1,577 research outputs found

    A GHz Full-Division-Range Programmable Divider with Output Duty-Cycle Improved

    Get PDF
    [[sponsorship]]Test Technology Technical Council (TTTC), IEEE Computer Society ; Faculty of Information Technology, Brno University of Technology[[conferencetype]]國際[[conferencedate]]20130408~20130410[[booktype]]電子版[[iscallforpapers]]Y[[conferencelocation]]Karlovy Vary (Carlsbad), Czech Republi

    A Programmable Frequency Divider Having a Wide Division Ratio Range, and Close-to-50% Output Duty-Cycle

    Get PDF
    In Radio Frequency (RF) integrated circuit design field, programmable dividers are getting more and more attentions in recent years. A programmable frequency divider can divide an input frequency by programmable ratios [1]. It is a key component of a frequency synthesizer. It also can be used to generate variable clock-signals for: switched-capacitor filters (SCFs), digital systems with different power-states, as well as multiple clock-signals on the same system-on-a-chip (SOC). These circuits need high performance programmable frequency dividers, operating at high frequencies and having wide division ratio ranges, with binary division ratio controls and 50% output duty-cycle. Different types of programmable frequency dividers are reviewed and compared. A programmable frequency divider with a wide division ratio range of (8 ~ 524287) has been reported [2]. Because the output duty-cycle of this reported divider is far from 50%, the circuit in [2] has very limited applications. The proposed design solves this problem, without compromising other advantages of the design in [2]. The proposed design is fabricated in a 0.18-μm RF CMOS process. Test results show that the output duty-cycle is 50% when the division ratio is an even number. The duty-cycle is 44.4% when the division ratio is 9. The output duty-cycle becomes closer to 50% when the division ratio is an increasing odd number. For each division ratio, the output duty-cycle remains constant, with different input frequencies from GHz down to kHz ranges, with different temperatures and power supply voltages. This thesis provides an explanation of the design details and test results. A Phase Locked-Loop (PLL) based frequency synthesizer can generate different output frequencies. A programmable frequency divider is an important component of this type of PLL. Since bandwidth is expensive, it is preferred to reduce the frequency channel distance of a frequency synthesizer. Using a fractional programmable divider, the frequency channel distance of a PLL can be reduced, without reducing the reference frequency or increasing the settling time of the PLL. A frequency synthesizer with a programmable fractional divider is designed and fabricated. A brief description of the PLL design and test results are presented in this dissertation

    Design and implementation of frequency synthesizers for 3-10 ghz mulitband ofdm uwb communication

    Get PDF
    The allocation of frequency spectrum by the FCC for Ultra Wideband (UWB) communications in the 3.1-10.6 GHz has paved the path for very high data rate Gb/s wireless communications. Frequency synthesis in these communication systems involves great challenges such as high frequency and wideband operation in addition to stringent requirements on frequency hopping time and coexistence with other wireless standards. This research proposes frequency generation schemes for such radio systems and their integrated implementations in silicon based technologies. Special emphasis is placed on efficient frequency planning and other system level considerations for building compact and practical systems for carrier frequency generation in an integrated UWB radio. This work proposes a frequency band plan for multiband OFDM based UWB radios in the 3.1-10.6 GHz range. Based on this frequency plan, two 11-band frequency synthesizers are designed, implemented and tested making them one of the first frequency synthesizers for UWB covering 78% of the licensed spectrum. The circuits are implemented in 0.25µm SiGe BiCMOS and the architectures are based on a single VCO at a fixed frequency followed by an array of dividers, multiplexers and single sideband (SSB) mixers to generate the 11 required bands in quadrature with fast hopping in much less than 9.5 ns. One of the synthesizers is integrated and tested as part of a 3-10 GHz packaged receiver. It draws 80 mA current from a 2.5 V supply and occupies an area of 2.25 mm2. Finally, an architecture for a UWB synthesizer is proposed that is based on a single multiband quadrature VCO, a programmable integer divider with 50% duty cycle and a single sideband mixer. A frequency band plan is proposed that greatly relaxes the tuning range requirement of the multiband VCO and leads to a very digitally intensive architecture for wideband frequency synthesis suitable for implementation in deep submicron CMOS processes. A design in 130nm CMOS occupies less than 1 mm2 while consuming 90 mW. This architecture provides an efficient solution in terms of area and power consumption with very low complexity

    A PLL frequency synthesizer for a 300 MHz high temperature transceiver realized in 0.5um SOS technology

    Get PDF
    This thesis presents a study of the design of a phase-lock loop (PLL) system, including specific designs for a voltage-controlled oscillator and programmable frequency divider, implemented in a 0.5μm silicon-on-sapphire CMOS technology. The system is designed for use as a frequency synthesizer in a high-temperature transceiver. Several issues relating to high-temperature applications as well as the overall system architecture are presented. Principles of the PLL system are described, and critical design considerations are discussed. The designs of the VCO and programmable divider are described and analyzed in detail. A brief discussion of the design and analysis of other PLL components is presented. Prototyping and testing procedures are discussed and the results of the prototyped circuits are evaluated. Finally, a summary of the work is presented along with insights gained toward future research

    A Low-Power BFSK/OOK Transmitter for Wireless Sensors

    Get PDF
    In recent years, significant improvements in semiconductor technology have allowed consistent development of wireless chipsets in terms of functionality and form factor. This has opened up a broad range of applications for implantable wireless sensors and telemetry devices in multiple categories, such as military, industrial, and medical uses. The nature of these applications often requires the wireless sensors to be low-weight and energy-efficient to achieve long battery life. Among the various functions of these sensors, the communication block, used to transmit the gathered data, is typically the most power-hungry block. In typical wireless sensor networks, transmission range is below 10 meters and required radiated power is below 1 milliwatt. In such cases, power consumption of the frequency-synthesis circuits prior to the power amplifier of the transmitter becomes significant. Reducing this power consumption is currently the focus of various research endeavors. A popular method of achieving this goal is using a direct-modulation transmitter where the generated carrier is directly modulated with baseband data using simple modulation schemes. Among the different variations of direct-modulation transmitters, transmitters using unlocked digitally-controlled oscillators and transmitters with injection or resonator-locked oscillators are widely investigated because of their simple structure. These transmitters can achieve low-power and stable operation either with the help of recalibration or by sacrificing tuning capability. In contrast, phase-locked-loop-based (PLL) transmitters are less researched. The PLL uses a feedback loop to lock the carrier to a reference frequency with a programmable ratio and thus achieves good frequency stability and convenient tunability. This work focuses on PLL-based transmitters. The initial goal of this work is to reduce the power consumption of the oscillator and frequency divider, the two most power-consuming blocks in a PLL. Novel topologies for these two blocks are proposed which achieve ultra-low-power operation. Along with measured performance, mathematical analysis to derive rule-of-thumb design approaches are presented. Finally, the full transmitter is implemented using these blocks in a 130 nanometer CMOS process and is successfully tested for low-power operation

    A Scalable 6-to-18 GHz Concurrent Dual-Band Quad-Beam Phased-Array Receiver in CMOS

    Get PDF
    This paper reports a 6-to-18 GHz integrated phased- array receiver implemented in 130-nm CMOS. The receiver is easily scalable to build a very large-scale phased-array system. It concurrently forms four independent beams at two different frequencies from 6 to 18 GHz. The nominal conversion gain of the receiver ranges from 16 to 24 dB over the entire band while the worst-case cross-band and cross-polarization rejections are achieved 48 dB and 63 dB, respectively. Phase shifting is performed in the LO path by a digital phase rotator with the worst-case RMS phase error and amplitude variation of 0.5° and 0.4 dB, respectively, over the entire band. A four-element phased-array receiver system is implemented based on four receiver chips. The measured array patterns agree well with the theoretical ones with a peak-to-null ratio of over 21.5 dB
    corecore