3,078 research outputs found

    Video enhancement : content classification and model selection

    Get PDF
    The purpose of video enhancement is to improve the subjective picture quality. The field of video enhancement includes a broad category of research topics, such as removing noise in the video, highlighting some specified features and improving the appearance or visibility of the video content. The common difficulty in this field is how to make images or videos more beautiful, or subjectively better. Traditional approaches involve lots of iterations between subjective assessment experiments and redesigns of algorithm improvements, which are very time consuming. Researchers have attempted to design a video quality metric to replace the subjective assessment, but so far it is not successful. As a way to avoid heuristics in the enhancement algorithm design, least mean square methods have received considerable attention. They can optimize filter coefficients automatically by minimizing the difference between processed videos and desired versions through a training. However, these methods are only optimal on average but not locally. To solve the problem, one can apply the least mean square optimization for individual categories that are classified by local image content. The most interesting example is Kondo’s concept of local content adaptivity for image interpolation, which we found could be generalized into an ideal framework for content adaptive video processing. We identify two parts in the concept, content classification and adaptive processing. By exploring new classifiers for the content classification and new models for the adaptive processing, we have generalized a framework for more enhancement applications. For the part of content classification, new classifiers have been proposed to classify different image degradations such as coding artifacts and focal blur. For the coding artifact, a novel classifier has been proposed based on the combination of local structure and contrast, which does not require coding block grid detection. For the focal blur, we have proposed a novel local blur estimation method based on edges, which does not require edge orientation detection and shows more robust blur estimation. With these classifiers, the proposed framework has been extended to coding artifact robust enhancement and blur dependant enhancement. With the content adaptivity to more image features, the number of content classes can increase significantly. We show that it is possible to reduce the number of classes without sacrificing much performance. For the part of model selection, we have introduced several nonlinear filters to the proposed framework. We have also proposed a new type of nonlinear filter, trained bilateral filter, which combines both advantages of the original bilateral filter and the least mean square optimization. With these nonlinear filters, the proposed framework show better performance than with linear filters. Furthermore, we have shown a proof-of-concept for a trained approach to obtain contrast enhancement by a supervised learning. The transfer curves are optimized based on the classification of global or local image content. It showed that it is possible to obtain the desired effect by learning from other computationally expensive enhancement algorithms or expert-tuned examples through the trained approach. Looking back, the thesis reveals a single versatile framework for video enhancement applications. It widens the application scope by including new content classifiers and new processing models and offers scalabilities with solutions to reduce the number of classes, which can greatly accelerate the algorithm design

    DEEP LEARNING FOR IMAGE RESTORATION AND ROBOTIC VISION

    Get PDF
    Traditional model-based approach requires the formulation of mathematical model, and the model often has limited performance. The quality of an image may degrade due to a variety of reasons: It could be the context of scene is affected by weather conditions such as haze, rain, and snow; It\u27s also possible that there is some noise generated during image processing/transmission (e.g., artifacts generated during compression.). The goal of image restoration is to restore the image back to desirable quality both subjectively and objectively. Agricultural robotics is gaining interest these days since most agricultural works are lengthy and repetitive. Computer vision is crucial to robots especially the autonomous ones. However, it is challenging to have a precise mathematical model to describe the aforementioned problems. Compared with traditional approach, learning-based approach has an edge since it does not require any model to describe the problem. Moreover, learning-based approach now has the best-in-class performance on most of the vision problems such as image dehazing, super-resolution, and image recognition. In this dissertation, we address the problem of image restoration and robotic vision with deep learning. These two problems are highly related with each other from a unique network architecture perspective: It is essential to select appropriate networks when dealing with different problems. Specifically, we solve the problems of single image dehazing, High Efficiency Video Coding (HEVC) loop filtering and super-resolution, and computer vision for an autonomous robot. Our technical contributions are threefold: First, we propose to reformulate haze as a signal-dependent noise which allows us to uncover it by learning a structural residual. Based on our novel reformulation, we solve dehazing with recursive deep residual network and generative adversarial network which emphasizes on objective and perceptual quality, respectively. Second, we replace traditional filters in HEVC with a Convolutional Neural Network (CNN) filter. We show that our CNN filter could achieve 7% BD-rate saving when compared with traditional filters such as bilateral and deblocking filter. We also propose to incorporate a multi-scale CNN super-resolution module into HEVC. Such post-processing module could improve visual quality under extremely low bandwidth. Third, a transfer learning technique is implemented to support vision and autonomous decision making of a precision pollination robot. Good experimental results are reported with real-world data

    Vision Science and Technology at NASA: Results of a Workshop

    Get PDF
    A broad review is given of vision science and technology within NASA. The subject is defined and its applications in both NASA and the nation at large are noted. A survey of current NASA efforts is given, noting strengths and weaknesses of the NASA program
    • …
    corecore