if e ≥ α

21: r
(j)
k+1 =

{

r∗ if e < α

rk if e ≥ α
22: end for
23: end for
24: return U (j), J (j), r(j)

25: end function

as seeds from the previous level 0 (that are highlighted in
Fig. 7c) are discarded and replaced with the miss-distancesof
the conditional samples generated in level 1. This illustrates
that the samples used as seeds are discarded and replaced with
the conditional samples generated in the current level. This
process is repeated as SS progresses to higher levels until the
condition D > Nc is satisfied or the maximum number of
levels is reached as defined in algorithm 11. Fig. 8a shows the
trajectories of the conflicting samples encountered in level 3.
However the conditionD > Nc had not been satisfied. This
required SS to proceed to level 4 and generate conditional
samples that satisfy the conditionD > Nc as shown in Fig. 8b.

Algorithm 11 Estimate Probability of Conflict Using Subset
Simulation

1: function PC SS(f , t, A, O, Û , Ŝ, N , rt, p0, m)
2: Nc = p0N

3: Ns = p−1
0

4: i = 0 ⊲Set current level
⊲Direct Monte Carlo

5: [D,U
(i)
n , r

(i)
n ] = PC DMC(f, t, A,O, Û , Ŝ, N, rt)

6: B
(i)
n ← r

(i)
n Sort distances in descending order

7: Ũ
(i)
n ← U

(i)
n Reorder the input samples to correspond

to the sorted quantity of interestB(i)
n

⊲Generate probability intervals; equation 20
8: for n = 0 : N − 1 do
9: P

(i)
n+1 = pi0

N−n
N

10: end for
⊲CCDF: Concatenate vectorsP (i)

n , B(i)
n and samples

Ũ
(i)
n

11: En = [P
(i)
n , B

(i)
n , Ũ

(i)
n ]

12: while D < Nc and i < m do
13: i = i+ 1
14: bi = B

(i−1)
N−Nc

⊲Set threshold
⊲Set seeds using equation 6

15: for j = 1 : Nc do
16: n = N −Nc + j

17: s
(i)
j = Ũ

(i−1)
n

18: end for
⊲Metropolis Hastings to obtain conflicting samples

19: [U
(i)
n , r

(i)
n ] = MH CONFLICTSAMPLES(f , t, A,

O, Û , Ŝ, sj , Ns, bi)
20: B

(i)
n ← r

(i)
n Sort distances in descending order

21: Ũ
(i)
n ← U

(i)
n Reorder the input samples to corre-

spond to the sorted quantity of interestB
(i)
n

⊲Generate probability intervals; equation 20
22: for n = 0 : N − 1 do
23: P

(i)
n+1 = pi0

N−n
N

24: end for
⊲CCDF: Discard all rows afterEi(N−Nc)

⊲ConcatenateP (i)
n , B(i)

n , Ũ (i)
n and append toE

25: for n = 1 : N do
26: Ei(N−Nc+n) = [P

(i)
n , B

(i)
n , Ũ

(i)
n ]

27: end for
28: D = |B

(i)
n ≤ rt| ⊲Number of conflictsD

29: end while
30: if D > 0 then
31: Pc = P

(i)
(N−D+1)

32: else
33: Pc = P

(i)
N ⊲No conflicting samples were found

select lowest probability interval
34: end if
35: return Pc, E
36: end function

The CCDF generated up to level 4 is shown in Fig. 8c. The
CCDF is used to estimate thePc(K + 1) = 0.52 × 10−4

as shown in Fig. 8d. This process is repeated through out
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Algorithm 12 Determine Probability of Conflict using SS and
DMC

1: O(0) ⊲Initialize Observer
2: U(0) ⊲Initialize Intruder
3: Û(0) ⊲Initialize Intruder Estimate
4: Ŝ(0) ⊲Initialize Intruder Covariance
5: Mc = 0 ⊲Measurement counter
6: for K = 0 : tf do
7: O(K + 1) = AO(K) ⊲Propagate Observer
8: U(K + 1) = AU(K) ⊲Propagate Intruder
9: MZ = false ⊲Flag to indicate new measurement

10: if Mc = f
fM

then ⊲Conduct Intruder position mea-
surement

11: Z = HU(K + 1) + [wx, wy]
T

12: MZ = true⊲Set flag to indicate that new measure-
ment is available for Kalman filter Update

13: Mc = 0 ⊲ Reset measurement counter
14: end if
15: Mc = Mc + 1 ⊲Increment measurement counter

⊲Predict/Update estimate of Intruder with Kalman
filter

16: [Û(K+1), Ŝ(K+1)] = KF(Û(K), Ŝ(K), Z,H,Q,R,
MZ)

⊲Estimate Probability of Conflict using Subset Simu-
lation

17: P
(SS)
c (K + 1) =
PC SS(f , t, A, O, Û(K +1), Ŝ(K +1), N , rt, p0,

m)
⊲Estimate Probability of Conflict using Direct Monte
Carlo

18: P
(DMC)
c (K + 1) =
PC DMC(f, t, A,O, Û(K + 1), Ŝ(K + 1), N, rt)

19: end for

the duration of the simulation to determine the probabilityof
conflict for each time-step using samples from the prediction
of the Intruder’s estimatêU(K+1) and covariancêS(K+1).

VI. RESULTS

The Subset Simulation method has been tested and com-
pared with the Direct Monte Carlo (DMC) method to estimate
the probability of conflictPc between the Observer and
Intruder by simulating the scenarios shown in Fig. 5. The
Observer and Intruder were modeled as points with nearly con-
stant velocity in a geometric configuration based on the three
different types of conflict shown in Fig. 4. ThePc metric was
estimated as an average of 50 Monte Carlo simulation during
the Head-on and Overtaking conflicts as shown in figures 5a
and 5b respectively. The tests were repeated with varying
lateral separationsLa = {0, 100, 152, 500, 1000, 1100}m.

The following Subset Simulation parameters were used
for all scenarios:N = 100; Level probability: p0 = 0.1;
Nc = p0N = 10; Ns =

1
p0

= 10; m = 7; Observer minimum
separation thresholdrt = 500ft = 152.4m. Algorithm 12
defines the simulation conducted.

The number of samples used for each level of SS remain
constant. However the number of levels required at a given

time-step vary depending on the magnitude ofPc. Therefore
the total number of samplesNT required to realize a conflict
at a given time-step varies as a function of time-step. In
the interest of a fair comparison of the computational effort
between the two methods, an equal number of samples are
evaluated for both methods. The estimation using DMC is
conducted withNT samples, whereNT is the number of
samples that are used in the SS method at the same time-
step. To clarify, if the SS method reaches leveli = 4 to satisfy
the conflict condition for estimating theP (SS)

c (K) at time-step
K, thenNT = 100× 5 = 500 samples have been used by the
SS method. Therefore DMC estimates theP

(DMC)
c (K) for the

same time-step with 500 samples only.

A. Estimation ofPc for Head-on Pass scenario

The Intruder and Observer parameters used for the Head-
on pass scenario are as follows: The Intruder and Observer
maintain a constant speed of 150 knots (77.17ms−1). The
Observer maintains a constant heading of0◦; the Intruder
maintains a constant heading of180◦. The Observer’s min-
imum separation threshold isrt = 500ft = 152.4m. The
Longitudinal separation isLo = 2000m

Figures 9a, 9b and 9c show the estimation ofPc for the
Head-on pass scenario using SS and DMC methods with
lateral separations of 0m, 100m and 152m respectively. The
scenarios are conflicting because the geometric configuration
and initial conditions of both the Observer and Intruder are
conflicting and remain as such throughout the duration of
the simulation. Whent ≤ 12s the Intruder and Observer are
approaching each other the estimatedPc increases. This is
as expected because a conflict is imminent. Both estimation
methods show approximately the samePc as expected, since
the first level of the SS method is DMC sampling. At this stage
the conflict region of the pdf is large and the probability of
drawing a sample which leads to a conflict is high. The conflict
occurs att ≈ 12.5s due to the loss of separation between
the Observer and Intruder. Fig. 9c shows the estimation of
Pc with lateral separationLa = 152.4m = rt. This is
a conflicting scenario since the Intruder skims Observer’s
protected boundary att ≈ 12.5s as the Observer and Intruder
pass each other. The oscillations duringt ≤ 12s are due to
La = rt. This is a borderline situation.

The Intruder and Observer pass each other att ≈ 13s.
The Pc estimated by both methods is still1 until t > 14s
where the Intruder has exited the Observer’s protected zone.
At this stage the Observer and Intruder have receding relative
velocities and are moving away from each other.Pc is expected
to reduce at this stage as shown in the log-y plot. The conflict
region of the pdf reduces since both Intruder and Observer are
moving away from each other. The SS method estimates the
Pc as being close to zero at an order of magnitude of10−7.
The lowest probability which can be realized isPc = 10−8.
This is due to a maximum level restriction imposed in the
simulation. In such instances the probability of conflict can
be considered to be less than the order of10−8. At this
stage the DMC method draws the same number of samples
as SS but is unable to find conflicting samples and estimates
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(a) Pc during Head-on conflict with 0 m Lateral
separation
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(b) Pc during Head-on conflict with 100m Lateral
separation
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(c) Pc during Head-on conflict with 152.4m Lateral
separation
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(d) Pc during Head-on pass with 500m Lateral
separation
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(e) Pc during Head-on pass with 1000m Lateral
separation
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(f) Pc during Head-on pass with 1100m Lateral
separation

Fig. 9. The estimatedPc using the Subset Simulation and Direct Monte Carlo methods during the Head-on pass as shown in Fig. 5a with varying lateral
separationLa = {0, 100, 152, 500, 1000, 1100}m.

Pc = 0. This is because the region of conflict within the
pdf has reduced and the probability of drawing a conflicting
sample is rare. This requires the DMC method to draw and
evaluate a larger number of samples at this stage before a
conflicting sample is drawn from the rare region of conflict
within the pdf. The SS method is able to obtain the conflicting
samples from the rare region of the pdf by generating samples
conditionally in such a way that the samples satisfy the
intermediate thresholds leading to the rare region using the
MH method. Each subset level corresponds to an intermediate
threshold. This progressive feature of the SS method allowsa
more efficient approach to reach the rare ‘tail’ region of the
pdf.

As the lateral separation of the scenario is increased, the
expectedPc decreases. The scenario is simulated with a
lateral separation of 500m, 1000m and 1100m as shown in
figures 9d, 9e and 9f respectively. These are non-conflicting
scenarios. The figures show abrupt variations inPc. These
are caused by the Monte Carlo nature of our algorithm. Note
that, since the sampling frequency is high relative to the
thickness of the line in the figure, the variations inPc are
particularly readily perceived. The conflict region of the pdf is

smaller than the previous scenarios. The SS estimation method
is able to estimate lowPc throughout the duration of the
simulation, whereas with an equivalent number of samples the
DMC method is unable to find conflicting or near conflicting
samples of the Intruder in most instances. Fig. 9d shows abrupt
variations in thePc estimated by the DMC method when
t < 1s where the estimate tends to zero. These are instances
where the DMC method is unable for find any conflicting
samples and estimatesPc = 0.

Figures 10a and 10b show the trajectories of the samples
evaluated by SS and DMC methods at an instance before and
after the Intruder and Observer pass each other respectively.
The progressive nature of the SS method can be observed as a
concentration of trajectories leading to the conflict trajectory.
In contrast the DMC method has drawn the same number of
samples (most are overlapping) without realizing any conflicts.

B. Estimation ofPc for Intruder Overtaking Observer

The scenario parameters used are as follows: The Intruder
speed is300knots = 154.3ms−1 and the Observer speed is
150knots= 77.17ms−1. Both Intruder and Observer maintain
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(a) Head-on conflict scenario with 1000m Lateral separationbefore head-on
pass.

(b) Head-on conflict scenario with 1000m Lateral separationafter pass.

Fig. 10. SS and DMC trajectories for Head-on pass with lateral separation
1000m

a constant heading of a constant heading of180◦. The lon-
gitudinal distanceLo between the Intruder and Observer is
Lo = 1000m.

Both SS and DMC methods have been applied to the Over-
taking scenario as shown in Fig. 5b. Similar to the previous
scenario, the SS method is able to obtain samples from the
rare conflicting region of the pdf consistently throughout the
duration of the simulation for this scenario. As the lateralsep-
aration increases, thePc decreases (as expected). Figures 11e
and 11f show thePc when the lateral separation is 1000m and
1100m respectively. The change inPc is less abrupt compared
to the 100m lateral separation after the Intruder as passed the
Observer whent > 13s. ThePc is approximately the same
throughout the duration of the simulation. This is because the
increased lateral separation includes samples with low turn
rates in the conflict category and these are common enough to
be drawn by the DMC method and SS method. With low lateral
separation the conflicting samples will need high turn rates.
These are rare and are realized by using SS method. In contrast
the DMC method is unable to realize them. Also throughout
the simulation, the relative change in angle of the Intruderfrom
the Observer’s perspective reduces as the lateral separation is
increased. The conflicting samples can have lower turn rates
despite the Intruder having passed the Observer. Such samples
are common and can be realized by both methods.

VII. A CCURACY AND EFFICIENCY OFSUBSET

SIMULATION

A range of magnitudes of probabilities have been evaluated
within the simulated scenarios shown in the previous section.
This section analyzes the accuracy and efficiency of using the
Subset Simulation and Direct Monte Carlo methods to estimate
probabilities at each of a number of orders of magnitude. In
order for a fair comparison to be conducted – a common
phase within a simulation scenario must be found where both
methods are able to realize conflicting samples and estimate
the probability of conflict.

The first order of magnitude considered for comparison is
Pc1 ≈ 10−1. A suitable phase to conduct the comparison is
at t = 1s during the Head-on scenario with lateral separation
La = 152.4 and longitudinal separationLo = 2000m where
a conflict is inevitable. At this phasep0 ≤ Pc1 < 1 and both
methods estimate a similar probability of conflict. This is as
expected since the probability is large enough to generate suffi-
cient conflicting samples in the first level of Subset Simulation
and it does not progress to higher levels of Subset Simulation.
The first level of Subset Simulation is Direct Monte Carlo so
the performance is the same.

The second order of magnitude considered isPc2 . This
probability needs to be lower thanPc1 wherePc2 < p0. Such
phases occur frequently in the Head-on pass and Overtaking
scenarios, typically whent > 14s as shown in figures 9
and 11 respectively. Note, during such phases the Subset
Simulation method is able to obtain conflicting samples and
provide a good estimate forPc. However, the Direct Monte
Carlo method fails to find conflicting samples and is unable to
estimate the probability of conflict accurately (other thanin a
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(a) Pc during Intruder overtaking Observer conflict
with 0m Lateral separation
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(b) Pc during Intruder overtaking Observer conflict
with 100m Lateral separation
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(c) Pc during Intruder overtaking Observer conflict
with 152m Lateral separation
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(d) Pc during Intruder overtaking Observer with
500m Lateral separation
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(e) Pc during Intruder overtaking Observer with
1000m Lateral separation
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(f) Pc during Intruder overtaking Observer with
1100m Lateral separation

Fig. 11. ThePc is estimated using the SS and DMC methods during the IntruderOvertaking the Observer scenario as shown in Fig. 5b with varying lateral
separationLa = {0, 100, 152, 500, 1000, 1100}m.

trivial case,Pc = 0 that is inaccurate). For example the Head-
on pass scenarios in Fig. 9 shows abrupt changes inPc in some
cases from a magnitude of10−1 to 10−8 at approximately
13s as the Observer and Intruder pass each other. This change
in magnitude of probability is very large and abrupt (steep).
The magnitude10−8 is very rare. For such probabilities the
Subset Simulation method is able to obtain conflicting samples
and estimate thePc but Direct Monte Carlo method fails to
obtain conflicting samples and results in estimatingPc = 0.
The Direct Monte Carlo method requires a large number of
samples to estimate probabilities of such magnitude (10−8).
This might not be practical due to limited simulation resources.
Therefore, this order of magnitude of probability is impractical
for comparison since although the Subset Simulation methodis
able to find conflicting samples and estimate thePc, the Direct
Monte Carlo method is unable to find conflicting samples and
fails to estimate thePc.

In order to find a phase wherePc2 can be evaluated by
both methods the simulation of the Head-on pass scenario with
lateral separation of 1000m was repeated once with increased
longitudinal separationLo = 20000m for an increased period
of t = 200s. This allowed the change inPc to occur less

abruptly. Fig. 12 showsPc estimated by Subset Simulation and
Direct Monte Carlo methods during this scenario. Note, during
the period80s< t < 120s, there are frequent abrupt variations
in the Pc estimated by the Direct Monte Carlo method as
zero. These are phases where the method was unable to find
a conflicting sample and estimated the probability of conflict
as zero. A suitable phase forPc2 is at t = 100s where the
probability of conflict estimated by Subset Simulation has
reduced to approximately10−2; (Pc2 ≈ 10−2). This satisfies
the p0 > Pc2 criteria. Also, it is the last phase after which
the frequency of the Direct Monte Carlo method finding
conflicting samples to estimate thePc diminishes. In other
words, it is the last phase where both methods are able to
generate conflicting samples to estimate the probability of
conflict for a comparison to be conducted.

The accuracy and efficiency are compared by calculating the
coefficient of variance (c.o.v.)δ = σ

µ
for estimating the prob-

abilities of conflictPc1 andPc2 using both Subset Simulation
and Direct Monte Carlo methods for varying samples sizes
N . The meanµ and standard deviationσ is calculated over 50
Monte Carlo runs. The sample intervals for Direct Monte Carlo
areNdmc = {102, 103, 104, 105, 106} and the sample intervals
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Fig. 12. Head-on pass scenario with 1000m lateral separation and 20km
longitudinal separation

for Subset Simulation areNSS = {100n : n = 1, ..., 100}.
Note, thatNSS is the number of samples at each level of
Subset Simulation. The total number of levels can vary for
each Monte Carlo run of Subset Simulation. This causes a
total number of samples to vary for each Monte Carlo run.
To allow a fair comparison an average of the total number
of samples for each Monte Carlo run of Subset Simulation is
used.

The c.o.v. for estimatingPc1 using Subset Simulation and
Direct Monte Carlo methods at varying sample sizesN is
shown by Fig. 13a. Note both methods have similar c.o.v.
as the average sample size increases. This is expected since
the probability is large enough to be realized in level 0 of
Subset Simulation that is Direct Monte Carlo. In Fig. 13b
the c.o.v. of Subset Simulation for the lower probability of
conflict Pc2 becomes significantly lower than the c.o.v. of
DMC as the average number of samples is increased. A point
of comparison between both methods can be made where the
number of samplesN = 104. Note that the c.o.v for Direct
Monte Carlo is approximately0.48 and the c.o.v for Subset
Simulation is approximately0.04. Also note that in order
for the DMC method to achieve similar c.o.v as the Subset
Simulation method it must useN = 106 samples. Therefore
the Subset Simulation estimates probabilities of magnitude
10−2 approximately 10 times more accurately than the Direct
Monte Carlo method while using a fraction of the samples
(approximately 1

100 ) that are required by the Direct Monte
Carlo method to achieve similar levels of accuracy.

VIII. C ONCLUSION

This paper has demonstrated the utility of the Subset Sim-
ulation method to estimate the Probability of Conflict (Pc)
between air traffic within a block of airspace during conflicting

and potentially conflicting scenarios based on the Rules of the
Air defined by the International Civil Aviation Organization.
These scenarios can be used to conduct benchmarks for com-
paring future algorithms. The Subset Simulation method has
demonstrated the ability to seek samples from the rare conflict
region of interest in an effort to estimate the probability of
conflict with lower computational effort than Direct Monte
Carlo method. For the equivalent number of samples, the
Direct Monte Carlo method fails to consistently obtain samples
from the region of interest within the probability distribution
function.

This paper has also demonstrated the ability of Subset
Simulation to estimate low probability of conflict (of magni-
tude10−2) approximately 10 times more accurately than the
Direct Monte Carlo method while using approximately1100
of the total samples used by the Direct Monte Carlo method
to achieve the same level of accuracy as Subset Simulation.
This has been demonstrated at a phase during a potentially
conflicting scenario based on the Rules of the Air. This
example situation has demonstrated that the Subset Simulation
method is able to estimate low probabilities more accurately
than Direct Monte Carlo method while using less samples
than the Direct Monte Carlo method. We conclude that Subset
Simulation method is more accurate and efficient than the
Direct Monte Carlo method for estimating low probability of
conflict between air traffic.

The Subset Simulation method is scalable to involve multi-
ple Intruders where thePc is estimated for each Intruder. This
would be useful for the resolution stage, where Intruders can
be prioritized based on the respectivePc and an optimized
resolution maneuver determined to minimize the newPc

after the resolution maneuver. A more efficient method of
estimating thePc would be to modify the SS method further
to use Sequential Monte Carlo Samplers instead of Markov
Chain Monte Carlo [42]. This will allow the implementation
to be parallelized in the seed selection stage and will give rise
to improved statistical efficiency. We plan to investigate such
improvements in future work.
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